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Abstract

As the real rate of interest shows a decreasing path during the last 10 years or so, I
address how optimal monetary policy must conform to this new instance. For that, I
first identify the way monetary policy influences the probability of the nominal inter-
est rate hitting and remaining and the ZLB, by means of the expectations channel.
Next, I derive the time-consistent (unconditionally) optimal monetary policy under
commitment to be adopted between ZLB episodes, when the constraint is occasion-
ally binding, in a standard New-Keynesian model, and the central bank internalize
its role in determining ZLB episodes. My approach allows for directly retaining pre-
cautionary policy behavior even under the log-linearized version of the model. So,
it is easily incorporated into standard business cycle models. Finally, I verify how
optimal policy must be implemented as the natural real rate of interest decreases
towards zero. Results suggest that optimal policy resembles price level targeting
at low real interest rates and low levels of inflation targets (trend inflation). As
the inflation target is increased, a more entangled policy must be implemented, due
to the following policy tradeoff. Strong responses to negative demand shocks help
output, but increase the probability of hitting the ZLB. Therefore, more attenuated
responses are indicated. Finally, the effects of increasing the inflation target are not
the same as the ones obtained under higher levels of natural real interest rates.
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1 Introduction

As the long-run real rate of interest shows a decreasing path during the last 10 years,
hitting estimated levels as low as 1% or even smaller (see e.g. Laubach and Williams
(2015), Bauer and Rudebusch (2016) and Yi and Zhang (2016)), I address how optimal
monetary policy must conform to this new instance, in frameworks in which shocks (de-
mand and technology) have continuos distributions. Here, I contribute for the discussion
by assessing the consequences of monetary policy controlling future probabilities of hitting
the zero lower bound (ZLB) in a economy in which the ZLB constraint is occasionally
binding. Moreover, I follow Damjanovic et al. (2008) strategy for deriving optimal policies
under unconditionally commitment, which is unconditionally time-consistent.
I first identify the way monetary policy influences the probability of the nominal inter-

est rate hitting and remaining and the ZLB, by means of the expectations channel. Next, I
derive the time-consistent (unconditionally) optimal monetary policy under commitment
to be adopted between ZLB episodes, when the constraint is occasionally binding, and
the central bank internalize its role in determining ZLB episodes.
An important result is that my results directly internalize precautionary behavior even

under the first-order approximation of the model. This is an important difference from
my result to similar ones in the literature, e.g. Eggertsson and Woodford (2003a,b) and
Nakov (2008).
I find that optimal policy resembles price level targeting at low real interest rates and

low levels of inflation targets (trend inflation). Under low levels of nominal interest rates,
the optimal targeting rule becomes even more history dependent and more dependent on
past values of the nominal interest rate. That is, the central bank consciously and directly
adopts precautionary behavior in normal times, not decreasing the rate as much on spot
in response to negative demand shocks in order to create more room for future effective
monetary policy changes. It also takes even longer than what standard optimal policy
(e.g. Nakov (2008)) prescribe to increase the rates after the shocks have dissipated. This
precautionary behavior becomes stronger as the steady state level of nominal interest rate
is reduced.
I also find that, as the inflation target is increased, a more entangled policy must be

implemented, as the effects of increasing the inflation target are not the same as the ones
obtained under higher levels of natural real interest rates. As a matter of fact, higher
levels of trend inflation also brings distortions to the economy.
When the monetary authority does not directly internalize its role in affecting the

probability of hitting the ZLB, as in e.g. Nakov (2008), the functional form of optimal
targeting rules during normal times are the same as the ones obtained in economies where
the ZLB is never hit. In this standard approach, policy precautionary behavior arises
only indirectly in general equilibrium, and so the central bank does not benefit as much.
When comparing welfare-based performances of both types of optimal policies under

occasionally binding ZLB constraint, I find that the precautionary optimal policy domi-
nates the standard optimal policy for every level of real interest rates and trend inflation
(inflation target).
The remainder of the paper is organized as follows. The model is described in Section

2. Key results on the probability of hitting the ZLB and the design of the precautionary
optimal policy are derived in Section 3. The effect of declining real interest rates at
different levels of trend inflation on welfare is discussed in Section 5.1, while Section 5.2
assesses how optimal policies perform after negative demand shocks. Section 6 summarizes



the paper’s conclusions.

2 The model

For simplicity, I follow Woodford (2003, chap. 4) to describe the standard new-
Keynesian model with Calvo (1983) price setting and flexible wages. The economy consists
of a representative infinite-lived household that consumes an aggregate bundle and sup-
plies differentiated labor to a continuum of differentiated firms indexed by z ∈ (0, 1),
which produce and sell goods in a monopolistic competition environment.

2.1 Households

Household’s workers supply ht (z) hours of labor to each firm z, at nominal wage
Wt (z) = Ptwt (z), where Pt is the consumption price index and wt (z) is the real wage.
Disutility over hours worked in each firm is υt (z) ≡ χht (z)1+ν / (1 + ν), where ν−1 is
the Frisch elasticity of labor supply. The household’s aggregate disutility function is
υt ≡

∫ 1

0
υt (z) dz. Consumption ct (z) over all differentiated goods is aggregated into a

bundle Ct, as in Dixit and Stiglitz (1977), and provides utility ut ≡ εtC
1−σ
t / (1− σ), where

σ−1 is the intertemporal elasticity of substitution and εt is a preference shock. Aggregation
and expenditure minimization relations are described by:

C
θ−1
θ

t =
∫ 1

0
ct (z)

θ−1
θ dz ; P 1−θ

t =
∫ 1

0
pt (z)1−θ dz

ct (z) = Ct

(
pt(z)
Pt

)−θ
; PtCt =

∫ 1

0
pt (z) ct (z) dz

(1)

where θ > 1 is the elasticity of substitution between goods.
Financial markets are complete and the budget constraint is PtCt+Etqt+1Bt+1 ≤ Bt+

Pt
∫ 1

0
wt (z)ht (z) dz+dt, where Bt is the state-contingent value of the portfolio of financial

securities held at the beginning of period t, dt denotes nominal dividend income, and qt+1

is the stochastic discount factor from (t+ 1) to t. The household chooses the sequence
of Ct, ht (z) and Bt+1 to maximize its welfare measure Wt ≡ maxEt

∑∞
τ=t β

τ−t (uτ − υτ ),
subject to the budget constraint and a standard no-Ponzi condition, where β denotes the
subject discount factor. In equilibrium,1 optimal labor supply satisfies wt (z) = υ′t (z) /u′t,
where u′t ≡ ∂ut/∂Ct is the marginal utility to consumption and υ′t (z) ≡ ∂υt (z) /∂ht (z)
is the marginal disutility to hours. The optimal consumption plan and dynamics of the
stochastic discount factor are described as follows:

1 = βEt

(
u′t+1
u′t

It
Πt+1

)
; qt = β

u′t
u′t−1

1
Πt

(2)

where Πt = 1 + πt and It = 1 + it are the gross inflation and interest rates at period t,
which satisfies It = 1/Etqt+1, and it is the riskless one-period nominal interest rate.

