Labor Markets in Heterogeneous Sectors

Sergio A. Lago Alves
Central Bank of Brazil

Seventh BIS CCA Research Conference
Lima, Peru (May 2016)
Outline

- Introduction/Motivation
- Model
- Estimation/IRF’s
- Conclusions
Motivation

- Last 15 years, according to Alves and Correa (2013): the Brazilian Labor Market Dichotomy
 - Deep sectoral heterogeneity: Manufacturing × Services
Motivation

- Last 15 years, according to Alves and Correa (2013): the Brazilian Labor Market Dichotomy
 - Deep sectoral heterogeneity: Manufacturing × Services

- Look at the data with more detail not only the Labor market, but also the Goods markets from the Manufacturing and Services sectors are deeply heterogeneous in Brazil.
 - Extensive and intensive margins of labor play different, but important roles.
Motivation

- Last 15 years, according to Alves and Correa (2013): the Brazilian Labor Market Dichotomy
 - Deep sectoral heterogeneity: Manufacturing × Services

- Look at the data with more detail not only the Labor market, but also the Goods markets from the Manufacturing and Services sectors are deeply heterogeneous in Brazil.
 - Extensive and intensive margins of labor play different, but important roles.

- Study is a first step at identifying those sectoral idiosyncrasies by means of a formal DSGE model intended for better estimation and policy advising.
Sectoral GDP
Participation Rate and Total Employment
(Over Working Age Population)
Sectoral Employment
(Over Working Age Population)
Hours per Worker
Fully Blown DSGE model

- I expand the DMP model (Diamond (1982), Mortensen (1982) and Pissarides (1985)) for a closed economy.
 - Search and matching frictions: equilibrium unemployment.
I expand the DMP model (Diamond (1982), Mortensen (1982) and Pissarides (1985)) for a closed economy.

- Search and matching frictions: equilibrium unemployment.

Contribution: Endogenous decision to either leave the labor market or reallocate to a different sector (Manufacturing and Services), after an asymmetric stochastic training period.
I expand the DMP model (Diamond (1982), Mortensen (1982), and Pissarides (1985)) for a closed economy.

- Search and matching frictions: equilibrium unemployment.

Contribution: Endogenous decision to either leave the labor market or reallocate to a different sector (Manufacturing and Services), after an asymmetric stochastic training period.

- Sectors are asymmetric: firms are subject to sector-specific price stickiness and labor productivity.
Fully Blown DSGE model

- Thomas (2011) and Alves (2012): Firms simultaneously have specific labor force, post vacancy openings and explore both the intensive as the extensive margin of labor.
 - Induces richer dynamics in both the goods and labor market.
Fully Blown DSGE model

- Thomas (2011) and Alves (2012): Firms simultaneously have specific labor force, post vacancy openings and explore both the intensive as the extensive margin of labor.
 - Induces richer dynamics in both the goods and labor market.

Important Parameters

• δ^c and $\delta^\bar{c}$: Returning Rate at sector c and Reallocating Rate from sector c to \bar{c}.
Important Parameters

- δ^c_c and $\delta^c_{\bar{c}}$: Returning Rate at sector c and Reallocating Rate from sector c to \bar{c}.

- a_c and \bar{b}_c: Elast. unemp. matching function $m_{c,t} \equiv \eta_{c,t} \nu_{c,t}^{1-a_c} u_{c,t}^{a_c}$ and Worker’s bargaining power at sector c.
Important Parameters

- δ^c_c and $\delta^\bar{c}_c$: Returning Rate at sector c and Reallocating Rate from sector c to \bar{c}.

- a_c and b_c: Elast. unemp. matching function $m_{c,t} \equiv \eta_{c,t} v_{c,t}^{1-a_c} u_{c,t}^{a_c}$ and Worker’s bargaining power at sector c.

- ε_c: Labor productivity at sector c.
Important Parameters

- δ_c^c and $\delta_{c}^{\bar{c}}$: Returning Rate at sector c and Reallocating Rate from sector c to \bar{c}.

- a_c and \bar{b}_c: Elast. unemp. matching function $m_{c,t} \equiv \eta_{c,t} v_{c,t}^{1-a_c} u_{c,t}^{a_c}$ and Worker’s bargaining power at sector c.

- ε_c: Labor productivity at sector c.

