Downward Nominal Wage Rigidity in Canada: Evidence against a 'Greasing Effect'

Joel Wagner

Bank of Canada

May 19th 2016

The views expressed in this paper are solely those of the author. No responsibility for them should be attributed to the Bank of Canada.

Downward Nominal Wage Rigidity

Motivation

- For a variety of reasons workers as well as firms are often reluctant to lower wages in response to poor labour-market conditions.
- As a result, DNWR *could* cause labour-market corrections occur disproportionately through the employment margins rather than through reduced wages.
- These downward nominal wage rigidities (DNWR) have been identified as a justification for positive inflation targets.

Main Questions

Questions

- To what extend does DNWR explain the joint dynamics of unemployment and wage inflation in Canada?
- Do higher inflation targets cause a 'Greasing Effect' in the short run?

Answers

- Evidence of DNWR in Canada. DNWR helps explain the joint dynamics of unemployment and wage inflation during the Great Recession.
- Higher inflation targets <u>do not</u> shorten the overall recovery time nor attenuate the response of unemployment.

Downward Nominal Wage Rigidity

DNWR in Canada

- Brouillete, D., Kostyshyna O. and N. Kyui, (2015a)
 - Evidence suggests that DNWR increased in Canada during the Great Recession.

Downward Nominal Wage Rigidity

Model

Model Framework

- DGE model with DNWR by Daly and Hobijn (2014).
- Each period a random fraction λ of workers will be unable to adjust wages downward (if required).
- The household is populated by members with a variety of costlessly differentiable labour types.
- Agents are forward looking and make optimal wage setting decisions in response to:
 - Aggregate shocks: Productivity and Preference shocks
 - Idiosyncratic shocks: Labour disutility shock
- Goods production is perfectly competitive

Households

Households Lifetime Utility

$$\sum_{t=0}^{\infty} \beta^t e^{-\sum_{s=0}^{t-1} D_s} \left[\ln C_t - \frac{\gamma}{\gamma+1} \int_0^1 Z_{it} L_{it}^{\frac{\gamma+1}{\gamma}} di \right], \ \gamma > 0$$

- *C_t* household consumption
- Lit labour supplied by member i of the household
- Z_{it} denotes the time dependent idiosyncratic disutility

• where
$$ln(Z)$$
 is $N\left(-\frac{\sigma^2}{2},\sigma\right)$ with $E(Z) = 1$.

• $D_{\rm s}$ is a preference shock, β subjective discount factor, γ the Frisch elasticity of labour supply

Household's budget constraint

$$B_t + P_t C_t = (1 + i_{t-1})B_{t-1} + \int_0^1 W_{it} L_{it} di.$$

Firms

Production

$$Y_t = A_t L_t.$$

 $A_t = (1 + a_t)A_{t-1}$

Production Technology

Aggregate Labour

$$L_t = \left[\int_0^1 L_{it}^{\frac{\eta-1}{\eta}} di\right]^{\frac{\eta}{\eta-1}}$$

Labour Demand Function

$$L_{it} = \left(\frac{W_t}{W_{it}}\right)^{\eta} L_t$$

Aggregate Wage Rate

$$W_t = \left[\int_0^1 \left(\frac{1}{W_{it}}\right)^{\eta-1} di\right]^{-\frac{1}{\eta-1}}$$

Downward Wage Rigidity

With DNWR, a fraction of the household members λ are unable to adjust wages downward ($w' \ge w$) when required

Household member i maximize

$$V_{t}(w) = (1 - \lambda) \int_{0}^{\infty} \max_{w_{it} \ge 0} \left(\Omega(Z_{it}, w_{it}, L_{t}) + \beta e^{-D_{t}} V_{t+1}(w') \right) dF(Z_{it})$$
$$+ \lambda \int_{0}^{\infty} \max_{w_{it} \ge w} \left(\Omega(Z_{it}, w_{it}, L_{t}) + \beta e^{-D_{t}} V_{t+1}(w') \right) dF(Z_{it}).$$

Where $F(Z_{it})$ denotes the distribution of the idiosyncratic disutility shock Z_{it}

$$\Omega(Z_{it}, w_{it}, L_t) = w_{it}^{1-\eta} - \frac{\gamma}{\gamma+1} Z_{it} w_{it}^{-\eta\frac{\gamma+1}{\gamma}} L_t^{\frac{\gamma+1}{\gamma}}$$

Detrended real wage in period t + 1 is

$$w' = w_{it}/((1+\pi_{t+1})(1+a_{t+1}))$$

Downward Wage Rigidity

Labour supply

$$L_t = \left(\frac{\eta - 1}{\eta}\right)^{\frac{\gamma}{1 + \gamma}} \left(\frac{1}{Z_t^*}\right)^{\frac{\gamma}{1 + \gamma}}$$