2.2 Firms

Firm z ∈ (0, 1) produces differentiated goods using the technology yt (z) = Atht (z)ε,
where At is the aggregate technology shock and ε ∈ (0, 1). The aggregate output Yt

1Equilibrium is defined as the equations describing the first order conditions, a transversality condition
lim
T→∞

ET qt,TBT = 0, where qt,T ≡ ΠT
τ=t+1qτ , and the market clearing conditions.



is implicitly defined by PtYt =
∫ 1

0
pt (z) yt (z) dz. Using the market clearing condition

yt (z) = ct (z), ∀z, the definition implies that the firm’s demand function is yt (z) =
Yt (pt (z) /Pt)

−θ, where Yt = Ct.
With probability (1− α), the firm optimally readjusts its price to pt (z) = p∗t . With

probability α, the firm sets its price according to pt (z) = pt−1 (z) Πind
t , where Πind

t ≡
Π
γπ
t−1 and γπ ∈ (0, 1). When optimally readjusting at period t, the price p∗t maximizes
the expected discounted flow of nominal profits Pt (z) = pt (z) yt (z) − Ptwt (z)ht (z) +
Etqt+1Pt+1 (z), given the demand function and the price setting structure. At this mo-
ment, the firm’s real marginal cost ismc∗t = (1/µ)X

(ω+σ)
t (p∗t/Pt)

−θω, where ω ≡ (1 + ν) /ε−
1 is a composite parameter, µ ≡ θ/ (θ − 1) > 1 is the static markup parameter, Xt ≡
Yt/Y

n
t is the gross output gap, and Y

n
t is the natural (flexible prices) output, which evolves

according to
Y n(ω+σ)

t =
ε

χµ
εtA(1+ω)

t (3)

Following e.g. Ascari and Sbordone (2013, Section 3) and Ascari (2004, online Ap-
pendix), the firm’s first order condition can be conveniently written, in equilibrium, as
follows: (

p∗t
Pt

)1+θω

=
Nt

Dt

(4)

The numeratorNt and the denominatorDt functions can be written in recursive forms,
avoiding infinite sums:

Nt = (Xt)
(ω+σ) + Etnt+1Nt+1 ; nt = αqtGtΠt

(
Πt

Πindt

)θ(1+ω)

Dt = 1 + Etdt+1Dt+1 ; dt = αqtGtΠt

(
Πt

Πindt

)(θ−1) (5)

where Gt ≡ Yt/Yt−1 denotes the gross output growth rate. The price setting structure
implies the following dynamics:

1 = (1− α)

(
p∗t
Pt

)−(θ−1)

+ α

(
Πt

Πind
t

)(θ−1)

(6)

2.3 Aggregates

Following, I present a set of equations describing the evolution of the aggregate disutil-
ity υt ≡

∫ 1

0
υt (z) dz to labor and the aggregate hours worked ht ≡

∫ 1

0
ht (z) dz. For that,

let P−θ(1+ω)
t ≡

∫ 1

0
(pt (z) /Pt)

−θ(1+ω) dz and P−θ(1+ω̃)
ht ≡

∫ 1

0
(pt (z) /Pt)

−θ(1+ω̃) dz denote two
distinct measures of aggregate relative prices, where ω̃ ≡ 1

ε
− 1. Using the Calvo (1983)

price setting structure, I am able to derive the laws of motion of Pt and Pht.2 The result
is general and independent of any level of trend inflation. The following system describes

2The way I derive the law of motion of Pt and Pht is very similar to how e.g. Alves (2014), Schmitt-
Grohe and Uribe (2007) and Yun (2005) derive relevant price dispersion variables for aggregate output,
employment, resource constraints and aggregate disutility in their models.



the evolution of υt, ht, Pt and Pht:

υt = χ
1+ν

(
Yt
At

)(1+ω)

P−θ(1+ω)
t ; ht =

(
Yt
At

)(1+ω̃)

P−θ(1+ω̃)
ht

P−θ(1+ω)
t = (1− α)

(
p∗t
Pt

)−θ(1+ω)

+ α
(

Πt
Πindt

)θ(1+ω)

P−θ(1+ω)
t−1

P−θ(1+ω̃)
ht = (1− α)

(
p∗t
Pt

)−θ(1+ω̃)

+ α
(

Πt
Πindt

)θ(1+ω̃)

P−θ(1+ω̃)
ht−1

where ℘∗t ≡ p∗t/Pt is the optimal resetting relative price.

2.4 The log-linearized model

For any variable Wt, ŵt ≡ log
(
Wt/W

)
represents its log-deviation from its steady

state level W with non-zero trend inflation (Trend StSt). All steady state levels and
parameter definitions are shown in Appendix A.
Under flexible prices (α = 0), the (log-deviation) real interest rate and (log-deviation)

output ŷnt evolve according to the following equations:

r̂nt = Et
[
σ
(
ŷnt+1 − ŷnt

)
− (ε̂t+1 − ε̂t)

]
; ŷnt = 1

(ω+σ)

[
(1 + ω) Ât + ε̂t

]
(7)

Under sticky prices (α > 0),3 the (log-deviation) output gap x̂t is defined as follows:

x̂t = ŷt − ŷnt (8)

The log-linearized IS curve is:

x̂t = Etx̂t+1 −
1

σ
Et (̂ıt − π̂t+1 − r̂nt ) (9)

The Generalized New Keynesian Phillips Curve (GNKPC) under trend inflation, as
coined by Ascari and Sbordone (2013), is obtained by log-linearizing the firm’s first order
system (4) − (5) and the price setting structure (6) about the Trend StSt. As in Alves
(2014), I describe the GNKPC system in terms of the output gap as the only demand
variable:(
π̂t − π̂indt

)
= βEt

(
π̂t+1 − π̂indt+1

)
+ κ̄x̂t +

(
ϑ̄− 1

)
κ̄$βEt$̂t+1 + ût

$̂t = ᾱϑ̄βEt$̂t+1 + θ (1 + ω)
(
π̂t − π̂indt

)
+
(
1− ᾱϑ̄β

)
(ω + σ) x̂t + (1− σ) (x̂t − x̂t−1)

ût = ᾱϑ̄βEtût+1 +
(
ϑ̄− 1

)
βEtξ̂t+1

ξ̂t = κ̄$
(1+ω)
(ω+σ)

[
(1− σ)

(
Ât − Ât−1

)
+ (ε̂t − ε̂t−1)

]
(10)

where π̂indt = γππ̂t−1 is the indexation term, $̂t is an ancillary variable with no obvious
interpretation,4 ξ̂t is an aggregate shock term that collects the effects of the technology

3I am aware that the degree of price rigidity α is likely to endogenously decrease as the trend inflation
rises. I assume, however, that the parameter remains constant for all values of trend inflation as long as
it is suffi ciently small (less than 5% year, for instance).

4In the literature on trend inflation, there are two usual ways to describe trend inflation Phillips



shock Ât and the utility shock ε̂t, and ût is the endogenous trend inflation cost-push
shock, which ultimately depends only on the technology and preference shocks. As for
the composite parameters, ϑ̄ ≡ Π̄(1+θω)(1−γπ) is a positive transformation of the level π̄ of
trend inflation and ᾱ ≡ αΠ̄(θ−1)(1−γπ) is the effective degree of price stickiness.5 Since ᾱ
and ϑ̄ increase as trend inflation rises, the trend inflation cost-push shock ût amplifies,
by means of

(
ϑ̄− 1

)
and the coeffi cient ᾱϑ̄β on Etût+1, the effect of the aggregate shock

ξ̂t and transmits it through the inflation dynamics. The remaining composite parameters
are

κ̄ ≡ (1−ᾱ)(1−ᾱβϑ̄)
ᾱ

(ω+σ)
(1+θω)

; κ̄$ ≡ (1−ᾱ)
(1+θω)

; ω ≡ (1+ν)
ε
− 1 (11)

As well documented in the literature on trend inflation, the GNKPC becomes flatter
(κ̄ decreases) and more forward looking (

(
ϑ̄− 1

)
κ̄$β and ᾱϑ̄β increases) with trend

inflation.6 The effect of $̂t on the inflation dynamics is to make it even more forward
looking. This is due to the fact that the coeffi cients

(
ϑ̄− 1

)
on Et$̂t+1, in the first

equation, and ᾱϑ̄β on Et$̂t+1, in the second equation, increase as trend inflation rises.
As for the aggregates, we have:

υ̂t = (1 + ω)
(
ŷt − Ât − θP̂t

)
; ĥt = (1 + ω̃)

(
ŷt − Ât − θP̂ht

)
P̂t = ᾱϑ̄P̂t−1 −

(ϑ̄−1)ᾱ
(1−ᾱ)

(
π̂t − π̂indt

)
; P̂ht = ᾱϑ̃P̂ht−1 −

(ϑ̃−1)ᾱ
(1−ᾱ)

(
π̂t − π̂indt

)
where ϑ̃ ≡ Π̄(1+θω̃)(1−γπ) and ω̃ ≡ 1

ε
− 1.