- α_c and ι_c: Price rigidity and price indexation at sector c.
Heterogeneous Labor Market

- Two sectors: $c \in \mathcal{F}_c \equiv \{m, s\}$ with size w_c;
Heterogeneous Labor Market

- Two sectors: \(c \in \mathcal{F}_c \equiv \{m, s\} \) with size \(w_c \);
- End of period \(t \):
 - \(\ell_t^p, \ell_{m,t}^p, \ell_{s,t}^p \) members at working age.
Heterogeneous Labor Market

- Two sectors: \(c \in \mathcal{F}_c \equiv \{m, s\} \) with size \(w_c \);
- End of period \(t \):
 - \(\ell^p_t, \ell^p_{m,t}, \ell^p_{s,t} \) members at working age. \(\ell^p_{m,t} \) and \(\ell^p_{s,t} \) are endogenous;
Heterogeneous Labor Market

- Two sectors: \(c \in \mathcal{F}_c \equiv \{m, s\} \) with size \(w_c \);
- End of period \(t \):
 - \(\ell^p_t, \ell^p_{m,t}, \ell^p_{s,t} \) members at working age. \(\ell^p_{m,t} \) and \(\ell^p_{s,t} \) are endogenous;
 - \(\ell^p_t \equiv (\ell_t + \ell^o_t) \), where \(\ell^p_t \) is exogenous, stochastic, stationary, \(E\ell^p_t = 1 \)
Heterogeneous Labor Market

- Two sectors: \(c \in \mathcal{F}_c \equiv \{m, s\} \) with size \(w_c \);

- End of period \(t \):
 - \(\ell^p_t, \ell^p_{m,t}, \ell^p_{s,t} \) members at working age. \(\ell^p_{m,t} \) and \(\ell^p_{s,t} \) are endogenous;
 - \(\ell^p_t \equiv (\ell_t + \ell^o_t) \), where \(\ell^p_t \) is exogenous, stochastic, stationary, \(E \ell^p_t = 1 \);
 - \(\ell_t, \ell_{m,t}, \ell_{s,t} \) members in the labor market, employed or unemployed: endogenous;
 - \(\ell^o_t, \ell^o_{m,t}, \ell^o_{s,t} \) members out of the labor market: endogenous;
Heterogeneous Labor Market

- Two sectors: \(c \in \mathcal{F}_c \equiv \{m, s\} \) with size \(w_c \);

- End of period \(t \):
 - \(\ell^p_t, \ell^p_{m,t}, \ell^p_{s,t} \) members at working age. \(\ell^p_{m,t} \) and \(\ell^p_{s,t} \) are endogenous;
 - \(\ell^p_t \equiv (\ell_t + \ell^o_t) \), where \(\ell^p_t \) is exogenous, stochastic, stationary, \(E\ell^p_t = 1 \);
 - \(\ell_t, \ell_{m,t}, \ell_{s,t} \) members in the labor market, employed or unemployed: endogenous;
 - \(\ell^o_t, \ell^o_{m,t}, \ell^o_{s,t} \) members out of the labor market: endogenous;
 - \(n_t, n_{m,t}, n_{s,t} \) members are employed: endogenous.
Firms

- Firm z costly posts $v_t^e(z)$ job vacancies at the end of each period, and hence $v_t(z) \equiv v_{t-1}^e(z)$.
Firms

- Firm z costly posts $v_t^e(z)$ job vacancies at the end of each period, and hence $v_t(z) \equiv v_{t-1}^e(z)$.
- $n_t(z_c) \in (0, l_t)$ members employed in firm z_c.

Firms

- Firm z costly posts $v^e_t (z)$ job vacancies at the end of each period, and hence $v_t (z) \equiv v^e_{t-1} (z)$.
- $n_t (z_c) \in (0, l_t)$ members employed in firm z_c. During each period, $m_t (z_c)$ workers are matched into firm z_c.
Firms

• Firm z costly posts $v_t^e(z)$ job vacancies at the end of each period, and hence $v_t(z) \equiv v_{t-1}^e(z)$.

• $n_t(z_c) \in (0, l_t)$ members employed in firm z_c. During each period, $m_t(z_c)$ workers are matched into firm z_c.

• Production function: $y_t(z_c) = a_{c,t}A_t H_t(z_c) \epsilon_c$, where $H_t(z_c) = n_t(z_c) h_t(z_c)$.

