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Introduction

• The long-run real rate of interest has been showing a
decreasing path during the last decades, recently hitting
estimated levels as low as 1% or even smaller (see e.g.
Laubach and Williams (FRBSF 2015), Bauer and Rudebusch
(FRBSF 2016) and Yi and Zhang (FRBM 2016)).

Source: Bauer and Rudebusch (FRBSF 2016)
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Contribution

• I obtain Precautionary Optimal Monetary Policy under
unconditionally commitment and occasionally binding ZLB.

• It is based on Trend Inflation Welfare-Based Loss Function by
Alves (JME 2014). Monetary policy internalize its role to
affect po,t ≡ P (it ≤ 0|It−1) prior to optimization, not only in
general equilibrium.

• The optimal targeting rule holds its precautionary behavior
even under (log)linear approximations. It prescribes price level
targeting as β→ 1 and π̄ → 0. For larger levels of π̄, the
rule is more entangled.

• Even under precautionary optimal policy, and occasionally
bind ZLB constraints, the optimal level of trend inflation is
still slightly above zero...
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Contribution

• Its form is a directly convex combination between the
standard optimal form (e.g. Woodford (NBER 1999),
Damjanovic et al. (JME 2008)

, Eggertsson and Woodford
(NBER 2003) and Nakov (IJCB 2008), under
Kuhn-Tucker), and components leading to precautionary
behavior, using p̄o as the combination weight.

• Simulations indicate that, under occasionally binding ZLB
constraints, the precautionary optimal policy
welfare-dominates the standard one.

• IRFs after negative demand shocks: policy rate does not
reduce as much on spot, making room for more policy
effectiveness. After the shock ceases, precautionary optimal
policy keeps the rate at lower levels for much longer.
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The model

Households

ut =
shock︷︸︸︷

εt
C 1−σ
t

(1−σ)
υt ≡

∫ 1
0 υt (z) dz υt (z) ≡ χ

ht (z )
1+ν

(1+ν)

C
θ−1

θ
t =

∫ 1
0 ct (z)

θ−1
θ dz ct (z) = Ct

(
pt (z )
Pt

)−θ

εt = ε
ρu
t−1εu,t , where εu,t

iid∼ LN
(
0, s2u

)
Firms

yt (z) =

shock︷︸︸︷
At ht (z)ε z ∈ (0, 1)

Calvo: α ∈ (0, 1) Indexation: Πind
t = Πγπ

t−1

At = Aρa
t−1εa,t , where εa,t

iid∼ LN
(
0, s2a

)
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Policy trade-off as Alves (JME 2014)

GNKPC curve:(
π̂t − π̂indt

)
= βEt

(
π̂t+1 − π̂indt+1

)
+ κ̄x̂t

+ (ϑ− 1) κ̄vβEt v̂t+1 + ût

v̂t = ᾱϑβEt v̂t+1 + θ (1+ω)
(

π̂t − π̂indt

)
+ (1− ᾱϑβ) (ω+ σ) x̂t + (1− σ) (x̂t − x̂t−1)

ût = ᾱϑβEt ût+1 + (ϑ− 1) βEt ξ̂t+1

ξ̂t = κ̄v
(1+ω)
(ω+σ)

[
(1− σ)

(
Ât − Ât−1

)
+ (ε̂t − ε̂t−1)

]
κ̄ ≡ (1−ᾱ)(1−ᾱβϑ)

ᾱ
(ω+σ)
(1+θω)

κ̄v ≡ (1−ᾱ)
(1+θω)

ω ≡ (1+ν)
ε − 1
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Probability of hitting the ZLB

• Definition: po,t ≡ P (it ≤ 0|It−1)

• Flex Prices: p̄no = 1
2

[
1+ erf

(
−1√
2
i̊
sua

)]
i̊ ≡ log (Ī )

p̂no,t ≈ −φε

[
ωρu(1−ρu)

(ω+σ) ε̂t−1 − σ(1+ω)ρa(1−ρa)
(ω+σ) Ât−1

]

• Sticky Prices: p̄o = p̄no

p̂o,t ≈ −φεEt
[
σ
(
Ŷt+1 − Ŷt

)
+ π̂t+1

]
− φερu (1− ρu) ε̂t−1
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Probability of hitting the ZLB

0 1 2 3 4 5 6
Annual i  (%)

0

10

20

30

40

50

p 0 (%
)

ZLB Probability

0 1 2 3 4 5 6
Annual i  (%)

0

10

20

30

40

50

60

70

e

ShockElasticity

p̄o 6= Epo,t : 2006Q1-2016Q4: Freq(i<0.15)=41%, mean(i)=1.19 (Fed Funds)

Simulated: p̄o = 32%, Epo,t ∈ (43%, 44%)
1985Q1-2016Q4: Freq(i<0.15)=14%, mean(i)=3.73 (Fed Funds)

Simulated: p̄o = 7.5%, Epo,t ∈ (14%, 16%)
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Optimal Policy under unconditionally commitment
and occasionally binding ZLB constraints

• Trend inflation welfare-based loss function, Alves (JME 2014):

Lt =
(

π̂t − π̂indt + φ̄π

)2
+X (x̂t − φ̄x )

2

Wt ≈ W̄ + V̄2 ∑
j≥0

βjLt+j ; X ≡ (1−ᾱ)
(1−ᾱϑ)

κ̄
θ

• As in Damjanovic et al. (JME 2008), minimize unconditional
expectation, taking po,t under consideration.

