Optimal Unconditional Monetary Policy, Trend Inflation and the Zero Lower Bound

Sergio A. Lago Alves
Central Bank of Brazil

8th BIS CCA Research Conference
Low Interest Rates, Monetary Policy and International Spillovers
Washington, DC (May 2017)

The views expressed here are those of the authors and not necessarily those of the Banco Central do Brasil
Outline

- Introduction/Contribution
- Model
- Precautionary Optimal Policy
- IRF’s and Welfare Analysis
- Conclusions
Introduction

- The long-run real rate of interest has been showing a decreasing path during the last decades, recently hitting estimated levels as low as 1% or even smaller (see e.g. Laubach and Williams (FRBSF 2015), Bauer and Rudebusch (FRBSF 2016) and Yi and Zhang (FRBM 2016)).

Source: Bauer and Rudebusch (FRBSF 2016)
Contribution

- I obtain Precautionary Optimal Monetary Policy under unconditionally commitment and occasionally binding ZLB.
Contribution

- I obtain Precautionary Optimal Monetary Policy under unconditionally commitment and occasionally binding ZLB.

- It is based on Trend Inflation Welfare-Based Loss Function by Alves (JME 2014).
Contribution

- I obtain Precautionary Optimal Monetary Policy under unconditionally commitment and occasionally binding ZLB.
- It is based on Trend Inflation Welfare-Based Loss Function by Alves (JME 2014). Monetary policy internalize its role to affect $p_{o,t} \equiv \mathbb{P}(i_t \leq 0|\mathcal{I}_{t-1})$ prior to optimization, not only in general equilibrium.
Contribution

- I obtain Precautionary Optimal Monetary Policy under unconditionally commitment and occasionally binding ZLB.

- It is based on Trend Inflation Welfare-Based Loss Function by Alves (JME 2014). Monetary policy internalize its role to affect $p_{0,t} \equiv \mathbb{P}(i_t \leq 0|\mathcal{F}_{t-1})$ prior to optimization, not only in general equilibrium.

- The optimal targeting rule holds its precautionary behavior even under (log)linear approximations.
Contribution

• I obtain Precautionary Optimal Monetary Policy under unconditionally commitment and occasionally binding ZLB.

• It is based on Trend Inflation Welfare-Based Loss Function by Alves (JME 2014). Monetary policy internalize its role to affect $p_{o,t} \equiv P\left(i_t \leq 0 | \mathcal{I}_{t-1} \right)$ prior to optimization, not only in general equilibrium.

• The optimal targeting rule holds its precautionary behavior even under (log)linear approximations. It prescribes price level targeting as $\beta \to 1$ and $\bar{\pi} \to 0$. For larger levels of $\bar{\pi}$, the rule is more entangled.
Contribution

- I obtain Precautionary Optimal Monetary Policy under unconditionally commitment and occasionally binding ZLB.

- It is based on Trend Inflation Welfare-Based Loss Function by Alves (JME 2014). Monetary policy internalize its role to affect $p_{0,t} \equiv \mathbb{P} (i_t \leq 0 | \mathcal{I}_{t-1})$ prior to optimization, not only in general equilibrium.

- The optimal targeting rule holds its precautionary behavior even under (log)linear approximations. It prescribes price level targeting as $\beta \to 1$ and $\bar{\pi} \to 0$. For larger levels of $\bar{\pi}$, the rule is more entangled.

- Even under precautionary optimal policy, and occasionally bind ZLB constraints, the optimal level of trend inflation is still slightly above zero...
Contribution

- Its form is a directly **convex combination** between the **standard optimal form** (e.g. Woodford (NBER 1999), Damjanovic et al. (JME 2008))
Contribution

- Its form is a directly **convex combination** between the **standard optimal form** (e.g. Woodford (NBER 1999), Damjanovic et al. (JME 2008), Eggertsson and Woodford (NBER 2003) and Nakov (IJCB 2008), under Kuhn-Tucker)
Contribution

- Its form is a directly **convex combination** between the **standard optimal form** (e.g. Woodford (NBER 1999), Damjanovic et al. (JME 2008), Eggertsson and Woodford (NBER 2003) and Nakov (IJCB 2008), under Kuhn-Tucker), and components leading to **precautionary behavior**, using \bar{p}_o as the combination weight.
Contribution

- Its form is a directly **convex combination** between the **standard optimal form** (e.g. Woodford (NBER 1999), Damjanovic et al. (JME 2008), Eggertsson and Woodford (NBER 2003) and Nakov (IJCB 2008), under Kuhn-Tucker), and components leading to **precautionary behavior**, using \bar{p}_0 as the combination weight.