Aggregate disutility

$$\begin{split} Z_t^* &= \left((1-\lambda) \int_0^\infty \left(\frac{1}{Z_{it}}\right)^{\frac{\gamma(\eta-1)}{\eta+\gamma}} \left(\frac{w_t^f(Z_{it})}{w_t^*(Z_{it})}\right)^{\eta-1} dF(Z_{it}) \\ &+ \lambda \int_0^\infty \left(\frac{1}{Z_{it}}\right)^{\frac{\gamma(\eta-1)}{\eta+\gamma}} G_{t-1} \left(w_t^*(Z_{it})(1+\pi_t)(1+\mathfrak{d}_t)\right) \left(\frac{w_t^f(Z_{it})}{w_t^*(Z_{it})}\right)^{\eta-1} dF(Z_{it}) \\ &+ \lambda \int_0^\infty \left(\frac{1}{Z_{it}}\right)^{\frac{\gamma(\eta-1)}{\eta+\gamma}} \left[\int_{w_t^*(Z_{it})}^\infty (1+\pi_t)g_{t-1} \left(w(1+\pi_t)(1+\mathfrak{d}_t)\right) \left(\frac{w_t^f(Z_{it})}{w_t^*(Z_{it})}\right)^{\eta-1} dw \right] dF(Z_{it}) \\ \end{split}$$

where $G_t(w)$ is the distribution of real wages across workers

Monetary Policy

Taylor Rule

$$i_t = rac{(1+ar{\pi})(1+ar{a})}{eta} \left(rac{y_t}{ar{y}}
ight)^{\phi^Y} \left(rac{1+\pi_t}{1+ar{\pi}}
ight)^{1+\phi^\pi} - 1$$

- $\bar{\pi}$ and \bar{a} are steady-state inflation and growth rates respectively.
- $\frac{y_t}{\bar{v}}$ is the output gap with ϕ^Y its weight.
- $\frac{1+\pi_t}{1+\pi}$ is the inflation gap with $1+\phi^{\pi}$ its weight.
- $r_t = (1 + i_t)/(1 + \pi_{t+1}) 1$

Calibration

Parameters	Function	Value
η	Labour demand elasticity	1.33
γ	Frisch elasticity of labour supply	0.5
β	Discount factor	0.9921
$\bar{\pi}$	Target inflation	0.005
ϕ^Y	Taylor rule parameter for the output gap	1
ϕ^{π}	Taylor rule parameter for the inflation gap	0.3
ā	Technological growth rate	0.005
σ	Standard deviation of the idiosyn- cratic disutility shock to labour	0.294
ϵ^{D}	Size of the demand shock	-0.0124
ρ^D	Persistence of the demand shock	0.95
λ	Calvo parameter for wages	(0.40, 0.70, 0.85, 0.99)

Results: Roadmap

Two Specific Questions:

- To what extend does DNWR explain the joint dynamics of unemployment and wage inflation following an economic downturn in Canada?
- Do higher inflation targets cause a 'Greasing Effect' in the short run?

DNWR over the Business Cycle

Evolution of the SRAS and the AD Curve to a Negative Demand Shock

Impulse Response Functions

(a) Interest Rates (Annualized)

Increase in the Percentage (c) of Workforce Accepting a Nominal Wage Freeze

(b) Wage Inflation (Annualized)

(d) Unemployment Gap

 $\lambda = (0.40, 0.70, 0.85, 0.99)$

Response to a Negative Demand Shock

Short-Run Phillips Curves Varying Degrees of DNWR

Response to a Negative Demand Shock

Wage Growth Distribution

Results: Roadmap

Two Specific Questions:

- To what extend does DNWR explain the joint dynamics of unemployment and wage inflation following an economic downturn in Canada?
- 2 Do higher inflation targets cause a 'Greasing Effect' in the short run?

DNWR over the Business Cycle

Wage Growth Distribution

Impulse Response Functions

Negative Demand Shock

Increase in the Percentage (c) of Workforce Accepting a Nominal Wage Freeze Martine Contract of the Contra

(b) Wage Inflation (Annualized)

(d) Unemployment Gap

 $\bar{\pi} = (1\%, 2\%, 5\%)$

Conclusion

Main Questions

- To what extend does DNWR explain the joint dynamics of unemployment and wage inflation in Canada?
- Do higher inflation targets cause a 'Greasing Effect' in the short run?

Answer

- Evidence of DNWR in Canada. DNWR helps explain the joint dynamics of unemployment and wage inflation during the Great Recession
- Higher inflation targets <u>do not</u> shorten the overall recovery time nor attenuate the response of unemployment.