Probability: $\prod_{c,t} = (\Pi_{c,t}, 1) \bar{\epsilon}_{c}$. Decision: $p_t(z_c) = p_1(z_c) \prod_{c,t} \bar{\epsilon}_{c}$.
Firms

- Firm z costly posts $v_t^e(z)$ job vacancies at the end of each period, and hence $v_t(z) \equiv v_{t-1}^e(z)$.
- $n_t(z_c) \in (0, \ell_t)$ members employed in firm z_c. During each period, $m_t(z_c)$ workers are matched into firm z_c.
- Production function: $y_t(z_c) = a_{c,t}A_tH_t(z_c)\epsilon_c$, where $H_t(z_c) = n_t(z_c)h_t(z_c)$.
- Probability $(1 - \alpha_c)$: price is adjusted to $p_t(z_c) = p_{t-1}(z_c)\Pi_{c,t}^{ind}$, where $\Pi_{c,t}^{ind} = (\Pi_{c,t-1})^{\ell_c}(\Pi)^{\ell_t}$.
Firms

- Firm z costly posts $v^e_t(z)$ job vacancies at the end of each period, and hence $v_t(z) \equiv v^e_{t-1}(z)$.
- $n_t(z_c) \in (0, l_t)$ members employed in firm z_c. During each period, $m_t(z_c)$ workers are matched into firm z_c.
- Production function: $y_t(z_c) = a_{c,t} A_t H_t(z_c)^{\varepsilon_c}$, where $H_t(z_c) = n_t(z_c) h_t(z_c)$.
- Probability $(1 - \alpha_c)$: price is adjusted to $p_t(z_c) = p_{t-1}(z_c) \Pi^{ind}_{c,t}$, where $\Pi^{ind}_{c,t} = (\Pi_{c,t-1})^{\ell_c} (\Pi^\top)^\ell$.
- Firm simultaneously chooses $p_t^*(z_c)$, $v^e_t(z_c)$ and $n_{t+1}(z_c)$ to maximize its expected present discounted sum of nominal profits.
Firms

- Firm z costly posts $v_t^e(z)$ job vacancies at the end of each period, and hence $v_t(z) \equiv v_{t-1}^e(z)$.
- $n_t(z_c) \in (0, \ell_t)$ members employed in firm z_c. During each period, $m_t(z_c)$ workers are matched into firm z_c.
- Production function: $y_t(z_c) = a_{c,t} A_t H_t(z_c)^{\epsilon_c}$, where $H_t(z_c) = n_t(z_c) h_t(z_c)$.
- Probability $(1 - \alpha_c)$: price is adjusted to $p_t(z_c) = p_{t-1}(z_c) \Pi_{c,t}^{ind}$, where $\Pi_{c,t}^{ind} = (\Pi_{c,t-1})^{t_c} (\bar{\Pi})^{\bar{t}}$.
- Firm simultaneously chooses $p_t^*(z_c)$, $v_t^e(z_c)$ and $n_{t+1}(z_c)$ to maximize its expected present discounted sum of nominal profits.
- Total real salary per period $\varpi_t(z_c) = w_t(z_c) h_t(z_c)$ decided by Nash bargaining, while hours per worker $h_t(z_c)$ are set to maximize total surpluses.
Household

- Utility: $u_t \equiv \mu_{u,t} \left(\frac{C_t - \nu_u \tilde{C}_{t-1}}{1 - \sigma} \right)^{1 - \sigma}$
Household

- Utility: \(u_t \equiv u_{u,t} \left(\frac{C_t - \nu u \tilde{C}_{t-1}}{(1 - \sigma)} \right)^{1-\sigma} \)

Aggregate Disutility:

\[v_t \equiv \int_0^1 v_t(z) \, dz \]
Household

- Utility: $u_t \equiv u_{u,t} \left(\frac{C_t - \nu C_{t-1}}{(1-\sigma)^{1-\sigma}} \right)$

Aggregate Disutility:

$v_t \equiv \int_0^1 v_t(z) dz$ where Union's disutility to

$H_t(z_c) \equiv n_t(z_c) h_t(z_c)$ is $v_t(z_c) \equiv \chi \frac{H_t(z_c)^{1+v}}{(1+v)}$
Household

- Utility: \(u_t \equiv u_{u,t} \left(C_t - \bar{C}_{t-1} \right)^{1-\sigma} \)

 Aggregate Disutility:

 \(v_t \equiv \int_0^1 v_t(z) \, dz \) where Union’s disutility to

 \(H_t(z_c) \equiv n_t(z_c) h_t(z_c) \) is \(v_t(z_c) \equiv \chi \frac{H_t(z_c)^{1+\nu}}{1+\nu} \)

- Unemployment compensation: \(P_t \left(w_m \omega_{m,t} u_{m,t}^e + w_s \omega_{s,t} u_{s,t}^e \right) \)
Household

- Utility: $u_t \equiv u_{u,t} \frac{(C_t - \nu C_{t-1})^{1-\sigma}}{(1-\sigma)}$
 Aggregate Disutility: $v_t \equiv \int_0^1 v_t(z) \, dz$ where Union’s disutility to $H_t(z_c) \equiv n_t(z_c) h_t(z_c)$ is $v_t(z_c) \equiv \chi \frac{H_t(z_c)^{1+\nu}}{(1+\nu)}$

- Unemployment compensation: $P_t (w_m \omega_m^{c,t} u_{m,t} \bar{u} + w_s \omega_s^{c,t} u_{s,t} \bar{u})$

- Members out of the labor market also onsume $C_{c,t}$, but make no monetary contribution.
Household

- Utility: $u_t \equiv u_{u,t} \left(\frac{C_t - C_{t-1}}{1-\sigma} \right)^{1-\sigma}$

Aggregate Disutility:

$v_t \equiv \int_0^1 v_t(z) \, dz$ where Union’s disutility to

$H_t(z_c) \equiv n_t(z_c) h_t(z_c)$ is $v_t(z_c) \equiv \chi \frac{H_t(z_c)^{1+\nu}}{(1+\nu)}$

- Unemployment compensation: $P_t \left(w_m \omega_m^{c,t} u_m^{e,t} + w_s \omega_s^{c,t} u_s^{e,t} \right)$

- Members out of the labor market also consume $C_{c,t}$, but make no monetary contribution. However, being out of the labor market might be optimal if being unemployed is a burden

 - Being unemployed: extra disutility

 $v_{tu_t} \equiv w_m \bar{v}_m^{u} u_m^{e,t} + w_s \bar{v}_s^{u} u_s^{e,t}$ to the household
The representative household optimally chooses $C_t, A_{t+1},$ and $B_{t+1},$ as usual.
Household

- The representative household optimally chooses C_t, A_{t+1}, and B_{t+1}, as usual, and also $m_{c,t}^0$:
 - After not being matched, a mass $m_{c,t}^0$ of unemployed workers decide it is better not to search for a job, and possibly reallocate to the other sector.
Household

- The representative household optimally chooses C_t, A_{t+1}, and B_{t+1}, as usual, and also $m_{c,t}^0$:
 - After not being matched, a mass $m_{c,t}^0$ of unemployed workers decide it is better not to search for a job, and possibly reallocate to the other sector.
 - **Probability** δ^c: worker returns to the labor force of sector c in the beginning of next period.
Household

- The representative household optimally chooses C_t, A_{t+1}, and B_{t+1}, as usual, and also $m_{c,t}^0$:
 - After not being matched, a mass $m_{c,t}^0$ of unemployed workers decide it is better not to search for a job, and possibly reallocate to the other sector.
 - **Probability δ^c_c**: worker returns to the labor force of sector c in the beginning of next period. **Probability $\delta^\bar{c}_c$**: she becomes fully specialized for working at sector $\bar{c} \neq c$ and reallocates in the beginning of next period.
Estimation

- About 15 parameters and steady state levels calibrated
Estimation

- About 15 parameters and steady state levels calibrated
- 38 parameters and 13 standard deviations estimated using Bayesian approach (Flat Priors): 6,000,000 draws, discarding 5,000,000 as burn-in.
Estimation

- About 15 parameters and steady state levels calibrated

- 38 parameters and 13 standard deviations estimated using Bayesian approach (Flat Priors): 6,000,000 draws, discarding 5,000,000 as burn-in.

- 13 observed quarterly variables, from 2003:Q1 to 2014:Q4:
Estimation

• About 15 parameters and steady state levels calibrated

• 38 parameters and 13 standard deviations estimated using Bayesian approach (**Flat Priors**): 6,000,000 draws, discarding 5,000,000 as burn-in.

• 13 observed quarterly variables, from 2003:Q1 to 2014:Q4:
 • Manufacturing and services (detrended) GDP’s,
Estimation

- About 15 parameters and steady state levels calibrated

- 38 parameters and 13 standard deviations estimated using Bayesian approach (Flat Priors): 6,000,000 draws, discarding 5,000,000 as burn-in.