- Simulations indicate that, under occasionally binding ZLB constraints, the precautionary optimal policy welfare-dominates the standard one.
Contribution

- Its form is a directly **convex combination** between the **standard optimal form** (e.g. Woodford (NBER 1999), Damjanovic et al. (JME 2008), Eggertsson and Woodford (NBER 2003) and Nakov (IJCB 2008), under Kuhn-Tucker), and components leading to **precautionary behavior**, using \bar{p}_0 as the combination weight.

- Simulations indicate that, under occasionally binding ZLB constraints, the precautionary optimal policy welfare-dominates the standard one.

- IRFs after negative demand shocks: policy rate does not reduce as much on spot, making room for more policy effectiveness.
Contribution

- Its form is a directly convex combination between the standard optimal form (e.g. Woodford (NBER 1999), Damjanovic et al. (JME 2008), Eggertsson and Woodford (NBER 2003) and Nakov (IJCB 2008), under Kuhn-Tucker), and components leading to precautionary behavior, using \bar{p}_0 as the combination weight.

- Simulations indicate that, under occasionally binding ZLB constraints, the precautionary optimal policy welfare-dominates the standard one.

- IRFs after negative demand shocks: policy rate does not reduce as much on spot, making room for more policy effectiveness. After the shock ceases, precautionary optimal policy keeps the rate at lower levels for much longer.
The model

Households

\[u_t = \begin{cases} \varepsilon_t \frac{C_t^{1-\sigma}}{(1-\sigma)} & \text{shock} \\ C_t^{\theta-1} & \end{cases} \]

\[v_t \equiv \int_0^1 v_t(z) \, dz \quad v_t(z) \equiv \chi \frac{h_t(z)^{1+\nu}}{(1+\nu)} \]

\[C_t^{\theta-1} = \int_0^1 c_t(z)^{\frac{\theta-1}{\theta}} \, dz \quad c_t(z) = C_t \left(\frac{p_t(z)}{P_t} \right)^{-\theta} \]
The model

Households

\[u_t = \epsilon_t \left(\frac{C_t^{1-\sigma}}{(1-\sigma)} \right) \quad v_t = \int_0^1 v_t(z) \, dz \quad v_t(z) = \chi \frac{h_t(z)}{(1+\nu)} \]

\[C_t^{\frac{\theta-1}{\theta}} = \int_0^1 c_t(z)^{\frac{\theta-1}{\theta}} \, dz \quad c_t(z) = C_t \left(\frac{p_t(z)}{P_t} \right)^{-\theta} \]

\[\epsilon_t = \epsilon_{t-1}^u \epsilon_{u,t}, \text{ where } \epsilon_{u,t} \overset{iid}{\sim} LN(0, \sigma_u^2) \]
The model

Households

\[u_t = \epsilon_t \frac{C_t^{1-\sigma}}{(1-\sigma)} \quad v_t = \int_0^1 v_t(z) \, dz \quad v_t(z) = \chi \frac{h_t(z)^{1+\nu}}{(1+\nu)} \]

\[C_t^{\frac{\theta-1}{\theta}} = \int_0^1 c_t(z)^{\frac{\theta-1}{\theta}} \, dz \quad c_t(z) = C_t \left(\frac{p_t(z)}{P_t} \right)^{-\theta} \]

\[\epsilon_t = \epsilon_{t-1}^{\rho_u} \epsilon_{u,t}, \text{ where } \epsilon_{u,t} \overset{iid}{\sim} LN(0, \sigma_u^2) \]

Firms

\[y_t(z) = \mathcal{A}_t h_t(z)^\alpha \quad z \in (0, 1) \]

Calvo: \(\alpha \in (0, 1) \) \quad Indexation: \(\Pi_t^{ind} = \Pi_t^{\gamma_{PI}} \)
The model

Households

\[u_t = \epsilon_t \frac{C_t^{1-\sigma}}{(1-\sigma)} \]
\[v_t = \int_0^1 v_t(z) \, dz \]
\[v_t(z) = \chi \frac{h_t(z)^{1+\nu}}{(1+\nu)} \]
\[C_t^{\theta-1} = \int_0^1 c_t(z)^{\theta-1} \, dz \]
\[c_t(z) = C_t \left(\frac{p_t(z)}{P_t} \right)^{-\theta} \]
\[\epsilon_t = \epsilon_{t-1}^{\rho_u} \epsilon_{u,t}, \text{ where } \epsilon_{u,t} \overset{iid}{\sim} LN(0, \sigma_u^2) \]

Firms

\[y_t(z) = A_t h_t(z) \]
\[A_t = A_{t-1}^{\rho_a} \epsilon_{a,t}, \text{ where } \epsilon_{a,t} \overset{iid}{\sim} LN(0, \sigma_a^2) \]

Calvo: \(\alpha \in (0, 1) \)

Indexation: \(\Pi_t^{ind} = \Pi_{t-1}^{\gamma,\pi} \)
Policy trade-off as Alves (JME 2014)