3 Probability of hitting the ZLB

Given the information set It at period t, the probability po,t ≡ P (It ≤ 1|It) of hitting
the ZLB at period t is an endogenous variable. In this regard, monetary policy has an
important role, for it influences po,t by means of the expectations channel.
I assume that the preference (demand) shock εt follows an AR(1) process εt = ε

ρu
t−1εu,t,

where εu,t is a unit-meaned white noise disturbance term. Let us first consider the natural
(flexible prices) equilibrium, in which the inflatin rate is kept fixed at the trend inflation
level π̄. In this case, natural output Y n

t evolves according to Y
n(ω+σ)

t = ε
χµ
εtA(1+ω)

t , where
I assume that the technology shock follows an AR(1) process At = Aρat−1εa,t, where εa,t is
a unit-meaned white-noise disturbance, independent of εu,t. Using the Euler equation (2)
and the marginal utility definition, I compute pno,t as follows (see Appendix B for more
details):

pno,t = Fua
(
β

Π̄
(εt−1)

−ωρu(1−ρu)
(ω+σ) (At−1)

σ(1+ω)ρa(1−ρa)
(ω+σ)

)
where Fua (κ) ≡ P (εua,t ≤ κ) and fua (κ) are the cdf and density function of the aggregate

shock εua,t ≡ (εu,t)
ω(1−ρu)
(ω+σ) (εa,t)

−σ(1+ω)(1−ρa)
(ω+σ) . If εu,t

iid∼ LN (0, s2
u) is independent of εa,t

iid∼

curves: (i) with ancillary variables (e.g. Ascari and Ropele (2007)); and (ii) with infite sums (e.g. Cogley
and Sbordone (2008) and Coibion and Gorodnichenko (2011)).

5The composite parameters ᾱ and ϑ are bounded by max (ᾱ, ᾱϑ) < 1 to guarantee the existence of an
equilibrium with trend inflation.

6As Ascari and Ropele (2007) show, the GNKPC reduces to the usual form when the level of trend
inflation is zero. In this case, the ancillary variable $̂t become irrelevant and the trend inflation cost-push
shock ût vanishes to zero.



LN (0, s2
a), where s

2
u and s

2
a are dispersion parameters, then εua,t

iid∼ LN (0, s2
ua), where

s2
ua ≡

(
ω(1−ρu)
(ω+σ)

)2

s2
u +

(
σ(1+ω)(1−ρa)

(ω+σ)

)2

s2
a.

At the steady state, with ε̄ = 1 and A = 1, I obtain:7

p̄no = Fua
(
β
Π̄

)
= 1

2

[
1 + erf

(
−1√

2
i̊
sua

)]
; f̄ua = fua

(
β
Π̄

)
= Ī√

2πs2ua
exp

(
−1

2

(
i̊
sua

)2
)

where Ī = Π̄/β and i̊ ≡ log
(
Ī
)
is −ı̂t evaluated at it = 0.

A linear approximation of pno,t about the trend inflation steady state is what I call the
natural ZLB Probability curve:

pno,t ≈ p̄no − φε
[
ωρu (1− ρu)

(ω+σ)
ε̂t−1 −

σ (1 + ω) ρa (1− ρa)
(ω+σ)

Ât−1

]
(12)

where φε is the shock-elasticity of ZLB probability.

φε =
β

Π̄
f̄ua =

1√
2πs2

ua

exp

−1

2

(
i̊

sua

)2


Note now that, conditional on the expected paths of output and inflation in any
equilibrium with trend inflation, po,t satisfies (see Appendix B for more details):

po,t = Fuρ

(
(εt−1)−ρu(1−ρu) Et

(
β

Πt+1

(
Yt+1

Yt

)−σ
εu,t+1

))

where εuρ,t ≡ (εu,t)
(1−ρu), whose distribution is εuρ,t

iid∼ LN
(
0, s2

uρ

)
, where s2

uρ ≡ (1− ρu)
2
s2
u.

There is no closed-form solution for po,t, as it depends on the joint distribution of
the expected path of the endogenous variables and the exogenous shocks. However, I it is
easy to conclude that p̄o = p̄no once we account that the distorsive contribution of non-zero
levels of trend inflation is offset in the steady-state value of (Yt+1/Yt).
In this context, the log-linearization of po,t is what I call the ZLB Probability curve:

po,t ≈ p̄o − φεEt
[
σ
(
Ŷt+1 − Ŷt

)
+ π̂t+1

]
− φερu (1− ρu) ε̂t−1 (13)

As expected, the conditional probability po,t of hitting the ZLB falls when we expect
output and inflation to rise and have had positive demand shocks.

3.1 Monetary policy

In Alves (2014), I derive a trend-inflation welfare based TIWeB loss function, which
implies the following second order log-approximation of the (negative) welfare function:

Wt = −1

2
V̄Et

∞∑
τ=0

βτ L̄t+τ + tip
W
t (14)

7Recall that the cdf and pdf of a log-normal distributed random variable κ ∼ LN
(
µ, s2

)
are F (x) =

1
2

[
1 + erf

(
log(κ)−µ√

2s2

)]
and f (x) = 1

κ
√
2πs2

exp
(
− 12

(log(κ)−µ)2
s2

)
.



where
L̄t ≡

(
π̂t − π̂indt + φ̄π

)2
+ X̄

(
x̂t − φ̄x

)2
(15)

is the trend inflation welfare-based (TIWeB) loss function, tip
W
t stands for terms inde-

pendent of policy at period t, φ̄π and φ̄x are constants that depend on the ineffi ciency
parameters Φ̄ϑ ≡

(
ϑ̄− 1

)
and Φ̄y ≡ 1− ῡY /ūY , and V̄ corrects for the aggregate reduction

in the welfare when trend inflation increases. Those composite parameters are defined as
follows:

φ̄π ≡
(1−ᾱ)

(1−ᾱϑ̄)(1+θω)
Φ̄ϑ ; φ̄x ≡ 1

(ω+σ)
Φ̄y ; V̄ ≡ (ω+σ)

X̄ Ȳ
1−σ

; X̄ ≡ (1−ᾱ)

(1−ᾱϑ̄)
κ̄
θ (16)

Assume that the central bank implements inflation targeting by keeping the uncondi-
tional mean of the inflation rate at the central target π̄, or Eπt = π̄. When log-linearizing
around the inflation target, Eπ̂t = 0. As for the ZLB constraint It > 1, its log-linearized
form is ı̂t ≥ −̊i, where again i̊ ≡ log

(
Ī
)
is −ı̂t evaluated at it = 0.

Here, I expand optimal policies results I obtained in Alves (2014) by internalizing the
influence monetary policy has in gauging po,t when deriving trend inflation optimal poli-
cies rules under unconditionally commitment (e.g. Damjanovic et al. (2008)), which is
unconditionally time-consistent. That is, there is no inconsistency arising from first-order
conditions obtained at first periods of optimization steps. As a consequence, uncondition-
ally, the monetary authority has no incentive to deviate from the optimal policy rule. I
assume that the welfare-concerned central bank minimizes the unconditional expectation
of the Lagrangian problem formed by the discounted sum of the TIWeB loss function,
subject to the IS curve (9), GNKPC (10), ZLB Probability curve (13), Eπ̂t = 0 and the
constraint ı̂t ≥ −̊i.
In order to make it easier to derive optimal policies rules under unconditionally com-

mitment, I use the ancillary variable %̂t and split the IS curve into x̂t = %̂t− 1
σ
ı̂t +

1
σ
r̂nt and

%̂t = Et
(
x̂t+1 + 1

σ
π̂t+1

)
.

Since it is the unconditional expectation which is minimized, optimal policy rules
derived this way are unconditionally time consistent.