- 13 observed quarterly variables, from 2003:Q1 to 2014:Q4:
 - Manufacturing and services (detrended) GDP’s, Tradables and non-tradables inflation rates from IPCA.
Estimation

- About 15 parameters and steady state levels calibrated

- 38 parameters and 13 standard deviations estimated using Bayesian approach (**Flat Priors**): 6,000,000 draws, discarding 5,000,000 as burn-in.

- 13 observed quarterly variables, from 2003:Q1 to 2014:Q4:
 - Manufacturing and services (detrended) GDP’s, Tradables and non-tradables inflation rates from IPCA.
 - Working-age population, participation rate,
Estimation

- About 15 parameters and steady state levels calibrated

- 38 parameters and 13 standard deviations estimated using Bayesian approach (Flat Priors): 6,000,000 draws, discarding 5,000,000 as burn-in.

- 13 observed quarterly variables, from 2003:Q1 to 2014:Q4:
 - Manufacturing and services (detrended) GDP’s, Tradables and non-tradables inflation rates from IPCA.
 - Working-age population, participation rate, employed workers at the manufacturing and services sectors (PME).
Estimation

- About 15 parameters and steady state levels calibrated

- 38 parameters and 13 standard deviations estimated using Bayesian approach (**Flat Priors**): 6,000,000 draws, discarding 5,000,000 as burn-in.

- 13 observed quarterly variables, from 2003:Q1 to 2014:Q4:
 - Manufacturing and services (detrended) GDP’s, Tradables and non-tradables inflation rates from IPCA.
 - Working-age population, participation rate, employed workers at the manufacturing and services sectors (PME).
 - Hours per worker at the manufacturing (Pimes) and aggregate (PME),
Estimation

- About 15 parameters and steady state levels calibrated
- 38 parameters and 13 standard deviations estimated using Bayesian approach (Flat Priors): 6,000,000 draws, discarding 5,000,000 as burn-in.

- 13 observed quarterly variables, from 2003:Q1 to 2014:Q4:
 - Manufacturing and services (detrended) GDP’s, Tradable and non-tradable inflation rates from IPCA.
 - Working-age population, participation rate, employed workers at the manufacturing and services sectors (PME).
 - Hours per worker at the manufacturing (Pimes) and aggregate (PME), Layoff probability at manufacturing (Pimes), total mass of hired workers (Caged, corrected for formality).
Estimation

- About 15 parameters and steady state levels calibrated
- 38 parameters and 13 standard deviations estimated using Bayesian approach (Flat Priors): 6,000,000 draws, discarding 5,000,000 as burn-in.
- 13 observed quarterly variables, from 2003:Q1 to 2014:Q4:
 - Manufacturing and services (detrended) GDP’s, Tradable and non-tradable inflation rates from IPCA.
 - Working-age population, participation rate, employed workers at the manufacturing and services sectors (PME).
 - Hours per worker at the manufacturing (Pimes) and aggregate (PME), Layoff probability at manufacturing (Pimes), total mass of hired workers (Caged, corrected for formality).
 - Nominal interest rate.
Estimation

<table>
<thead>
<tr>
<th>Intuition</th>
<th>Parameter</th>
<th>Mean (95% interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{\delta_m^m} \approx 2.1 q:) average time to return to m</td>
<td>(\delta_m^m)</td>
<td>0.479 (0.457, 0.502)</td>
</tr>
<tr>
<td>(\frac{1}{\delta_s^s} \approx 1.1 q:) average time to return to s</td>
<td>(\delta_s^s)</td>
<td>0.890 (0.846, 0.934)</td>
</tr>
<tr>
<td>(\frac{1}{\delta^* + \bar{\delta}_m^m (1 - \delta^* - \delta_m^m)} \approx 2.4 q:) realloc time m (\rightarrow s)</td>
<td>(\bar{\delta}_m^s)</td>
<td>0.796 (0.740, 0.857)</td>
</tr>
<tr>
<td>(\frac{1}{\delta^* + \bar{\delta}_s^s (1 - \delta^* - \delta_s^s)} \approx 10.3 y:) realloc time s (\rightarrow m)</td>
<td>(\bar{\delta}_s^s)</td>
<td>0.070 (0.000, 0.141)</td>
</tr>
<tr>
<td>How easy it is to find a job at m</td>
<td>(a_m)</td>
<td>0.966 (0.946, 1.000)</td>
</tr>
<tr>
<td>How easy it is to find a job at s</td>
<td>(a_s)</td>
<td>0.974 (0.957, 1.000)</td>
</tr>
<tr>
<td>Workers’ bargaining power at m</td>
<td>(\bar{b}_m)</td>
<td>0.939 (0.895, 0.989)</td>
</tr>
<tr>
<td>Workers’ bargaining power at s</td>
<td>(\bar{b}_s)</td>
<td>0.631 (0.577, 0.685)</td>
</tr>
</tbody>
</table>
Estimation