GNKPC curve:

$$\left(\hat{\pi}_t - \hat{\pi}^{ind}_t \right) = \beta E_t \left(\hat{\pi}_{t+1} - \hat{\pi}^{ind}_{t+1} \right) + \bar{\kappa} \hat{x}_t$$
Policy trade-off as Alves (JME 2014)

GNKPC curve:

\[
\left(\hat{\pi}_t - \hat{\pi}^{ind}_t \right) = \beta E_t \left(\hat{\pi}_{t+1} - \hat{\pi}^{ind}_{t+1} \right) + \bar{\kappa} \hat{x}_t \\
+ (\vartheta - 1) \bar{\kappa} \omega \beta E_t \hat{\omega}_{t+1} + \hat{u}_t
\]
Policy trade-off as Alves (JME 2014)

GNKPC curve:

\[
\left(\hat{\pi}_t - \hat{\pi}_{t}^{ind} \right) = \beta E_t \left(\hat{\pi}_{t+1} - \hat{\pi}_{t+1}^{ind} \right) + \bar{\kappa} \hat{x}_t \\
+ (\vartheta - 1) \bar{\kappa} \omega \beta E_t \hat{\omega}_{t+1} + \hat{u}_t
\]

\[
\hat{\omega}_t = \bar{\alpha} \vartheta \beta E_t \hat{\omega}_{t+1} + \theta (1 + \omega) \left(\hat{\pi}_t - \hat{\pi}_t^{ind} \right) \\
+ (1 - \bar{\alpha} \vartheta \beta) (\omega + \sigma) \hat{x}_t + (1 - \sigma) (\hat{x}_t - \hat{x}_{t-1})
\]
Policy trade-off as Alves (JME 2014)

GNKPC curve:

\[
\left(\hat{\pi}_t - \hat{\pi}^{ind}_t \right) = \beta E_t \left(\hat{\pi}_{t+1} - \hat{\pi}^{ind}_{t+1} \right) + \bar{\kappa} \hat{x}_t \\
+ (\vartheta - 1) \bar{\kappa} \omega \beta E_t \hat{\omega}_{t+1} + \hat{u}_t
\]

\[
\hat{\omega}_t = \bar{\alpha} \vartheta \beta E_t \hat{\omega}_{t+1} + \theta (1 + \omega) \left(\hat{\pi}_t - \hat{\pi}^{ind}_t \right) \\
+ (1 - \bar{\alpha} \vartheta \beta) (\omega + \sigma) \hat{x}_t + (1 - \sigma) (\hat{x}_t - \hat{x}_{t-1})
\]

\[
\hat{u}_t = \bar{\alpha} \vartheta \beta E_t \hat{u}_{t+1} + (\vartheta - 1) \beta E_t \hat{\xi}_{t+1}
\]

\[
\hat{\xi}_t = \bar{\kappa} \omega \frac{(1+\omega)}{(\omega+\sigma)} \left[(1 - \sigma) \left(\hat{A}_t - \hat{A}_{t-1} \right) + (\hat{e}_t - \hat{e}_{t-1}) \right]
\]
Policy trade-off as Alves (JME 2014)

GNKPC curve:

\[
\left(\hat{\pi}_t - \hat{\pi}^{ind}_t \right) = \beta E_t \left(\hat{\pi}_{t+1} - \hat{\pi}^{ind}_{t+1} \right) + \bar{\kappa} \hat{x}_t \\
+ (\theta - 1) \bar{\kappa}_\omega \beta E_t \hat{\omega}_{t+1} + \hat{u}_t
\]

\[
\hat{\omega}_t = \bar{\alpha} \theta \beta E_t \hat{\omega}_{t+1} + \theta (1 + \omega) \left(\hat{\pi}_t - \hat{\pi}^{ind}_t \right) \\
+ (1 - \bar{\alpha} \theta \beta) (\omega + \sigma) \hat{x}_t + (1 - \sigma) (\hat{x}_t - \hat{x}_{t-1})
\]

\[
\hat{u}_t = \bar{\alpha} \theta \beta E_t \hat{u}_{t+1} + (\theta - 1) \beta E_t \hat{\xi}_{t+1}
\]

\[
\hat{\xi}_t = \bar{\kappa}_\omega \frac{(1+\omega)}{(\omega+\sigma)} \left[(1 - \sigma) \left(\hat{A}_t - \hat{A}_{t-1} \right) + (\hat{e}_t - \hat{e}_{t-1}) \right]
\]

\[
\bar{\kappa} \equiv \frac{(1-\bar{\alpha})(1-\bar{\alpha} \beta \theta)}{\bar{\alpha}} \frac{(\omega+\sigma)}{(1+\theta \omega)} \quad \bar{\kappa}_\omega \equiv \frac{(1-\bar{\alpha})}{(1+\theta \omega)} \quad \omega \equiv \frac{(1+\nu)}{\epsilon} - 1
\]
Probability of hitting the ZLB

