Endogenous Wage Indexation and **Aggregate Shocks**

Julio A. Carrillo ¹ Gert Peersman ² Joris Wauters ^{2,3}

¹Banco de México

²Ghent University

³National Bank of Belgium

BIS-CCA 2016, Lima, 19 May 2016

The views and conclusions presented herein are exclusively the responsibility of the authors and do not necessarily reflect those of Banco de México.

Motivation

- Price and wage inflation are typically very persistent
- ▶ DSGEs assume prices and wages are **indexed to past inflation**

```
(To fix terms: Aggregate indexation = past-inflation indexation)
```

- Indexation is hard-wired as a fixed and policy invariant parameter
- But indexation practices are choices/agreements between agents
- ▶ Why should they remain permanently constant? (Lucas critique)
- ► Evidence suggests wage indexation has varied a lot

Motivation

- ▶ Macro evidence for U.S.: Hofmann, Peersman, and Straub (2012) find that U.S. wage dynamics are consistent with
 - high indexation for the Great Inflation (70s), and
 - ▶ low indexation for the *Great Moderation* (2000s)
- Micro evidence for U.S.: # contracts with cost-of-living adj. (COLA) clauses

► Macro evidence for Europe: Wage negotiations are starting to follow observed inflation rather then the ECB's inflation target.

Motivation

- High wage indexation renders inflation more persistence, making it more difficult to bring it back to target.
- ► Gray (1976) and Fischer (1977) offer a rationale for *socially optimal* changes in wage indexation
- ▶ To reduce output fluctuations, wage indexation should
 - decrease with supply-side shocks, and
 - increase with demand-side shocks.
- ▶ However, the Gray-Fischer hypothesis is problematic for two reasons:
 - Did demand shocks drive the 70s and supply shocks the 2000s?
 - ► The U.S. is driven by a decentralized wage setting (Calmfors and Driffil, 1988).

Aim

Within a microfounded environment, we ask

Which macro factors influence workers' wage indexation choices?

- We proceed as follows:
 - In a stylised NK-DSGE model,
 - Utility-maximizing workers select a wage indexation rule:

past inflation or inflation target.

- Workers respond to prevailing shocks, policy, and market structures.
- We use the model's predictions to ask: What caused wage indexation changes in the U.S.?

Results

- 1. Workers index wages to
 - past inflation in face of perm. productivity and inflation-target shocks
 - target inflation in face of aggregate-demand shocks
- 2. The decentralized wage indexation equilibrium carries an externality
 - Social planner choices are different than decentralised equilibrium
 - A worker does not internalise the effect of his choice on the aggregate
- 3. Model correctly predicts
 - high aggregate indexation for the Great Inflation and
 - ▶ low aggregate indexation for the *Great Moderation*
 - ► Changes in the volatility of **productivity shocks** drive results

Model building blocks

- ► New Keynesian model with sticky prices and wages (Ercerg, Henderson, and Levin, 2000)
 - Linear technology on labor with no capital
 - ▶ Monetary policy: CB follows Taylor-type rule and sets inflation target
 - ► Shocks: Technology (perm.), Gov't spending (temp.), Target inflation
- Households have a unique labor type
 - Re-optimize labor contract infrequently
 - ▶ Step 1, HH choose indexation rule given economic structure
 - ▶ Step 2, HH choose optimal wage given indexation rule
 - In both steps, HH maximise expected utility

It is illustrative to analyse step 2 first, and then step 1

Households, step 2: wage-setting

► Household *i*'s objective is

$$\max_{c_{i,T},b_{i,T},\mathcal{W}_{i,t}^k} \mathcal{E}_t \left\{ \sum_{T=t}^{\infty} \beta^{T-t} \left(\log \left(c_{i,t} - \gamma^h c_{i,t-1} \right) - \psi \frac{(\ell_{i,t,T})^{1+\omega}}{1+\omega} \right) \right\}, \tag{1}$$

subject to

$$c_{i,T} + \frac{b_{i,T}}{R_T} \le \frac{W_{i,t}^k}{P_T} \ell_{i,T} + \frac{b_{i,T-1}}{1+\pi_T} + \frac{Y_{i,T}}{P_T},$$
 (2)

$$\ell_{i,t,T}^{k} = \left(\frac{\delta_{t,T}^{k} \mathcal{W}_{i,t}^{k}}{W_{T}}\right)^{-\theta_{w}} \ell_{T} \tag{3}$$

- ▶ HH sets new contract with probability $1 \alpha_w$
- Available indexation rules are

$$\delta_{t-1,t}^{trend} = 1 + \pi_t^\star$$
 and $\delta_{t-1,t}^{past} = 1 + \pi_{t-1}$

 π_t^{\star} is the central bank inflation target = trend inflation.