<table>
<thead>
<tr>
<th>Intuition</th>
<th>Parameter</th>
<th>Mean (95% interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reallocation costs from m</td>
<td>ζ_{mm}</td>
<td>0.067 (0.050, 0.083)</td>
</tr>
<tr>
<td>Reallocation costs from s</td>
<td>ζ_{ms}</td>
<td>0.056 (0.036, 0.078)</td>
</tr>
<tr>
<td>Unemp Comp over Emp Salary at m</td>
<td>γ^c_m</td>
<td>0.033 (0.000, 0.069)</td>
</tr>
<tr>
<td>Unemp Comp over Emp Salary at s</td>
<td>γ^c_s</td>
<td>0.173 (0.049, 0.290)</td>
</tr>
<tr>
<td>Share of Unemp Workers from m</td>
<td>\bar{p}_{ue}^{me}</td>
<td>0.045 (0.000, 0.087)</td>
</tr>
<tr>
<td>SS Labor Tightness at m</td>
<td>θ^e_m</td>
<td>0.861 (0.500, 1.230)</td>
</tr>
<tr>
<td>SS Labor Tightness at s</td>
<td>θ^e_s</td>
<td>2.307 (1.848, 2.741)</td>
</tr>
<tr>
<td>Reciprocal Intertemp Elast Substit</td>
<td>σ</td>
<td>5.166 (3.423, 7.041)</td>
</tr>
<tr>
<td>Reciprocal Frisch Elast Substit</td>
<td>ν</td>
<td>5.287 (3.502, 7.074)</td>
</tr>
</tbody>
</table>
Estimation

<table>
<thead>
<tr>
<th>Intuition</th>
<th>Parameter</th>
<th>Mean (95% interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor productivity at m</td>
<td>ε_m</td>
<td>0.985 (0.968,1.000)</td>
</tr>
<tr>
<td>Labor productivity at s</td>
<td>ε_s</td>
<td>0.946 (0.895,1.000)</td>
</tr>
<tr>
<td>Price rigidity at m</td>
<td>α_m</td>
<td>0.637 (0.561,0.702)</td>
</tr>
<tr>
<td>Price rigidity at s</td>
<td>α_s</td>
<td>0.513 (0.402,0.618)</td>
</tr>
<tr>
<td>Price indexation at m</td>
<td>ι_m</td>
<td>0.402 (0.316,0.487)</td>
</tr>
<tr>
<td>Price indexation at s</td>
<td>ι_s</td>
<td>0.065 (0.000,0.136)</td>
</tr>
</tbody>
</table>
Monetary Policy Shock
Monetary Policy Shock
Monetary Policy Shock

4-Quarter Serv Relat Prices (%)

4-Quarter Serv Inf Rate (%)

Serv GDP (%)

Serv Output (%)

Serv Participation Rate (p.p.)

Serv Unemployment Rate (p.p.)

Serv Employment (p.p.)

Serv Hours per Worker (%)

Serv Unemp Duration (%)

Serv GDP per Total Hours (%)

Serv Salary (%)

Serv Wage (%)
Main Results

- Workers out of the labor market take longer to return in the Manuf sector ($\approx 6 \text{ m}$) than in the Serv sector ($\approx 3 \text{ m}$).
Main Results

- Workers out of the labor market take longer to return in the Manuf sector ($\approx 6 \text{ m}$) than in the Serv sector ($\approx 3 \text{ m}$).

- Workers from the Manuf sector find it *much* easier to reallocate to the Serv sector ($\approx 7 \text{ m}$) than workers from the Serv sector when reallocating to the Manuf sector ($\approx 10 \text{ y}$).
Main Results

- Workers out of the labor market take longer to return in the Manuf sector ($\approx 6 \text{ m}$) than in the Serv sector ($\approx 3 \text{ m}$).