- Definition: $p_{o,t} \equiv P(i_t \leq 0 | \mathcal{I}_{t-1})$
Probability of hitting the ZLB

- Definition: $p_{o,t} \equiv \mathbb{P}(i_t \leq 0|\tilde{J}_{t-1})$

- Flex Prices: $\bar{p}_0^n = \frac{1}{2} \left[1 + \text{erf} \left(\frac{-1}{\sqrt{2} s_{ua}} \frac{i}{\sigma} \right) \right] \quad i \equiv \log (\bar{I})$

$$\hat{p}_{o,t}^n \approx -\phi \epsilon \left[\frac{\omega \rho_u (1-\rho_u)}{(\omega+\sigma)} \hat{e}_{t-1} - \frac{\sigma (1+\omega) \rho_a (1-\rho_a)}{(\omega+\sigma)} \hat{A}_{t-1} \right]$$
Probability of hitting the ZLB

- **Definition:** \(p_{o,t} \equiv \mathbb{P}(i_t \leq 0|\mathcal{I}_{t-1}) \)

- **Flex Prices:** \(\bar{p}_o^n = \frac{1}{2} \left[1 + \text{erf} \left(\frac{-i}{\sqrt{2} s_{ua}} \right) \right], \quad i \equiv \log(\bar{l}) \)

\[
\hat{p}_{o,t}^n \approx -\phi \epsilon \left[\frac{\omega \rho_u (1-\rho_u)}{(\omega+\sigma)} \hat{e}_{t-1} - \frac{\sigma (1+\omega) \rho_a (1-\rho_a)}{(\omega+\sigma)} \hat{A}_{t-1} \right]
\]

- **Sticky Prices:** \(\bar{p}_o = \bar{p}_o^n \)

\[
\hat{p}_{o,t} \approx -\phi \epsilon E_t \left[\sigma (\hat{Y}_{t+1} - \hat{Y}_t) + \hat{\pi}_{t+1} \right] - \phi \epsilon \rho_u (1-\rho_u) \hat{e}_{t-1}
\]
Probability of hitting the ZLB

\[\bar{p}_0 = \mathbb{E} p_0, t : 2006Q1-2016Q4: \text{Freq}(i < 0.15) = 41\%, \text{mean}(i) = 1.19 \text{ (Fed Funds)} \]

Simulated: \[\bar{p}_0 = 32.5\% \]

\[\text{Simulated: } \bar{p}_0 = 7.5\%, \mathbb{E} p_0, t^2 (14\%, 16\%) \]

\[1985Q1-2016Q4: \text{Freq}(i < 0.15) = 14\%, \text{mean}(i) = 3.73 \text{ (Fed Funds)} \]

Simulated: \[\bar{p}_0 = 7.5\% \]

\[\text{Simulated: } \bar{p}_0 = 14\%, 16\% \]
Probability of hitting the ZLB

\[\bar{p}_o \neq E_{p_o,t} \]
Probability of hitting the ZLB

\[\bar{p}_0 \neq E_{p_0,t} : \quad \text{2006Q1-2016Q4: Freq}(i<0.15)=41\%, \text{ mean}(i)=1.19 \ (\text{Fed Funds}) \]

Simulated: \(\bar{p}_0 = 32\% \), \(E_{p_0,t} \in (43\%, 44\%) \)
Probability of hitting the ZLB

\[\bar{p}_0 \neq E\bar{p}_{o,t} : \]

- **2006Q1-2016Q4**: \(\text{Freq}(i<0.15)=41\% \), \(\text{mean}(i)=1.19 \) (Fed Funds)
 - Simulated: \(\bar{p}_0 = 32\% \), \(E\bar{p}_{o,t} \in (43\%, 44\%) \)

- **1985Q1-2016Q4**: \(\text{Freq}(i<0.15)=14\% \), \(\text{mean}(i)=3.73 \) (Fed Funds)
 - Simulated: \(\bar{p}_0 = 7.5\% \), \(E\bar{p}_{o,t} \in (14\%, 16\%) \)
Optimal Policy under unconditionally commitment
and occasionally binding ZLB constraints

- Trend inflation welfare-based loss function, Alves (JME 2014):

\[
\mathcal{L}_t = \left(\hat{\pi}_t - \hat{\pi}_t^{ind} + \bar{\phi}_\pi \right)^2 + \mathcal{X} \left(\hat{x}_t - \bar{\phi}_x \right)^2
\]

\[
\mathcal{W}_t \approx \bar{\mathcal{W}} + \frac{\bar{\gamma}}{2} \sum_{j \geq 0} \beta^j \mathcal{L}_{t+j} ; \quad \mathcal{X} \equiv \frac{(1-\bar{\alpha})}{(1-\bar{\alpha}\bar{\vartheta})} \bar{\kappa}
\]
Optimal Policy under unconditionally commitment
and occasionally binding ZLB constraints