The use of unconditional expectations allows us to decompose the problem in periods
for which ı̂t ≥ −̊i is biding, with probability po,t, and those in which the restriction is loose,
with probability (1− po,t). When the restriction binds, I simply impose ı̂t = −̊i into the
IS curve, which is the only one affected by the restriction. The remaining equations are
not affected. Analogously, the only loss function quadratic term affect by the restriction
is X̄

(
x̂t − φ̄x

)2
. When building the Lagrangian form, the simplest approach is to directly

impose the restricted IS curve x̂t = %̂t + 1
σ
i̊ + 1

σ
r̂nt into X̄

(
x̂t − φ̄x

)2
when the restriction

binds.
In addition, the whole Lagrangian problem must be of order O (2), for this is the order

to which the welfare function is log-approximated. Since log-linearized equations are used
as restrictions, Lagrangian multipliers must be of order O (1). This order issue is relevant
when adding the ZLB Probability curve (13), i.e. first order approximation of po,t, into
the problem. The issue arises when multiplying this approximation by the second order
components from the loss function. We must disregard all O (3) terms from the resulting
multiplication. In Alves (2014), I show that the distortion parameters φ̄π and φ̄x must be
of order O (1) in order for the trend inflation welfare-based loss function to be properly
used with log-linearized equations when deriving optimal policy rules. With the same
logic, I assume that i̊ is of order O (1). This assumption is reasonable once we consider



that any hatted variable is assumed to be of order O (1) and i̊ is −ı̂t evaluated at it = 0.
After taking in consideration the fact that the Lagrangian problemmay only haveO (3)

terms, I derive the trend inflation optimal policy rules under unconditionally commitment
(based on e.g. Damjanovic et al. (2008)), for the case in which the monetary authority
internalizes its influence over episodes of occasionally hitting the ZLB on nominal interest
rates, as described by proposition 1.8

Proposition 1 When a welfare-concerned central bank targets π̄ as the inflation target,
follows the recommendations of the TIWeB loss function, and recognizes its role in in-
fluencing occasionally binding episodes of hitting the zero-lower bound (ZLB) on nominal
interest rates, the optimal precautionary policy under unconditionally commitment are
described by the following targeting rule, when the ZLB constraint is not binding:

0 =
(
π̂t − π̂indt

)
+ (1− p̄o) 1

c1

X̄
κ̄

[x̂t − βx̂t−1 − (c2 − c1) κ̂1,t−1] + p̄oX̄
(

1
σ
∂̂1,t + 1

κ̄
∂̂2,t

)
(17)

where κ̂t, ∂̂1,t and ∂̂2,t are ancillary variables, whose dynamics are described by

κ̂t = c4
c1
κ̂t−1 + c3

c1
x̂t − β

c1

(
1− ᾱβϑ̄

)
x̂t−1

∂̂1,t = γπEt∂̂1,t+1 +
(
x̂t + 1

σ
ı̂t
)

∂̂2,t = c4
c1
∂̂2,t−1 + 1

c1

(
x̂t−1 + 1

σ
ı̂t−1

)
− 1
c1

[(
1 + ᾱϑ̄

)
β + κ̄θ (c2 − c1)

] (
x̂t−2 + 1

σ
ı̂t−2

)
+ 1

c1
ᾱϑ̄β2

(
x̂t−3 + 1

σ
ı̂t−3

)
and the composite parameters are defined as follows:

c1 ≡ 1−
(
ϑ̄− 1

)
β κ̄$

κ̄
(1− σ) ; c2 ≡ 1 +

(
ϑ̄− 1

)
β κ̄$

κ̄
(ω + σ)

c3 ≡ θκ̄c1 +
(
1− ᾱβϑ̄

)
; c4 ≡ c1 −

(
1− ᾱβϑ̄

)
c2

(18)

The proof is shown in Appendix C.
Of course, ı̂t → −̊i when the ZLB constraint binds. Therefore, the full targeting rule

must be understood as the one to be pursued in between occasionally binding episodes
when the monetary authority is internalizes its role of influencing the probability of hitting
the ZLB by means of the expectations channel. Note that under low steady level of the
(gross) nominal interest rate Ī = Π̄/β, p̄o and φε fast increase and the full targeting rule
becomes more and more history dependent and more directly dependent on the history
of nominal interest rates. As I find, the central bank consciously and directly adopts
precautionary behavior in normal times in order not to cut nominal interest rates so fast
after negative demand shocks and taking longer to increase the rate after the shock has
dissipated. And p̄o gauges the optimal degree to which this behavior is to be used.
These terms do not arise when the monetary authority do not directly internalize its

role in affecting the probability of hitting the ZLB, as in e.g. Eggertsson and Woodford
(2003a,b) and Nakov (2008). In their approach, policy precautionary behavior arises
indirectly in general equilibrium, and so the central bank does not benefit as much.

8In Alves (2014), I find that the trend inflation optimal policy under unconditionally commitment
slightly dominates the one from timeless perspective, even though both optimal policy rules imply al-
most indistinguishable dynamics and unconditional moments. Due to this result, I choose the aproach
of deriving optimal policy under unconditionally commitment to deal with ZLB occasionally binding
constraints.



Recall that p̄o and φε are direct functions of the steady level of the (gross) nominal
interest rate Ī = Π̄/β, which can change by either changing the steady state level of
(gross) real interest rate R̄ = 1/β or the level of (gross) trend inflation Π̄. Therefore, the
effects of rising Π̄ or R̄ are perfectly substitutes on what regards p̄o and φε. However,
the effects of both margins are different on the targeting rule are very different and not
substitutes. And so, rising the trend inflation (inflation target) level is not a perfect
remedy to instances in which the real interest rate is falling. That is, it is not enough to
rise the trend inflation target as it wold create more distortions.
The effects of rising trend inflation on trend inflation composite parameters, such as

ᾱ, ϑ̄, c1, c2, c3, c4, and κ̄, do not parallel those obtained by increasing 1/β. As a matter of
fact, rising levels of trend inflation might create more instability, as shown in the literature
of trend inflation.
For larger steady state levels of nominal interest rate, as we used to have in the past,

p̄o shrinks down to zero. Therefore, the rule returns to the trend inflation form obtained
in Alves (2014), here written using ancillary variable κ̂t:

0 =
(
π̂t − π̂indt

)
+

1

c1

X̄
κ̄

[x̂t − βx̂t−1 − (c2 − c1) κ̂1,t−1] (19)

in which the targeting rule becomes more history dependent as trend inflation rises. The
results obtained by Damjanovic et al. (2008) refer to the particular case π̄ = 0, for which
ᾱ = α, and ϑ̄ = c1 = c2 = 1. In that case, the targeting rule under unconditionally com-
mitment is 0 =

(
π̂t − π̂indt

)
+ X̄

κ̄
(x̂t − βx̂t−1), which that authors show to slightly dominate

the Woodford (2003) Timeless perspective targeting rule. The latter has (x̂t − x̂t−1) in-
stead of (x̂t − βx̂t−1) as its last term. As a consequence, Timeless perspective optimal
policy is equivalent to price level targeting, while unconditionally commitment optimal
policy is not.
It is easy to verify that (19) is the obtained optimal policy under unconditionally

commitment when expanding Nakov (2008) approach to the trend inflation case. Again,
ı̂t → −̊i when the ZLB constraint binds. Note that this policy rule does not directly
internalize policy precautionary behavior — it does under general equilibrium, however.
Therefore, I call this targeting rule the Standard Optimal Policy under occasionally bind-
ing ZLB constraint, in order to distinguish it from the Precautionary Optimal Policy (17)
under occasionally binding ZLB constraint.
If π̄ = 0 and the economy has low levels of nominal interest rates, p̄o fast increase

and so the precautionary targeting rule becomes even more history dependent and more
directly dependents on the history of nominal interest rates:

0 =
(
π̂t − π̂indt

)
+ (1− p̄o) X̄κ̄ (x̂t − βx̂t−1) + p̄oX̄

(
1
σ
∂̂1,t + 1

κ̄
∂̂2,t

)
∂̂1,t = γπEt∂̂1,t+1 +

(
x̂t + 1

σ
ı̂t
)

∂̂2,t = αβ∂̂2,t−1 +
(
x̂t−1 + 1

σ
ı̂t−1

)
− (1 + α) β

(
x̂t−2 + 1

σ
ı̂t−2

)
+ αβ2

(
x̂t−3 + 1

σ
ı̂t−3

)



Using the lag L (·) operator, note that we can rewrite the rule as follows:

0 =
(
π̂t − π̂indt

)
+ (1− p̄o) X̄κ̄ (1− βL) x̂t + p̄oX̄

(
1
σ
∂̂1,t + 1

κ̄
∂̂2,t

)
∂̂1,t = γπEt∂̂1,t+1 +

(
x̂t + 1

σ
ı̂t
)