- Workers from the Manuf sector find it much easier to reallocate to the Serv sector ($\approx 7 \text{ m}$) than workers from the Serv sector when reallocating to the Manuf sector ($\approx 10 \text{ y}$).
 - Results may be highly influenced from this particular sample.
Main Results

- Workers out of the labor market take longer to return in the Manuf sector ($\approx 6 \text{ m}$) than in the Serv sector ($\approx 3 \text{ m}$).

- Workers from the Manuf sector find it much easier to reallocate to the Serv sector ($\approx 7 \text{ m}$) than workers from the Serv sector when reallocating to the Manuf sector ($\approx 10 \text{ y}$).
 - Results may be highly influenced from this particular sample.

- Unemployed workers from serv sector find it easier get a job ($a_s \approx 0.974 > a_m \approx 0.966$) and ($\bar{\theta}_s^e \approx 2.31 >> \bar{\theta}_m^e \approx 0.86$), but have smaller power when bargaining for salary and hours ($\bar{b}_m \approx 0.94 > \bar{b}_s \approx 0.63$), and hence their salaries are closer to unemp compensation).
Main Results

- Workers out of the labor market take longer to return in the Manuf sector ($\approx 6 \text{ m}$) than in the Serv sector ($\approx 3 \text{ m}$).

- Workers from the Manuf sector find it much easier to reallocate to the Serv sector ($\approx 7 \text{ m}$) than workers from the Serv sector when reallocating to the Manuf sector ($\approx 10 \text{ y}$).
 - Results may be highly influenced from this particular sample.

- Unemployed workers from serv sector find it easier get a job ($a_s \approx 0.974 > a_m \approx 0.966$) and $\left(\bar{\theta}_s^e \approx 2.31 >> \bar{\theta}_m^e \approx 0.86\right)$, but have smaller power when bargaining for salary and hours ($\bar{b}_m \approx 0.94 > \bar{b}_s \approx 0.63$), and hence their salaries are closer to unemp compensation.
 - Using Hosios efficiency condition ($\bar{b} = a$), the Manuf labor market also seems more efficient than the Serv labor market, i.e. $\bar{b}_m \approx a_m$, while $\bar{b}_s << a_m$.
Main Results

- After aggregate shocks, the relative demand for both sectors will be different due to the fact of prices are more flexible in the services sector. This effect is combined with the strong sectoral heterogeneity to produce different responses in the goods and labor markets.
Main Results

- After aggregate shocks, the relative demand for both sectors will be different due to the fact of prices are more flexible in the services sector. This effect is combined with the strong sectoral heterogeneity to produce different responses in the goods and labor markets.

- The dynamics of labor market quantities are much more persistent than those of the goods sector.
Main Results

- After aggregate shocks, the relative demand for both sectors will be different due to the fact of prices are more flexible in the services sector. This effect is combined with the strong sectoral heterogeneity to produce different responses in the goods and labor markets.

- The dynamics of labor market quantities are much more persistent than those of the goods sector.

- Aggregate responses of labor market variables qualitatively follow those in the services sector, for about 75% of employed workers are in this sector.
Main Results

- After aggregate shocks, the relative demand for both sectors will be different due to the fact of prices are more flexible in the services sector. This effect is combined with the strong sectoral heterogeneity to produce different responses in the goods and labor markets.

- The dynamics of labor market quantities are much more persistent than those of the goods sector.

- Aggregate responses of labor market variables qualitatively follow those in the services sector, for about 75% of employed workers are in this sector.

- After a monetary policy shock, it is the manufacturing sector which suffers more: stronger fall in employment, hours, real salaries, GDP and output.
Main Results

- After aggregate shocks, the relative demand for both sectors will be different due to the fact of prices are more flexible in the services sector. This effect is combined with the strong sectoral heterogeneity to produce different responses in the goods and labor markets.

- The dynamics of labor market quantities are much more persistent than those of the goods sector.

- Aggregate responses of labor market variables qualitatively follow those in the services sector, for about 75% of employed workers are in this sector.

- After a monetary policy shock, it is the manufacturing sector which suffers more: stronger fall in employment, hours, real salaries, GDP and output.

- The model capture what is know as labor hoarding, for hours tend to fall much faster than employment after the shock.
Estimation
Estimation