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A Baseline model

The model consists of 5 types of agents: the final goods producer, intermediate goods producers,
consumers, workers and the fiscal and monetary authorities.

A.1 Households and Wage Setting

The economy is inhabited by a continuum of differentiated households, indexed by i ∈ [0, 1].
Household i is endowed with a unique labor type, `i,t, which allows it to set its own wage using its
monopolistic power. Household i selects consumption, ci,t, one-period-maturity bond holdings, bi,t,
and a nominal wage, Wi,t, in order to maximize its expected discounted lifetime utility

Et

∞∑
T=t

βT−t exp (εu,T )U(ci,T , `i,T ), (A.1)

subject to the sequence of budget constraints

ci,t +
bi,t

Rt exp (εb,t)
≤ wi,t`i,t +

bi,t−1

1 + πt
+

Υi,t

Pt
, (A.2)

and no Ponzi schemes. Et is the expectation operator conditional on the available information
in period t. Rt is the risk-free gross nominal interest rate, Pt denotes the price of the final good,
πt ≡ Pt/Pt−1 is the gross inflation rate, and Υi,t is a lump sum including net fiscal transfers, Arrow-
Debreu state-contingent securities, and profits from monopolistic firms. There are two stochastic
disturbances with mean zero: εb,t creates a spread between the return on bonds and the risk free
rate (cf. risk spread shock in Smets and Wouters, 2007) and εu,t is a preference shock. Preferences
are separable between consumption and labor:

U(ci,t, `i,t) ≡
(
ci,t − γhci,t−1

)1−σ − 1

1− σ
− ψ

`1+ω
i,t

1 + ω
, (A.3)

where γh is a parameter controlling external habits, σ−1 > 0 is the inter-temporal elasticity of
substitution, ω−1 is the Frisch elasticity of labor supply, ψ is a normalizing constant that ensures
that labor equals 1

3 at the deterministic steady-state. We assume for simplicity that households
are divided into two units: a consumer and a worker. The former chooses consumption demand
and bond holdings, while the latter sets the nominal wage knowing that the elapsed time between
wage re-optimizations is a stochastic process. Notice that the presence of state-contingent securities
ensures that all households begin a period with the same wealth and therefore choose the same
level of consumption. Therefore, we can drop the subscript i in the first order conditions (FOCs)
of bi,t, and ci,t.

A.1.1 Consumption choice

The consumer problem is

max
ci,T ,bi,T

Et

∞∑
T=t

βT−t


exp (εu,t)

(ci,T−γhci,T−1)
1−σ−1

1−σ

+λT

[
bi,T−1

1+πT
+

Υi,T
PT
− ci,T −

bi,T
RT exp(εb,T )

]
 .
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The FOCs of bi,t and ci,t, are respectively given by

1 = βEt

{
λt+1

λt

Rt exp (εb,T )

1 + πt+1

}
, (A.4)

exp (εu,t)
(
ct − γhct−1

)−σ
− βγhEt

{
exp (εu,t+1)

(
ct+1 − γhct

)−σ}
= λt. (A.5)

A.1.2 Wage-setting

Labor packer. Following Erceg et al. (2000), we assume that a competitive labor intermediary
builds a single labor input from a set of differentiated labor types `i,t, for i ∈ [0, 1], according to
the following CES technology

`t =

(∫ 1

0
`
(θw−1)/θw
i,t di

)θw/(θw−1)

, (A.6)

where θw > 1 is the elasticity of substitution between any two labor types. Profit maximization by
the labor intermediary yields the demand for type−i labor

`i,t =

(
Wi,t

Wt

)−θw
`t ∀i, (A.7)

while the aggregate nominal wage obeys

Wt =

(∫ 1

0
W 1−θw
i,t di

)1/(1−θw)

. (A.8)

Wage setter. Similar to Calvo (1983), we assume that in each period a worker re-calibrates his
labor contract with a probability 1−αw. The re-calibration consists of two steps: first, the worker
chooses a wage indexation scheme for updating his wage in non re-optimizing periods; and second,
the worker chooses an optimal wage level that maximizes his utility. The two indexation schemes
in the economy are δ1 and δ2. The former updates wages using the previous period inflation rate
while the latter uses current trend inflation. Formally

δ1
t,T = (1 + πT−1) δ1

t,T−1 and δ2
t,T = (1 + π?T ) δ2

t,T−1,

∀ T > t, and δkt,t = 1 for k ∈ {1, 2} ; t is the period where the last optimization occurred. For

exposition purposes, it is better to first describe the wage-setting problem given the choice of δkt,T .