(1− αβL) ∂̂2,t = (1− αβL) (1− βL)
(
x̂t−1 + 1

σ
ı̂t−1

)
Consider the case in which the (gross) real interest rate R̄ = 1/β has been reducing

over time, i.e. β is approaching closer and closer to unity. In this case, (1− L) is a good
approximation for (1− βL). Moreover, empirical microevidence strongly suggests that
there is none or very small degree of price stickiness in the US, i.e. γπ is very small. Since
π̂t = (1− L) p̂t and π̂

ind
t = (1− L) p̂indt , for p̂indt = γπp̂t−1, the targeting rule is reasonably

approximated by the following expression when R̄ is small:

0 ≈ (1− L)
(
p̂t − p̂indt

)
+ (1− p̄o) X̄κ̄ (1− L) x̂t + p̄o

X̄
κ̄

[
κ̄
σ

+ (1− L)L
] (
x̂t + 1

σ
ı̂t
)

Since macroevidence suggests that σ >> κ̄, i.e. κ̄
σ
is very small, the second term

dominates the expression inside brackets. We then follow to "divide" the expression by
(1− L), and obtain the simplification:

0 ≈
(
p̂t − p̂indt

)
+ (1− p̄o) X̄κ̄ x̂t + p̄o

X̄
κ̄

(
x̂t−1 + 1

σ
ı̂t−1

)
(20)

That is, under low levels of steady state real interest rate, a central bank who internal-
izes its role in influencing the probability of hitting the ZLB would implement monetary
policy according to a optimal (unconditionally) time-consistent policy rule that closely
resembles price level targeting.
In order to understand the effect of monetary policy internalizing its influence over

the probability po,t of hitting the zero lower bound, suppose that the economy was hit
by a negative demand shock. Under negligible values of p̄o, the standard result is that
monetary policy lowers the rate in order to compensate the fall in current output gap
so that

(
p̂t − p̂indt

)
remains equal to zero, i.e. prices remain stable and monetary policy

pursues price level targeting.
Under non-negligible steady state probability p̄o, current probability p̂o,t of hitting the

ZLB rises by means of the ZLB Probability curve (13). Monetary policy now also look
further into the past history of output gap and nominal interest rates. As a consequence,
monetary policy does not react as strong on impact, for it also looks into periods in which
the output gap was not yet hit by the shock. This slow down in reducing the rate makes
more room for monetary policy to avoid hitting the ZLB. On the other hand, after the
negative demand shock has dissipated, monetary policy continues to look longer in the
past and still take in consideration that the output gap has fallen in the past. Therefore,
nominal rates take longer to return. I highlight that this duration depends on p̄o. Hence,
forward guidance is always optimized under this policy rule.
Finally, the presence of ı̂t−1 in the targeting rule is a novelty in the literature of optimal

policy prescriptions. It naturally arises as p̄o rises and it serves to smooth optimal changes
on nominal interest rates. As a consequence, the rate does not fall (rise) as fast under
negative (positive) demand shocks when compared to responses under standard optimal
policy prescriptions such as in Damjanovic et al. (2008), Woodford (2003),and Nakov
(2008).
Addressing the case under larger values of trend inflation π̄, under low real interest



rates, is more entangled. The targeting rules does not resembles price level targeting
anymore. In this case, only numerical analyses are feasible.

4 Calibration

The calibration is described as follows. As in Cooley and Prescott (1995), I set the
elasticity to hours at the production function at ε = 0.64. As in ,Coibion et al. (2012),
I set the elasticity of substitution at φ = 7, which implies a steady state price markup
of µ = 1.17.9 Recall that the (log-deviation) technology shock evolves according to Ât =

ρaÂt−1 + ε̂a,t, where ε̂a,t
iid∼ N (0, s2

a). Using the central estimate obtained by Smets and
Wouters (2007) for the larger sample, I set the autoregressive coeffi cient of the technology
shock at ρa = 0.95 and the shock’s standard deviation at sa = 0.0045. The remaining
parameters were based on central estimates obtained by Smets and Wouters (2007), for
the Great Moderation. I set the reciprocal of the intertemporal elasticity of substitution
at σ = 1.47. As for the elasticity ν of the disutility from hours ht (z), i.e. the reciprocal of
the Frisch elasticity, I use ν = 2.30. Note that this value is consistent with micro evidence,
as reported by Chetty et al. (2011).10 I set the degree of price stickiness at α = 0.73,
while the price indexation parameter is fixed at γπ = 0.21. In addition, I set the disutility
nuisance parameter at χ = 1.
Recall that the (log-deviation) demand shock evolves according to ε̂t = ρuε̂t−1 + ε̂u,t,

where ε̂u,t
iid∼ N (0, s2

u), and that I do not assume consumtion habit persistence in my
model. Therefore, ρu will play a similar role as the degree of habit persistence in this
model. Therefore, based on the authors’estimated habit persistence parameter, I set the
persistence of the demand shock ρ = 0.68. In order to adjust the implied dynamics implied
by this assumption, I estimate su using quarterly US data from the Great Moderation
period 1985:Q1-2005:Q4. For that, I fix β = 0.995 (consistent with annual real interest
rate r̄ = 2%) and (annual) π̄ = 3.05% (consistent with the sample average of the CPI
inflation rate).
For estimation, I considered the following observed variables: (i) inflation rate π̂t is

the (log) BLS CPI inflation rate (US city average, all urban consumers), demeaned from
its sample average; (ii) output ŷt is the (log) BLS GDP, detrended by its linear trend;
and (iii) nominal interest rate ı̂t is the (log) quarterly average of the Federal Funds Rate,
demeaned from its sample average.
Since I observe the nominal interest rate in the estimation, I assume that monetary

policy followed a simplifyed Trend Inflation Taylor rule, based on Coibion and Gorod-
nichenko (2011):

ı̂t = φiı̂t−1 + (1− φi)
[
φπEtπ̂t+1 + φxx̂t + φgy (ŷt − ŷt−1)

]
+ ε̂i,t (21)

where ε̂i,t
iid∼ N (0, s2

i ) is the monetary policy shock, φi is the policy smoothing parameter,
and φπ, φx and φgy are response parameters consistent with stability and determinacy in
equilibria with rational expectations in a equilibrium with positive trend inflation. The
authors find that reacting to the observed output growth has two major advantages: (i)
it has more stabilizing properties when the trend inflation is not zero; and (ii) it is empir-

9For instance, Ravenna and Walsh (2008, 2011) set the steady state price markup to 1.2.
10The authors conduct meta analyses of existing micro evidence. Their point estimate of the Frisch

elasticity of intensive margin is (1/ν) = 0.54.



ically more relevant. Based on Coibion and Gorodnichenko (2011) central estimations, I
keep φi = 0.92 and estimate the response parameters so that the estimated model adjusts
to a possible misscalibration and absence of additional shocks. Since I am focused in
inferring su and sa, this strategy is fairy reasonable.
Using Bayesian MCMC estimation, with flat priors and 200000 draws, table 1 reports

posterior means and 95% credible intervals for φπ, φx, φgy, si, and su. For simulations
shown in Section 5, I set su and sa at the posterior means. Since all exercises are focused
on optimal policy rules, I did not consider outcomes under monetary policy shocks.

Table 1: Posterior Distributions
PostMean 95% cred.int.