- Trend inflation welfare-based loss function, Alves (JME 2014):

\[
\mathcal{L}_t = \left(\hat{\pi}_t - \hat{\pi}_t^{ind} + \bar{\phi}_{\pi} \right)^2 + \mathcal{X} \left(\hat{x}_t - \bar{\phi}_x \right)^2
\]

\[
\mathcal{W}_t \approx \bar{\mathcal{W}} + \frac{\bar{\nu}}{2} \sum_{j \geq 0} \beta^j \mathcal{L}_{t+j} \quad ; \quad \mathcal{X} \equiv \frac{(1-\bar{\alpha})}{(1-\bar{\alpha}\bar{\theta})} \bar{\kappa}
\]

- As in Damjanovic et al. (JME 2008), minimize unconditional expectation, taking \(p_{o,t} \) under consideration.
Optimal Policy under unconditionally commitment
and occasionally binding ZLB constraints

- Trend inflation welfare-based loss function, Alves (JME 2014):

\[\mathcal{L}_t = \left(\hat{\pi}_t - \hat{\pi}_t^{\text{ind}} + \bar{\phi}_\pi \right)^2 + \mathcal{X} \left(\hat{x}_t - \bar{\phi}_x \right)^2 \]

\[\mathcal{W}_t \approx \bar{\mathcal{W}} + \frac{\bar{\gamma}}{2} \sum_{j \geq 0} \beta^j \mathcal{L}_{t+j} \quad ; \quad \mathcal{X} \equiv \frac{(1-\bar{\alpha})}{(1-\bar{\alpha} \bar{\theta})} \bar{\kappa} \]

- As in Damjanovic et al. (JME 2008), minimize unconditional expectation, taking \(p_{o,t} \) under consideration.

- It is time-consistent!
Optimal Policy under unconditionally commitment
and occasionally binding ZLB constraints

- Trend inflation welfare-based loss function, Alves (JME 2014):

\[\mathcal{L}_t = \left(\hat{\pi}_t - \hat{\pi}^{ind}_t + \bar{\phi}_\pi \right)^2 + \lambda \left(\hat{x}_t - \bar{\phi}_x \right)^2 \]

\[\mathcal{W}_t \approx \bar{\mathcal{W}} + \frac{\bar{\psi}}{2} \sum_{j \geq 0} \beta^j \mathcal{L}_{t+j} \quad ; \quad \lambda \equiv \frac{(1-\bar{\alpha})}{(1-\bar{\alpha} \bar{\theta})} \bar{\kappa} \]

- As in Damjanovic et al. (JME 2008), minimize unconditional expectation, taking \(p_{o,t} \) under consideration.

- It is time-consistent! In addition, it does not depend on transition probabilities into and from ZLB states.
Optimal Policy under unconditionally commitment and occasionally binding ZLB constraints

- Trend inflation welfare-based loss function, Alves (JME 2014):

\[
\min \frac{1}{1-\beta} \frac{\hat{\nu}}{2} E \left[\left(\hat{\pi}_t - \hat{\pi}_t^{ind} + \bar{\phi}_\pi \right)^2 + (1 - p_{o,t}) \lambda \left(\hat{x}_t - \bar{\phi}_x \right)^2 \right. \\
\left. + p_{o,t} \lambda \left(\hat{x}_{t+1} + \frac{1}{\sigma} \hat{\pi}_{t+1} + \frac{1}{\sigma} i + \frac{1}{\sigma} \hat{\pi}^n - \bar{\phi}_x \right)^2 \right]
\]

- If i is of order $O(1)$, the equation on $\hat{p}_{o,t}$ is not binding, and so everything works as if considering only the effects of \bar{p}_o.
Optimal Policy under unconditionally commitment and occasionally binding ZLB constraints

- Targeting Rule:

\[
0 = \left(\hat{\pi}_t - \hat{\pi}^{ind}_t \right) + \left(1 - \bar{p}_o \right) \frac{1}{c_1} \frac{\bar{X}}{\bar{K}} \left[\hat{x}_t - \beta \hat{x}_{t-1} - (c_2 - c_1) \hat{x}_{1,t-1} \right] \\
+ \bar{p}_o \frac{\bar{X}}{\bar{K}} \left(\frac{\bar{K}}{\bar{\sigma}} \hat{d}_{1,t} + \hat{d}_{2,t} \right)
\]
Optimal Policy under unconditionally commitment
and occasionally binding ZLB constraints

