Comments on
Loan Loss Provisions and the Mortgage Market
by Mauricio Calani & Ricardo Flores

Ken Kuttner
Williams College
4 June 2018

Microdata and economic research at central banks
Central Bank of Brazil / Bank for International Settlements
Questions

- What impact did Chile’s 2016 provisioning requirement affect the distribution of mortgage LTVs?
- How can we use theory to understand these effects?
Features of the regulation

- Loan loss provisioning, implicit cost.
- Kicks in if:
 - Loan goes into arrears, *and*
 - LTV exceeds certain thresholds (80% and 90%).
 - Also depends on amount of time in arrears.
My comments

- Observations and questions on the empirics.
- A dumbed-down model.
Empirical method

- Treatment = 2016, post regulation.
- Control = 2012–14, pre-regulation.
- CEM used to create “artificial” control group with similar characteristics.
- Comparison of means, distributions.
Everyone is treated in 2016, not really a “quasi-natural experiment.”
Potential problem

- *Everyone* is treated in 2016, not *really* a “quasi-natural experiment.”

- CEM controls for loan-specific attributes...
Potential problem

- *Everyone* is treated in 2016, not *really* a “quasi-natural experiment.”
- CEM controls for loan-specific attributes. . .
- . . . but *not* year effects.
- Did something change from 2012-14 to 2016 that affected all banks/borrowers? Interest rates? Business cycle?
Empirical results

- Fewer high-LTV loans: share exceeding 80% went from 0.69 to 0.54.
- More loans were clustered around the 80% threshold.
- Roughly 6% of borrowers were unable to obtain a mortgage.
Figure 6 (almost) captures it

- Mass moves from 90% to 80%.
- Symmetric around thresholds (Epanechnikov kernel).

Why the pre-regulation modes at 80% and 90%?
A subtlety missed by Figure 6

- Regression reveals discontinuity at 80%.
- Same shape post-regulation, higher overall.
None really needed if regulation places a hard constraint on LTVs.
Why is there a theory section?

- None really needed if regulation places a hard constraint on LTVs.
- Regulation \rightarrow costs on high-LTV loans...
Why is there a theory section?

- None really needed if regulation places a hard constraint on LTVs.
- Regulation → costs on high-LTV loans...
- ...how could these higher costs *not* cause LTVs to fall?
No regulation.
A hard LTV constraint (exogenous)

- Regulation prohibits any LTV in excess of Ψ.
- Hard constraint.
Endogenous LTV

- Regulation imposes costs on loans with $\text{LTV} > \Psi$.
- Observed LTV results from bank’s optimization.
Sketch of paper’s theory

- Infinite horizon.
- *No default!* The only cost is from provisioning. (Footnote 6.)
- Borrower sends \tilde{e} quality signal.
- Loan amount, $L = (1 - \tilde{e})P$
- Penalty applies if loan is in arrears and $\ell > \Psi$.
- Cutoff \bar{e} from π maximization, $\bar{e} \rightarrow \bar{\ell}$.
A dumbed-down generic model

- Two periods. Loan rate \hat{r}, cost of funds r.

- Cost of arrears/default/workout, $C(\ell), C' \geq 0$.

- Probability of default, $\Phi(\ell), \Phi' \geq 0$.

- Bank’s problem:

\[
\max_{\ell} \hat{r} - r - C(\ell)\Phi(\ell)
\]
The dumbed-down model graphically

\[r \sim \psi \]

\[\text{expected loan return} = \text{cost of funds} \]
Mapping into paper’s model

- Signaling model motivates $\Phi(\ell)$, $\rho = 1 \rightarrow \Phi' = 0$.

- Chilean regulation $\rightarrow C(\ell)$ is a step function.

- (Banks choose \tilde{e}, equivalent to $\tilde{\ell}$.)

- Similar implications (I think).
Other theory issues

- The signaling model is more applicable to a debt-service-to-income criterion.
- Does the model imply asymmetries, e.g. the discontinuity at 80%?
- What if borrowers can choose \(P \)?
- Can the data distinguish signaling from alternative models?
Conclusions

- Can’t distinguish effects of regulation from other factors affecting all banks.

- Signaling model is very specific—likely not the only explanation for the observed effects of Chile’s regulation.