φπ 1.2283 1.2158− 1.2400
φx 0.0000 0.0000− 0.0000
φgy 0.9918 0.9896− 0.9941
si 0.0017 0.0014− 0.0021
su 0.0269 0.0233− 0.0304

Using the calibration set, note that the steady-state levels of the ZLB probability p̄o
and probability-elasticity of shocks φε increase very fast as the steady state level of the
annual nominal interest rate ı̄ falls towards the ZLB, as depicted in Figure 1. I highlight
the fact that p̄o is reference level, for the expected frequency Epo,t according to which the
ZLB binds is highly policy-dependent. In Section 5, I show simulations under different
monetary policy frameworks.
For instance, the observed frequency at which the effective annualized Federal Funds

rate is below 0.15%, which I call the Effective Lower Bound (ELB), from 2006Q1 to
2016Q4 (after the Great Moderation period) was 41%. During this period, the average
Fed Funds rate was 1.19%. In this context, even though p̄o = 32%, the Standard Optimal
policy delivers Epo,t between 43% and 44% depending on the combination of β and π̄
such that ı̄ = 1.19. In a similar exercise, for the larger sample 1985Q1 to 2016Q4, the
average Fed Funds rate was 3.73% and the rate was below the ELB at 14% of the time.
In this context, p̄o = 7.5% and Epo,t ranges between 14% and 16%, depending on the
combination of β and π̄ such that ı̄ = 3.73.
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5 Simulations

This section studies the welfare gains and dynamics implied by trend inflation opti-
mal policies under unconditionally commitment. I perform simulations using Occbin, by
Guerrieri and Iacoviello (2015), to account for the occasionally biding ZLB constraint on
the nominal interest rate. Due to ZLB restrictions, there is no closed form solution to
compute the model’s unconditional moments. Therefore, in order to infer them, I simulate
artificial equilibria with 10,000 periods simultaneously using fixed sequences of exogenous
demand and technology shocks, based on the distribution detailed in the last section.
In the first exercise, I compute welfare gains from using the TIWeB precautionary

optimal policy under unconditionally commitment (PrOP) over the TIWeB standard op-
timal policy under unconditionally commitment (StOP), obtained by extending the Nakov
(2008) analysis to a trend inflation economy, and estimated TTrend Inflation Taylor Rule
(TayR). I do not compare with the Trend Inflation optimal policy under discretion, which
I derive in Alves (2014), for it is only compatible with stability and determinacy at very
small levels of trend inflation (see Alves (2014) for more details). In the second exercise,
I compare impulse responses to negative demand shocks obtained under different policy
frameworks.

5.1 Policy evaluation

As for studying the welfare gains, I follow Schmitt-Grohe and Uribe (2007) and Alves
(2014) by computing welfare cost rates, in terms of consumption equivalence results, of
each optimal monetary policy framework. The analysis is done in terms of assessing the
gains from commitment as trend inflation rises from 0 percent to 2 percent.11, paralleling
the exercises done by Ascari and Ropele (2007).
I assess the gains from using the PrOP optimal policy under unconditionally com-

mitment against the alternative StOP optimal policy under unconditionally commitment,
considering the welfare cost rate λ of adopting each specific policy framework. In order
to simplify the evaluation, I consider the TIWeB loss function to compute the uncondi-
tional expected value of the second order log-approximation of the welfare function, under
occasionally biding ZLB restrictions:

EWt ≈ W̄ −
1

2

V̄
(1− β)

EL̄t

where EL̄t = V ar
(
π̂t − π̂indt

)
+ X̄V ar (x̂t) +

[
E
(
π̂t − π̂indt

)2
+ X̄Ex̂2

t

]
. Note that the

term inside brackets might be relevant as occasionally biding ZLB restrictions induces
non-zero values for E

(
π̂t − π̂indt

)
and Ex̂t.

The welfare cost rate λ is interpreted as a tax rate that must be applied to the steady
state output level Ȳ 0 under the equilibrium with flexible prices (π̄ = 0) in order to the
representative household to be indifferent between this equilibrium and a stochastic one
with non-zero trend inflation and occasionally binding ZLB constraints over the nominal

11If nominal interest rates were allowed to be negative, optimal monetary policy under unconditionally
commitment would fully stabilize the economy under zero trend inflation, and the model would not be
disturbed by exogenous shocks. The reason is that the endogenous trend inflation cost push shock is zero
at this level of trend inflation. If the ZLB is occasionally binding, on the other hand, optimal policy fails
to always stabilize the economy. In this case, even at zero trend inflation, the uconditional variances of
inflation and output gap are not simultaneously zero.



interest rate:
1

(1− β)

[
u
(

(1− λ) Ȳ 0
)
− ῡ0

]
= EWt

Tables 2 and 3 report welfare cost rates λ, for different optimal policy frameworks
and different levels of (annual) real interest rates, r̄ = 2% and r̄ = 1%, as trend inflation
rises from π̄ = 0% to π̄ = 2%. The compared policy structures are TIWeB precautionary
unconditional commitment (PrOP), TIWeB standard unconditional commitment (StOP)
and TI Taylor Rule (TayR). For benchmark purposes, the tables also show the outcome
in the ficticious economy where the ZLB constraint is not at play.
The tables also compare steady state levels p̄o of the probability of hitting the ZLB

with average probabilities Epo,t obtained under different policy rules. Two lessons are
learned from the tables: (i) if the ZLB constraint occasionally binds, relative gains from
precautionary (PrOP) optimal commitment over standard (StOP) optimal commitment
increase as trend inflation rises and the real interest rate falls; (ii) in the ficticious economy
where the ZLB constraint is not at play, even though I obtain the expected result that
the StOP optimal policy always dominates, the losses from adoting the PrOP optimal
policy are negligible; (iii) the PrOP optimal policy delivers larger probabilities of hitting
the ZLB, as it finds it optimal to remaining longer at the ZLB even after large negative
shocks have dissipated (see Section 5.2); (iv) even though the taylor Rule delivers much
smaller probabilities of hitting the ZLB, its implyied losses are much larger than those of
both optimal policies.

Table 2 - Gains from Precautionary Optimal Policy at r̄ = 2% (β = 0.995)

A) Under ZLB constraints

Steady States
r̄=2%

PrOP
Rates (%)

StOP
Rates (%)

TayR
Rates (%)

π̄ ı̄ p̄o
0 2 21.8
1 3 12.1
2 4 6.0

λ Epo,t
0.05 32.1
0.54 19.5
2.49 12.2

λ Epo,t
0.06 31.4
0.55 18.3
2.54 11.7

λ Epo,t
0.40 0.8
0.84 0.0
2.76 0.0

B) No ZLB constraints

Steady States
r̄=2%

PrOP
Rates (%)

StOP
Rates (%)

TayR
Rates (%)

π̄ ı̄ p̄o
0 2 21.8
1 3 12.1
2 4 6.0

λ Epo,t
0.00 26.9
0.48 18.9
2.40 12.6

λ Epo,t
0.00 28.0
0.48 19.7
2.40 13.1

λ Epo,t
0.35 0.9
0.84 0.0
2.76 0.0

Note: TIWeB precautionary unconditional commitment (PrOP), TIWeB standard

unconditional commitment (StOP), TI Taylor Rule (TayR), welfare loss (λ),
trend inflation (π̄), steady state annual real interest rate (r̄), steady state annual
nominal interest rate (̄ı), steady state probability of hitting the policy rate ZLB
constraint (p̄o), expected policy-based probability of hitting the policy rate ZLB

constraint (Epo,t).



Table 3 - Gains from Precautionary Optimal Policy at r̄ = 1% (β = 0.9975)

A) Under ZLB constraints

Steady States
r̄=1%

PrOP
Rates (%)

StOP
Rates (%)

TayR
Rates (%)

π̄ ı̄ p̄o
0 1 34.8
1 2 21.7
2 3 12.1

λ Epo,t
0.12 52.3
0.59 31.2
2.56 18.9

λ Epo,t
0.13 49.9
0.59 25.0
2.65 19.0

λ Epo,t
0.96 8.9
0.91 0.8
2.78 0.0

B) No ZLB constraints

Steady States
r̄=1%

PrOP
Rates (%)

StOP
Rates (%)

TayR
Rates (%)

π̄ ı̄ p̄o
0 1 34.8
1 2 21.7
2 3 12.1

λ Epo,t
0.00 37.2
0.48 26.8
2.42 18.9

λ Epo,t
0.00 38.1
0.48 28.0
2.42 19.7

λ Epo,t
0.35 11.3
0.84 0.9
2.78 0.0

Note: TIWeB precautionary unconditional commitment (PrOP), TIWeB standard

unconditional commitment (StOP), TI Taylor Rule (TayR), welfare loss (λ),
trend inflation (π̄), steady state annual real interest rate (r̄), steady state annual
nominal interest rate (̄ı), steady state probability of hitting the policy rate ZLB
constraint (p̄o), expected policy-based probability of hitting the policy rate ZLB

constraint (Epo,t).