- Targeting Rule:

\[0 = \left(\hat{\pi}_t - \hat{\pi}^\text{ind}_t \right) + \left(1 - \bar{p}_o \right) \frac{1}{c_1} \frac{\bar{X}}{\bar{K}} \left[\hat{x}_t - \beta \hat{x}_{t-1} - (c_2 - c_1) \hat{x}_{1,t-1} \right] \]
\[+ \bar{p}_o \frac{\bar{X}}{\bar{K}} \left(\frac{\bar{K}}{\bar{\sigma}} \hat{d}_{1,t} + \hat{d}_{2,t} \right) \]

- Where

\[\hat{x}_t = \frac{c_4}{c_1} \hat{x}_{t-1} + \frac{c_3}{c_1} \hat{x}_t - \frac{\beta}{c_1} \left(1 - \bar{\alpha} \beta \bar{\theta} \right) \hat{x}_{t-1} \]
\[\hat{d}_{1,t} = \gamma_{\pi} E_t \hat{d}_{1,t+1} + \left(\hat{x}_t + \frac{1}{\bar{\sigma}} \hat{i}_t \right) \]
\[\hat{d}_{2,t} = \frac{c_4}{c_1} \hat{d}_{2,t-1} + \frac{1}{c_1} \left(\hat{x}_{t-1} + \frac{1}{\bar{\sigma}} \hat{i}_{t-1} \right) \]
\[- \frac{1}{c_1} \left[\left(1 + \bar{\alpha} \bar{\theta} \right) \beta + \bar{\kappa} \theta \left(c_2 - c_1 \right) \right] \left(\hat{x}_{t-2} + \frac{1}{\bar{\sigma}} \hat{i}_{t-2} \right) \]
\[+ \frac{1}{c_1} \bar{\alpha} \bar{\theta} \beta^2 \left(\hat{x}_{t-3} + \frac{1}{\bar{\sigma}} \hat{i}_{t-3} \right) \]
Optimal Policy under unconditionally commitment
and occasionally binding ZLB constraints

- Targeting Rule, if $\beta \rightarrow 1$, $\bar{\pi} \rightarrow 0$ and $\bar{\kappa}/\sigma$ is small (as empirical evidence supports):

$$0 \approx (\hat{p}_t - \hat{p}_t^{ind}) + (1 - \bar{p}_o) \frac{\bar{X}}{\bar{k}} \hat{x}_t + \bar{p}_o \frac{\bar{X}}{\bar{k}} (\hat{x}_{t-1} + \frac{1}{\sigma} \hat{i}_{t-1})$$

$$\hat{\pi}_t = (1 - L) \hat{p}_t, \quad \hat{\pi}_t^{ind} = (1 - L) \hat{p}_t^{ind}, \quad \hat{p}_t^{ind} = \gamma_\pi \hat{p}_{t-1}$$
Optimal Policy under unconditionally commitment
and occasionally binding ZLB constraints

- Targeting Rule, if $\beta \rightarrow 1$, $\bar{\pi} \rightarrow 0$ and \bar{k}/σ is small (as empirical evidence supports):

$$0 \approx (\hat{p}_t - \hat{p}^{ind}_t) + (1 - \bar{p}_o) \frac{\bar{p}}{\bar{k}} \hat{x}_t + \bar{p}_o \frac{\bar{p}}{\bar{k}} (\hat{x}_{t-1} + \frac{1}{\sigma} \hat{i}_{t-1})$$

$$\hat{\pi}_t = (1 - L) \hat{p}_t, \quad \hat{\pi}^{ind}_t = (1 - L) \hat{p}^{ind}_t, \quad \hat{p}^{ind}_t = \gamma_\pi \hat{p}_{t-1}$$

- Therefore: **price level targeting** if $\beta \rightarrow 1$ and $\bar{\pi} \rightarrow 0$.
Optimal Policy under unconditionally commitment
and occasionally binding ZLB constraints

- Targeting Rule, if $\beta \rightarrow 1$, $\bar{\pi} \rightarrow 0$ and $\frac{\bar{K}}{\bar{\sigma}}$ is small (as empirical evidence supports):

$$0 \approx (\hat{p}_t - \hat{p}^{ind}_t) + (1 - \bar{p}_o) \frac{\bar{X}}{\bar{K}} \hat{x}_t + \bar{p}_o \frac{\bar{X}}{\bar{K}} (\hat{x}_{t-1} + \frac{1}{\bar{\sigma}} \hat{i}_{t-1})$$

$$\hat{\pi}_t = (1 - L) \hat{p}_t, \quad \hat{\pi}^{ind}_t = (1 - L) \hat{p}^{ind}_t, \quad \hat{p}^{ind}_t = \gamma_\pi \hat{p}_{t-1}$$

- Therefore: price level targeting if $\beta \rightarrow 1$ and $\bar{\pi} \rightarrow 0$.