Households, step 2: costs from sticky wages

▶ If wages were flexible, usual welfare maximizing condition holds

Mg. rate of substitution between $c_{i,t}$ and $\ell_{i,t} \propto \text{real wage}$

$$\frac{\psi\ell_t^\omega}{\lambda_t} = \frac{w_t}{\mu_w}.$$

- Since wages are sticky, this condition may not be satisfied
- Sticky wages imply welfare losses,
- but an indexation rule may close the gap between the desired and actual labor supply

Households, step 1: indexation-rule setting

▶ Workers select an indexation rule to maximise expected utility

$$\underset{\delta_{i} \in \left\{\delta^{trend}, \delta^{past}\right\}}{\max} E_{t} \left\{ \sum_{T=t}^{\infty} \left(\beta\alpha_{w}\right)^{T-t} \mathcal{U}\left(c_{T}\left(\xi_{T}, \Sigma_{T}\right), \ell_{i, T}\left(\delta_{i}, \xi_{T}, \Sigma_{T}\right)\right) \right\},$$

subject to the economy's structure, Σ_t

- $ightharpoonup \Rightarrow c_t$ does not depend on δ_i^{\star} (perfect risk sharing)
- ▶ ⇒ Only expected labor disutility matters
- ▶ A worker chooses δ_i^* to minimize

$$\Omega_{i,t}\left(\delta_{i},\xi_{t}\right) = \mathrm{E}_{t}\left\{\sum_{T=t}^{\infty}(\beta\alpha_{w})^{T-t}\frac{\psi}{1+\omega}\ell_{i,T}^{1+\omega}\right\}$$

 $\xi_t = \#$ workers indexing to past inflation, taken as given by an individual worker

Shocks & Policy

► Productivity shock:

$$y_{j,t} = A \exp(z_t) n_{j,t}$$
, with $z_t = z_{t-1} + \varepsilon_{z,t}$,

Government-spending shock (aggregate-demand shock):

$$g_t = g \exp(\varepsilon_{g,t}) y_t$$
 with $\varepsilon_{g,t} = \rho_g \varepsilon_{g,t} + \eta_{g,t}$,

- Monetary policy:
 - ► Interest-rate rule:

$$R_{t} = [R_{t-1}]^{\rho_{R}} [R_{t}^{*}]^{1-\rho_{R}} \left[\frac{1+\pi_{t}}{1+\pi_{t}^{*}} \right]^{a_{\pi}(1-\rho_{R})} [y_{t}]^{a_{y}(1-\rho_{R})} \left[\frac{y_{t}}{y_{t-1}} \right]^{a_{\Delta y}},$$

where R_t^* is the long-term gross nominal rate

► Trend-inflation rule:

$$\pi^*_{t+1} = \rho_{\pi^*} \pi^*_t + \varepsilon_{\pi,t+1}$$
 with $\rho_{\pi^*} \in [0,1]$.

Benchmark calibration

Table 1. Calibration based on HPS (2012)'s estimation

	Great Moderation year 2000
γ^h Habit formation γ^p Inflation inertia	.37 .17
α_p Calvo-price rigidity	.78
$lpha_w$ Calvo-wage rigidity a_π Taylor Rule: inflation	.54 1.35
a_y Taylor Rule: output gap $a_{\Delta y}$ Taylor Rule: output gap growth	.1 .39
$ ho_R$ Taylor Rule: smoothing	.78

Other parameters: $\beta=.99$, $\sigma=1$, $\phi=1$, $\omega=2$, $\theta_w=\theta_p=10$.

Aggregate indexation: welfare costs I

▶ Welfare costs are approx to the second order (leisure-equivalent λ_k)

- ▶ Workers pick *past* index. in the productivity shock regime
- ► Workers pick *trend* index. in the gov't spending regime
- The equilibria are globally stable

Aggregate indexation: welfare costs II

(black is trend and red is past)

- ▶ If the π^* -shocks are permanent, then workers pick *past* index.
- ▶ If the π^* -shocks are temporal, there's an interior solution
- Again, the equilibria are globally stable

Labor disutility at the steady state

ightharpoonup At the steady state, labor disutility is given by (let $\omega=1$)

$$\Omega_{ss}^{k}pproxrac{\psi}{1-etalpha_{w}}\left(\mathit{R}_{ss}^{k}+\mathit{V}_{ss}^{k}
ight)$$
 ,

where

$$R_{\rm ss}^k = \frac{1}{2} \left[\frac{\int_{i \in I_k} \left(\frac{W_i}{W} \right)^{-\theta_{\rm w}} \mathrm{d}i}{\xi^k} \times \ell_{\rm ss} \right]^2, \text{ and } V_{\rm ss}^k = \frac{1}{2} \mathrm{var} \left(\ell_t^k \right)$$

where $\xi^k = \xi$ if k = past and $1 - \xi$ if k = trend

- $ightharpoonup R_{ss}^k$ depends on wage dispersion within a sector
- V_{ss}^{k} is a total measure of variance in hours worked
- We show that differences in R_{ss}^k are the main drivers of wage indexation decisions

Labor contracts: Intuition

- How workers choose their indexation rule?
- Here's the intuition:
 - A larger wage dispersion means a larger variance in hours worked,
 - Workers dislike uncertainty on their labor and wages $(\omega > 0)$,
 - So they choose a labor contract (δ^k, W^k) that minimizes that uncertainty.