5.2 Impulse Responses

In order to clearly illustrate the role of a precautionary optimal policy under un-
conditionally commitment, Figures 2 to 5 depict responses after a one-period (t = 2)
negative demand innovation shocks, with amplitudes varying from εu,t = − (0.5) su to
εu,t = − (3.0) su, where again su is the estimated standard deviation of the demand shock.
In all simulations, I consider r̄ = 1% and trend inflation fixed at π̄ = 2%. At those levels,
there are distinct responses differences under the precautionary and standard optimal
policy rules. In each exercise, I compare the responses obtained under the Precaution-
ary Optimal Policy (17), Standard Optimal Policy (19), estimated Trend Inflation Taylor
Rule (21) and under the Equilibrium with Flexible Prices without ZLB constraints. In
this equilibrium, I assume that the nominal interest rate adjusts in order to keep the
nominal interest rate constant at π̄ = 2%, given the path of the real interest rate, i.e.
Int = Rn

t Π̄.
The figures depict the responses of output Ŷt, annualized inflation rate πt, annualized

nominal interest rate it and the expected probability of hitting the ZLB in the next period
Etpo,t+1. Six lessons are learned from the responses: (i) output losses and inflation falls are
smaller under precautionary (PrOP) optimal commitment over standard (StOP) optimal
commitment and Taylor Rule; (ii) the PrOP policy delays the reduction in the nominal
interest rate as the shock hits, making more room for policy effi cacy, and delays even
further the nominal rate return to normal levels after the shock dissipates; (iii) in line
with the conclusions obtained in the analyses from the last section, the PrOP optimal
policy deliver larger probabilities of hitting the ZLB, as it finds it optimal to remaining
longer at the ZLB even after the negative shocks have dissipated; (iv) when not binded, the
interest rate response under the PrOP policy tends to mimic that of the nominal interest



rate under the equilibrium with flexible prices; (v) even though the Taylor Rule generates
very low probability of hitting the ZLB, it generates costs in terms of larger declines in
output and inflation when compared to the PrOP optimal policy; (vi) under large enough
negative demand shocks, the Taylor Rule starts to dominate the StOP optimal policy.
The second and third lessons characterizes the precautionary nature of PrOP policies.

In this exercise, the resulting optimal forward guidance structure depends on the size of
the negative shock. For small shocks, which prevents the ZLB to actually bind, both
optimal policy frameworks deliver very similar results in terms of output and inflation.
Indeed, they virtually succeed in bringing price stability. For larger negative shocks, the
differences become very clear, as the precautionary nature of PrOP dominates.
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Figure 2: Responses to a one-period negative demand shock of 0.5 Std. Dev.
Note: r̄ = 2, εu,t = −(0.5)su, Stars show when shocks hit. Taylor Rule (black circles),

Standard commitment (red dash-dotted), Precautionary commitment (blue line),

Equilibrium with Flexible Prices with no ZLB Constraints and π̄ = 2 (black dotted)
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Figure 3: Responses to a one-period negative demand shock of 1.0 Std. Dev.
Note: r̄ = 2, εu,t = −(1.0)su, Stars show when shocks hit. Taylor Rule (black circles),

Standard commitment (red dash-dotted), Precautionary commitment (blue line),

Equilibrium with Flexible Prices with no ZLB Constraints and π̄ = 2 (black dotted)
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Figure 4: Responses to a one-period negative demand shock of 1.5 Std. Dev.
Note: r̄ = 2, εu,t = −(1.5)su, Stars show when shocks hit. Taylor Rule (black circles),

Standard commitment (red dash-dotted), Precautionary commitment (blue line),

Equilibrium with Flexible Prices with no ZLB Constraints and π̄ = 2 (black dotted)
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Figure 5: Responses to a one-period negative demand shock of 3.0 Std. Dev.
Note: r̄ = 2, εu,t = −(3.0)su, Stars show when shocks hit. Taylor Rule (black circles),

Standard commitment (red dash-dotted), Precautionary commitment (blue line),

Equilibrium with Flexible Prices with no ZLB Constraints and π̄ = 2 (black dotted)

6 Conclusions

I derive a precautionary optimal policy under unconditionally commitment and occa-
sionally binding ZLB constraint on the nominal interest rate, for a standard New Key-
nesian model with continously-distributed demand and technology shocks. I depart from
the literature by directly considering the unconditional probabilities of hitting the ZLB
constraint and avoiding the issue of modelling transition probabilities of entering and
leaving binding states.
The optimal policy directly internalizes a precautionary behavior arising at occasion-

ally binding ZLB constraint. My approach allows for keeping the direct precautionary
behavior even under the first-order (loglinearization) approximation of the model equilib-
rium.
Finally, I show that the precautionary optimal policy dominates, in welfare terms, the

standard optimal policy occasionally binding ZLB constraints (see e.g. Nakov (2008)). In
addition, I find that optimal precautionary responses to negative demand shocks induces
a slower reduction in the nominal rate as the shock hits, making more room implementing
monetary policy in the future. As the negative shock dissipates, optimal precautionary
policy takes longer to return the rate to normal values than what the standard optimal
policy prescribes. As a consequence, optimal precautionary policy induces the probability
of hitting the ZLB to be higher than what the standard optimal policy implies.
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A Steady state levels

Tables 2 and 3 define the structural and composite parameters. Table 4 describes the
steady state levels under trend inflation.

Table 2: Structural parameters
σ ≡ reciprocal of intertemp elast substit γπ ≡ coeff lag inf on index rule
ν ≡ reciprocal of the Frisch elasticity ε ≡ labor elasticity prod function
χ ≡ scale parameter on labor disutility α ≡ Calvo degree of price rigidity
θ ≡ elasticity of substit between goods π̄ ≡ level of trend inflation



Table 3: Composite parameters
µ ≡ θ

θ−1
κ̄ ≡ (1−ᾱ)(1−ᾱβϑ)

ᾱ
(ω+σ)
(1+θω)

X̄ ≡ (1−ᾱ)
(1−ᾱϑ)

κ̄
θ

ω ≡ 1+ν
ε
− 1 κ̄$ ≡ (1−ᾱ)

(1+θω)
V̄ ≡ (ω+σ)

X̄ Ȳ
1−σ

δ ≡ 1
1−γπ

Φ̄y ≡ 1− (1−ᾱβϑ)(1−ᾱ)
µ(1−ᾱβ)(1−ᾱϑ)

c1 ≡ 1− (ϑ− 1) β κ̄$
κ̄

(1− σ)

ᾱ ≡ α
(
Π̄
)(θ−1)(1−γπ)

Φ̄ϑ ≡ (ϑ− 1) c2 ≡ 1 + (ϑ− 1) β κ̄$
κ̄

(ω + σ)

ϑ ≡
(
Π̄
)(1+θω)(1−γπ)

φ̄x ≡ 1
(ω+σ)

Φ̄y c3 ≡ θκ̄c1 + (1− ᾱβϑ)

max (ᾱ, ᾱϑ) < 1 φ̄π ≡
(1−ᾱ)

(1−ᾱϑ)(1+θω)
Φ̄ϑ c4 ≡ c1 − (1− ᾱβϑ) c2

Table 4: Steady state levels

Ī = β−1
(
Π̄
)

= 1
q̄

; Π̄ind = Π̄(γπ+γ) ; Ȳ n =
(

ε
χµ

) 1
(ω+σ)

; Ȳ ef =
(
ε
χ

) 1
(ω+σ)

℘̄∗ =
(

1−α
1−ᾱ
) 1
θ−1 ; N̄

D̄
= (℘̄∗)1+θω ; X̄ω+σ = 1−ᾱβϑ

1−ᾱβ
N̄
D̄

; Ȳ = X̄Ȳ n

W̄ = ū−ῡ
1−β ; ū = Ȳ

1−σ

1−σ ; ῡ = χȲ (1+ω)P̄−θ(1+ω)
1+ν

; P̄ =
(

1−ᾱϑ
1−α

) 1
θ(1+ω) ℘̄∗

B Deriving the probability of hitting the ZLB

Using the Euler equation (2) and the marginal utility definition, I rewrite the natural
probability pno,t as

pno,t = P
(
un′t ≤ βEt

(
un′t+1

Π̄

))
= P

(
εt (Y n

t )−σ ≤ βEt

(
εt+1

(
Y n
t+1

)−σ
Π̄

))

= P

εt( ε

χµ
εtA(1+ω)

t

)− σ
(ω+σ)