- Even at its full form, it generates precautionary behavior:
Optimal Policy under unconditionally commitment
and occasionally binding ZLB constraints

- Targeting Rule, if $\beta \to 1$, $\bar{\pi} \to 0$ and $\frac{\bar{\kappa}}{\sigma}$ is small (as empirical evidence supports):

$$0 \approx (\hat{\pi}_t - \hat{\pi}_t^{ind}) + (1 - \bar{p}_o) \frac{\bar{X}}{\bar{K}} \hat{x}_t + \bar{p}_o \frac{\bar{X}}{\bar{K}} (\hat{x}_{t-1} + \frac{1}{\sigma} \hat{\iota}_{t-1})$$

$$\hat{\pi}_t = (1 - L) \hat{p}_t, \quad \hat{\pi}_t^{ind} = (1 - L) \hat{p}_t^{ind}, \quad \hat{p}_t^{ind} = \gamma_\pi \hat{p}_{t-1}$$

- Therefore: **price level targeting** if $\beta \to 1$ and $\bar{\pi} \to 0$.

- Even at its full form, it generates precautionary behavior:

 - Reacting to \hat{x}_{t-1}, it takes does not reduce the rate as much on spot after a negative demand shock.
Optimal Policy under unconditionally commitment
and occasionally binding ZLB constraints

- Targeting Rule, if $\beta \to 1$, $\bar{\pi} \to 0$ and $\frac{\bar{\kappa}}{\sigma}$ is small (as empirical evidence supports):

$$0 \approx (\hat{p}_t - \hat{p}^{ind}_t) + (1 - \bar{p}_o) \frac{\bar{\kappa}}{\bar{\kappa}} \hat{x}_t + \bar{p}_o \frac{\bar{\kappa}}{\bar{\kappa}} (\hat{x}_{t-1} + \frac{1}{\sigma} \hat{\sigma}t-1)$$

$$\hat{\pi}_t = (1 - L) \hat{p}_t, \quad \hat{\pi}^{ind}_t = (1 - L) \hat{p}^{ind}_t, \quad \hat{p}^{ind}_t = \gamma_\pi \hat{p}_{t-1}$$

- Therefore: **price level targeting** if $\beta \to 1$ and $\bar{\pi} \to 0$.

- Even at its full form, it generates precautionary behavior:
 - Reacting to \hat{x}_{t-1}, it takes does not reduce the rate as much on spot after a negative demand shock.
 - Reacting to $\hat{\sigma}t-1$, it takes longer to increase the rate after the shock dissipates.
Simulations

- Calibration: Smets and R. Wouters (AER 2007). s_u^2 estimated w/ Great Moderation sample and $\bar{\pi} = 3\%$.
Simulations

- Calibration: Smets and R. Wouters (AER 2007). s_u^2 estimated w/ Great Moderation sample and $\bar{\pi} = 3\%$.

- First I show IRF’s after two-periods negative demand shocks w/ $\bar{\pi} = 2\%$ and $\epsilon_{u,t} = - (0.5) s_u$ to $\epsilon_{u,t} = - (5.0) s_u$.

We must take in consideration that, under the ZLB, $E\hat{\pi}_t = 0$ and $E\hat{x}_t = 0$. And so this must taken in consideration when computing $E\hat{\pi}^2_t$ and $E\hat{x}^2_t$.
Simulations

• Calibration: Smets and R. Wouters (AER 2007). s_u^2 estimated w/ Great Moderation sample and $\bar{\pi} = 3\%$.

• First I show IRF’s after two-periods negative demand shocks w/ $\bar{\pi} = 2\%$ and $\epsilon_{u,t} = -(0.5)s_u$ to $\epsilon_{u,t} = -(5.0)s_u$.

• Next I show simulated welfare losses w/ $\bar{r} = 1\% \quad (\beta = 0.9975)$. Simulated sample w/ $T = 10,000$ w/ Occbin, by Guerrieri and Iacoviello (JME 2015) - fixed seeds.
Simulations

- Calibration: Smets and R. Wouters (AER 2007). σ^2_u estimated w/ Great Moderation sample and $\bar{\pi} = 3\%$.

- First I show IRF’s after two-periods negative demand shocks w/ $\bar{\pi} = 2\%$ and $\epsilon_{u,t} = -(0.5)\sigma_u$ to $\epsilon_{u,t} = -(5.0)\sigma_u$.

- Next I show simulated welfare losses w/ $\bar{r} = 1\%$ ($\beta = 0.9975$). Simulated sample w/ $T = 10,000$ w/ Occbin, by Guerrieri and Iacoviello (JME 2015) - fixed seeds.