• It is time-consistent! In addition, it does not depend on
transition probabilities into and from ZLB states.
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Optimal Policy under unconditionally commitment
and occasionally binding ZLB constraints

• Trend inflation welfare-based loss function, Alves (JME 2014):

min 1
1−β

V̄
2 E
[(

π̂t − π̂indt + φ̄π

)2
+ (1− po,t )X (x̂t − φ̄x )

2

+po,tX
(
x̂t+1 + 1

σ π̂t+1 +
1
σ i̊ +

1
σ r̂
n
t − φ̄x

)2]
• If i̊ is of order O (1), the equation on p̂o,t is not binding, and
so everything works as if considering only the effects of p̄o.
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Optimal Policy under unconditionally commitment
and occasionally binding ZLB constraints

• Targeting Rule:

0 =
(

π̂t − π̂indt

)
+ (1− p̄o) 1c1

X̄
κ̄ [x̂t − βx̂t−1 − (c2 − c1) κ̂1,t−1]

+ p̄o
X̄
κ̄

(
κ̄
σ ∂̂1,t + ∂̂2,t

)

• Where

κ̂t = c4
c1
κ̂t−1 + c3

c1
x̂t − β

c1

(
1− ᾱβϑ̄

)
x̂t−1

∂̂1,t = γπEt ∂̂1,t+1 +
(
x̂t + 1

σ ı̂t
)

∂̂2,t =
c4
c1

∂̂2,t−1 +
1
c1

(
x̂t−1 + 1

σ ı̂t−1
)

− 1
c1

[(
1+ ᾱϑ̄

)
β+ κ̄θ (c2 − c1)

] (
x̂t−2 + 1

σ ı̂t−2
)

+ 1
c1

ᾱϑ̄β2
(
x̂t−3 + 1

σ ı̂t−3
)
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ᾱϑ̄β2
(
x̂t−3 + 1

σ ı̂t−3
)



Outline The model Optimal Policy Simulations Conclusions

Optimal Policy under unconditionally commitment
and occasionally binding ZLB constraints

• Targeting Rule, if β→ 1, π̄ → 0 and κ̄
σ is small (as empirical

evidence supports):

0 ≈
(
p̂t − p̂indt

)
+ (1− p̄o) X̄κ̄ x̂t + p̄o

X̄
κ̄

(
x̂t−1 + 1

σ ı̂t−1
)

π̂t = (1− L) p̂t , π̂indt = (1− L) p̂indt , p̂indt = γπp̂t−1

• Therefore: price level targeting if β→ 1 and π̄ → 0.

• Even at its full form, it generates precautionary behavior:

• Reacting to x̂t−1, it takes does not reduce the rate as much on
spot after a negative demand shock.

• Reacting to ı̂t−1, it takes longer to increase the rate after the
shock dissipates.
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Simulations

• Calibration: Smets and R. Wouters (AER 2007). s2u estimated
w/ Great Moderation sample and π̄ = 3%.

• First I show IRF’s after two-periods negative demand shocks
w/ π̄ = 2% and εu,t = − (0.5) su to εu,t = − (5.0) su.

• Next I show simulated welfare losses w/
r̄ = 1% (β = 0.9975). Simulated sample w/ T = 10, 000 w/
Occbin, by Guerrieri and Iacoviello (JME 2015) - fixed seeds.

• We must take in consideration that, under the ZLB, E π̂t 6= 0
and Ex̂t 6= 0. And so this must taken in consideration when
computing E π̂2t and Ex̂

2
t .
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IRF

r̄ = 1%, π̄ = 2%, εu,t = −(0.5)su
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IRF
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IRF

r̄ = 1%, π̄ = 2%, εu,t = −(5.0)su
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Welfare Analysis

A) Under ZLB constraints

Steady States
r̄=1%

PrOP
Rates (%)

StOP
Rates (%)

TayR
Rates (%)

π̄ ı̄ p̄o
0 1 34.8

1 2 21.7

2 3 12.1

λ Epo,t
0.12 52.3

0.59 31.2

2.56 18.9

λ Epo,t
0.13 49.9

0.59 25.0

2.65 19.0

λ Epo,t
0.96 8.9

0.91 0.8

2.78 0.0

B) No ZLB constraints

Steady States
r̄=1%

PrOP
Rates (%)

StOP
Rates (%)

TayR
Rates (%)

π̄ ı̄ p̄o
0 1 34.8

1 2 21.7

2 3 12.1

λ Epo,t
0.00 37.2

0.48 26.8

2.42 18.9

λ Epo,t
0.00 38.1

0.48 28.0

2.42 19.7

λ Epo,t
0.35 11.3

0.84 0.9

2.78 0.0
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Main Results

• I derive optimal precautionary policy under occasionally
binding ZLB constraints, when the central bank directly
internalize its role in affecting the po,t by means of the
expectations channel.

• The precautionary targeting rule resembles price level
targeting when β→ 1 and π̄ → 0.

• Even at its full form, it generates precautionary behavior, by
reacting to lagged output-gaps and policy rates.

• It dominates standard (commitment) optimal policy under
occasionally binding ZLB constraints.
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