Relative wage dispersion I

 In single-shock regimes, workers prefer contracts with lower relative wage dispersion

(black is trend and red is past)

Relative wage dispersion II

 In multiple-shocks regimes, changes in relative wage dispersion drive changes in aggregate indexation

Social planner vs. Decentralized eq

- ▶ A worker disregards his own impact on the aggregate
- Coordination failure leads to a suboptimal equilibrium

Great Inflation calibration

Table 2. Calibration based on HPS (2012)'s estimation

	Great Moderation 2000 (benchmark)	Great Inflation 1974
γ^h Habit formation	.37	.71
γ^p Inflation inertia	.17	.8
α_p Calvo-price rigidity	.78	.84
α_w Calvo-wage rigidity	.54	.64
a_π Taylor Rule: inflation	1.35	1.11
a _y Taylor Rule: output gap	.10	.11
$a_{\Delta V}$ Taylor Rule: output gap growth	.39	.5
$ ho_R$ Taylor Rule: smoothing	.78	.69

Common parameters: $\beta = .99$, $\sigma = 1$, $\phi = 1$, $\omega = 2$, $\theta_w = \theta_p = 10$.

Predictions for U.S.

Table 3. Calibration of shocks

	Great Moderation 2000 (benchmark)	
σ_z Std. dev. Tech. shock (HPS) σ_g Std. dev. Dem. shock (HPS) σ_{π^*} Std. dev. inflation target (HPS) $\hat{\chi}$ Estimated indexation (HPS)	.31 3.25 NaN .17	1.02 4.73 NaN .91
Case 1: $\sigma_{\pi^{\star}} = 0$		
χ^\star Implied equilibrium indexation χ^S Implied social optimum	<mark>0</mark> 1	. <mark>89</mark> 0
Case 2: $\sigma_{\pi^{\star}} > 0$		
σ_{π^*} Std. dev. inflation target (CPS, 2010) χ^* Implied equilibrium indexation χ^S Implied social optimum	.049 . <mark>05</mark> 1	.081 . <mark>89</mark> 0

Counterfactuals

Table 4. Counterfactual exercises

Table 4. Counterfactual exercises				
		1974: $\xi^{\star} = .89$, put 2000 value to: $\xi^{counterfactual}$		
I - Shocks				
σ_z Std. dev. Tech. shock	1	0		
$\sigma_{\mathbf{g}}$ Std. dev. Dem. shock	0	1		
σ_{π^*} Std. dev. inflation target	.6	.89		
II - Policy parameters				
a_{π} Taylor Rule: inflation	0	1		
ay Taylor Rule: output gap	.05	.89		
$a_{\Delta y}$ Taylor Rule: output gap growth	0	1		
$ ho_R^{\circ}$ Taylor Rule: smoothing	0	.94		

Remarks: Main driver is change in the volatility of the productivity shock, not monetary policy!

Extra: What can we say for SOEs?

- ► Evidence suggest that wage indexation has also changed in Mexico
- ► Consider the following regression for Mexican employees' contractual wage revisions, Δw_t

$$\Delta w_t = c_t + \rho_t \Delta w_{t-1} + \beta_{\text{lag},t} \sum_{i=0}^{12} \pi_{t-i} + \beta_{\text{trend},t} \bar{\pi}_t + \gamma_t \Delta s_t + \varepsilon_t$$

where Δs_t is the percent change in the peso/dollar exchange rate, and c_t , ρ_t , $\beta_{lag,t}$, $\beta_{trend,t}$, and γ_t are time-varying coefficients

Extra: Mexico 1993-2015, monthly data

Extra: Predictions for Mexico

► According to the theory, wage indexation to past inflation should have been high in the 90s, and low in the 2000s

Extra: Predictions for Mexico

- ► As expected, wage revisions followed more past inflation in the 90s, when trend inflation was drifting
- When trend inflation settled, wage revisions followed this variable

Conclusions

- We propose a microfounded approach to endogenize wage indexation in DSGE models
- We let workers select their own indexation rule
 - ► Expected changes in hour worked (aka, relative wage dispersion) is the most important driver in a worker's decision
 - However, this decentralized equilibrium suffers from an externality and is suboptimal
- ► The decentralized equilibrium offers a rationale to changes in U.S. wage indexation from the Great Inflation to the Great Moderation
- ► And it may offer predictions to SOEs too