- We must take in consideration that, under the ZLB, $E\hat{\pi}_t \neq 0$ and $E\hat{x}_t \neq 0$.
Simulations

- Calibration: Smets and R. Wouters (AER 2007). \(s_u^2 \) estimated w/ Great Moderation sample and \(\bar{\pi} = 3\% \).

- First I show IRF’s after two-periods negative demand shocks w/ \(\bar{\pi} = 2\% \) and \(\epsilon_{u,t} = -(0.5) s_u \) to \(\epsilon_{u,t} = -(5.0) s_u \).

- Next I show simulated welfare losses w/ \(\bar{\rho} = 1\% \) (\(\beta = 0.9975 \)). Simulated sample w/ \(T = 10,000 \) w/ Occbin, by Guerrieri and Iacoviello (JME 2015) - fixed seeds.

- We must take in consideration that, under the ZLB, \(E\hat{\pi}_t \neq 0 \) and \(E\hat{x}_t \neq 0 \). And so this must taken in consideration when computing \(E\hat{\pi}_t^2 \) and \(E\hat{x}_t^2 \).
\(\bar{r} = 1\%, \quad \bar{\pi} = 2\%, \quad \varepsilon_{u,t} = -(0.5) s_u \)
\[\bar{r} = 1\%, \bar{\pi} = 2\%, \epsilon_{u,t} = -(1.0)s_u \]
\[
\bar{r} = 1\%, \quad \bar{\pi} = 2\%, \quad \epsilon_{u,t} = -(5.0) \delta_u
\]
Welfare Analysis

A) Under ZLB constraints

<table>
<thead>
<tr>
<th>Steady States $\bar{r}=1%$</th>
<th>PrOP Rates (%)</th>
<th>StOP Rates (%)</th>
<th>TayR Rates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\pi}$ \bar{t} $\bar{\bar{p}}_0$</td>
<td>λ $E_{\bar{p}_0,t}$</td>
<td>λ $E_{\bar{p}_0,t}$</td>
<td>λ $E_{\bar{p}_0,t}$</td>
</tr>
<tr>
<td>0 1 34.8</td>
<td>0.12 52.3</td>
<td>0.13 49.9</td>
<td>0.96 8.9</td>
</tr>
<tr>
<td>1 2 21.7</td>
<td>0.59 31.2</td>
<td>0.59 25.0</td>
<td>0.91 0.8</td>
</tr>
<tr>
<td>2 3 12.1</td>
<td>2.56 18.9</td>
<td>2.65 19.0</td>
<td>2.78 0.0</td>
</tr>
</tbody>
</table>
Welfare Analysis

A) Under ZLB constraints

<table>
<thead>
<tr>
<th>Steady States</th>
<th>PrOP Rates (%)</th>
<th>StOP Rates (%)</th>
<th>TayR Rates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\pi}$</td>
<td>\bar{t}</td>
<td>\bar{p}_0</td>
<td>λ</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>34.8</td>
<td>0.12</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>21.7</td>
<td>0.59</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>12.1</td>
<td>2.56</td>
</tr>
</tbody>
</table>

B) No ZLB constraints

<table>
<thead>
<tr>
<th>Steady States</th>
<th>PrOP Rates (%)</th>
<th>StOP Rates (%)</th>
<th>TayR Rates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\pi}$</td>
<td>\bar{t}</td>
<td>\bar{p}_0</td>
<td>λ</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>34.8</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>21.7</td>
<td>0.48</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>12.1</td>
<td>2.42</td>
</tr>
</tbody>
</table>
Main Results

• I derive optimal precautionary policy under occasionally binding ZLB constraints, when the central bank directly internalize its role in affecting the $p_{o,t}$ by means of the expectations channel.
Main Results

- I derive optimal precautionary policy under occasionally binding ZLB constraints, when the central bank directly internalize its role in affecting the $p_{o,t}$ by means of the expectations channel.

- The precautionary targeting rule resembles price level targeting when $\beta \to 1$ and $\tilde{\pi} \to 0$.
Main Results

- I derive optimal precautionary policy under occasionally binding ZLB constraints, when the central bank directly internalize its role in affecting the $p_{o,t}$ by means of the expectations channel.

- The precautionary targeting rule resembles price level targeting when $\beta \to 1$ and $\bar{\pi} \to 0$.

- Even at its full form, it generates precautionary behavior, by reacting to lagged output-gaps and policy rates.
Main Results

- I derive optimal precautionary policy under occasionally binding ZLB constraints, when the central bank directly internalize its role in affecting the $p_{o,t}$ by means of the expectations channel.

- The precautionary targeting rule resembles price level targeting when $\beta \to 1$ and $\bar{\pi} \to 0$.

- Even at its full form, it generates precautionary behavior, by reacting to lagged output-gaps and policy rates.

- It dominates standard (commitment) optimal policy under occasionally binding ZLB constraints.