≤ βEt

εt+1

(
ε
χµ
εt+1A(1+ω)

t+1

)− σ
(ω+σ)

Π̄




= P
(

(εt)
ω

(ω+σ) (At)−
σ(1+ω)
(ω+σ) ≤ β

Π̄
Et

(
(εt+1)

ω
(ω+σ) (At+1)−

σ(1+ω)
(ω+σ)

))

pno,t = P
(

(εt)
ω

(ω+σ) (At)−
σ(1+ω)
(ω+σ) ≤ β

Π̄
Et

(
(ε
ρu
t εu,t+1)

ω
(ω+σ) (Aρat εa,t+1)

−σ(1+ω)
(ω+σ)

))
= P

(
(εt)

ω(1−ρu)
(ω+σ) (At)−

σ(1+ω)(1−ρa)
(ω+σ) ≤ β

Π̄
Et

(
(εu,t+1)

ω
(ω+σ) (εa,t+1)−

σ(1+ω)
(ω+σ)

))
= P

((
ε
ρu
t−1εu,t

)ω(1−ρu)
(ω+σ)

(
Aρat−1εa,t

)−σ(1+ω)(1−ρa)
(ω+σ) ≤ β

Π̄

)
= P

(
(εt−1)

ωρu(1−ρu)
(ω+σ) (At−1)

−σ(1+ω)ρa(1−ρa)
(ω+σ) (εu,t)

ω(1−ρu)
(ω+σ) (εa,t)

−σ(1+ω)(1−ρa)
(ω+σ) ≤ β

Π̄

)
= P

(
(εu,t)

ω(1−ρu)
(ω+σ) (εa,t)

−σ(1+ω)(1−ρa)
(ω+σ) ≤ β

Π̄
(εt−1)

−ωρu(1−ρu)
(ω+σ) (At−1)

σ(1+ω)ρa(1−ρa)
(ω+σ)

)

Let εua,t ≡ (εu,t)
ω(1−ρu)
(ω+σ) (εa,t)

−σ(1+ω)(1−ρa)
(ω+σ) denote the aggregate shock. If εu,t

iid∼ LN (0, s2
u)



is independent of εa,t
iid∼ LN (0, s2

a), where s
2
u and s

2
a are dispersion parameters, then

εua,t
iid∼ LN (0, s2

ua), where s
2
ua ≡

(
ω(1−ρu)
(ω+σ)

)2

s2
u +

(
σ(1+ω)(1−ρa)

(ω+σ)

)2

s2
a. Therefore, I compute

pno,t as follows:

pno,t = Fua
(
β

Π̄
(εt−1)

−ωρu(1−ρu)
(ω+σ) (At−1)

σ(1+ω)ρa(1−ρa)
(ω+σ)

)
Conditional on the expected paths of output and inflation in any equilibrium with

trend inflation, po,t satisfies:

po,t = P
(
u′t ≤ βEt

(
u′t+1

Πt+1

))
= P

(
εt (Yt)

−σ ≤ βEt

(
εt+1 (Yt+1)−σ

Πt+1

))
= P

(
(εu,t)

(1−ρu) ≤ (εt−1)−ρu(1−ρu) Et

(
β

Πt+1

(
Yt+1

Yt

)−σ
εu,t+1

))

= Fuρ

(
(εt−1)−ρu(1−ρu) Et

(
β

Πt+1

(
Yt+1

Yt

)−σ
εu,t+1

))

C Deriving the optimal precautionary optimal policy

The monetary authority solves the following problem, written in the Lagrangian form:

min
{ı̂t,x̂t,$̂t,%̂t}

{π̂t,π̂indt ,po,t}

1
(1−β)

E 1
2

[(
π̂t − π̂indt + φπ

)2
+ (1− po,t) X̄ (x̂t − φx)

2 + po,tX̄
(
%̂t + 1

σ
i̊+ 1

σ
r̂nt − φx

)2

+ 1
(1−β)

EΛ (π̂t − 0)

+ 1
(1−β)

Eλ%t
[
%̂t − x̂t+1 − 1

σ
π̂t+1

]
+ 1

(1−β)
Eλindt

[
π̂indt − γππ̂t−1

]
+ 1

(1−β)
Eλπt

[
π̂t − π̂indt − β

(
π̂t+1 − π̂indt+1

)
− κ̄x̂t −

(
ϑ̄− 1

)
κ̄$β$̂t+1

]
+ 1

(1−β)
Eλ$t

[
$̂t − ᾱϑ̄β$̂t+1 − θ (1 + ω)

(
π̂t − π̂indt

)
−
(
1− ᾱϑ̄β

)
(ω + σ) x̂t − (1− σ) (x̂t − x̂t−1)

]
+ 1

(1−β)
E (1− po,t)λxt

[
x̂t − %̂t + 1

σ
ı̂t
]

+ 1
(1−β)

Eλpt

[
(po,t − p̄o) + φε

[
σ
(
Ŷt+1 − Ŷt

)
+ π̂t+1

]]
+ constant and exogenous terms

Consider a generic variable κ̂t and a generic Lagrangian multiplier λκt . Using properties
of unconditional expectations on stationary time series, we can substitute Eλκt+1κ̂t for
Eλκt κ̂t−1. Likewise, we substitute Eλ

κ
t−1κ̂t for Eλ

κ
t κ̂t+1. With this strategy, we simplify

the Lagrangian problem to set all relevant variables to current time, leaving Lagrangian



multipliers at appropriate lags or leads:

min
{ı̂t,x̂t,$̂t,%̂t}

{π̂t,π̂indt ,po,t}

1
(1−β)

E 1
2

[(
π̂t − π̂indt + φπ

)2
+ (1− po,t) X̄ (x̂t − φx)

2 + po,tX̄
(
%̂t + 1

σ
i̊+ 1

σ
r̂nt − φx

)2

+ 1
(1−β)

EΛπ̂t

+ 1
(1−β)

E
[
λ%t %̂t − λ

%
t−1x̂t − 1

σ
λ%t−1π̂t

]
+ 1

(1−β)
E
[
λindt π̂indt − γπλindt+1π̂t

]
+ 1

(1−β)
E
[
λπt π̂t − λπt π̂indt − βλπt−1

(
π̂t − π̂indt

)
− κ̄λπt x̂t −

(
ϑ̄− 1

)
κ̄$βλ

π
t−1$̂t

]
+ 1

(1−β)
E
[
λ$t $̂t − ᾱϑ̄βλ$t−1$̂t − θ (1 + ω)λ$t

(
π̂t − π̂indt

)
−
(
1− ᾱϑ̄β

)
(ω + σ)λ$t x̂t − (1− σ)

(
λ$t x̂t − λ$t+1x̂t

)]
+ 1

(1−β)
E (1− po,t)

[
λxt x̂t − λxt %̂t + 1

σ
λxt ı̂t

]
+ 1

(1−β)
E
[
λpt (po,t − p̄o) + φε

[
σ
(
λpt−1Ŷt − λ

p
t Ŷt

)
+ λpt−1π̂t

]]
+ constant and exogenous terms

In addition, the whole Lagrangian problem must be of order O (2), for this is the order
to which the welfare function is log-approximated. Since log-linearized equations are used
as restrictions, Lagrangian multipliers must be of order O (1). This order issue is relevant
when adding the ZLB Probability curve (13), i.e. first order approximation of po,t, into
the problem. The issue arises when multiplying this approximation by the second order
components from the loss function. We must disregard all O (3) terms from the resulting
multiplication. In Alves (2014), I show that the distortion parameters φ̄π and φ̄x must be
of order O (1) in order for the trend inflation welfare-based loss function to be properly
used with log-linearized equations when deriving optimal policy rules. With the same
logic, I assume that i̊ is of order O (1). This assumption is reasonable once we consider
that any hatted variable is assumed to be of order O (1) and i̊ is −ı̂t evaluated at it = 0.
Since I assume that i̊ is of order O (1), the whole Lagrangian problem is equivalent

to the one in which p̄o substitutes po,t everywhere. As a consequence, the last constaint
is easily shown not to bind, i.e. λpt = 0. The remaining first-order conditions are then
obtained in the traditional way, and so are not shown here.