The selection of the indexation scheme is described afterwards. Thus, given a δkt,T , a worker sets

his wage according to (dropping subscript i, as any worker maximizing at t and with a rule δkt,T
will choose the same wage)

W k,?
t ∈ arg max

Wk
t

Et

∞∑
T=t

(βαw)T−t

λT δkt,TW k
t

PT
`kt,T − ψ exp (εu,T )

(
`kt,T

)1+ω

1 + ω

 , (A.9)

subject to

`kt,T =

(
δkt,TW

k
t

WT

)−θw
`T . (A.10)
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The first order condition w.r.t. W k,?
t is (note that

∂`kt,T
∂Wk

t
= −θw

`kt,T
Wk
t

).

rwk,?t ≡ W k,?
t

Wt
= ψ

θw
(θw − 1)

Et

{∑∞
T=t (βαw)T−t exp (εu,T )

[
`kt,T

]1+ω
}

Et

{∑∞
T=t (βαw)T−t λT

(
δkt,T /π

w
t,T

)
wT `kt,T

}
where rwk,?t is the relative wage of workers using indexation rule k, πwt,T ≡WT /Wt and

`kt,T =

(
δw,kt,T

πwt,T
rwk,?t

)−θw
`T .

Replacing labor-specific demand into the optimal wage-setting equation yields

rwk,?t ≡ W k,?
t

Wt
= ψ

θw
(θw − 1)

Et

{∑∞
T=t (βαw)T−t exp (εu,T )

(
πwt,T
δkt,T

)θw(1+ω) [
rwk,?t

]−θw(1+ω)
[`T ]1+ω

}

Et

{∑∞
T=t (βαw)T−t λTwT

(
πwt,T
δkt,T

)θw−1 [
rwk,?t

]−θw
`T

} , or

[
rwk,?t

]1+ωθw
= ψ

θw
(θw − 1)

Et

{∑∞
T=t (βαw)T−t exp (εu,T )

(
πwt,T
δkt,T

)θw(1+ω)

[`T ]1+ω

}

Et

{∑∞
T=t (βαw)T−t λTwT

(
πwt,T
δkt,T

)θw−1 [
rwk,?t

]−θw
`T

} .
[
rwk,?t

]1+ωθw
= ψ

θw
(θw − 1)

numw
k,t

denw
k,t

, (A.11)

where

numw
k,t = exp (εu,t) [`t]

1+ω + βαwEt


(

1+πwt+1

δkt,t+1

)θw(1+ω)

×

∑∞
T=t+1 (βαw)T−t−1 exp (εu,T )

(
πwt+1,T

δkt+1,T

)θw(1+ω)

[`T ]1+ω

 ,

or

numw
k,t = exp (εu,t) [`t]

1+ω + βαwEt


(

1 + πwt+1

δkt,t+1

)θw(1+ω)

numw
k,t+1

 .

Similarly,

denw
k,t = λtwt`t + βαwEt


(

1 + πwt+1

δkt,t+1

)θw−1

denw
k,t+1

 . (A.12)

πwt+1 = Wt+1

Wt
− 1 is wage inflation.1

1The distortion created by my monopolistic wage setting can be eliminated by subsidizing labor. See Erceg and
Levin (2003) for an example.
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Indexation-rule selection. Let ξt denote the time t total proportion of workers who have se-
lected past-inflation indexation, independently of their last contract negotiation. In short, ξt repre-
sents the degree of aggregate indexation to past inflation in time t. Furthermore, let Σt be an infor-
mation set describing the economy’s markets structure, the distribution of stochastic shocks, and the
economic policy rules, i.e., the economic regime in period t. Finally, let the vector Ξ collect present

and future levels for aggregate indexation and economic regimes, so Ξt = Et

({[
ξt+h, Σt+h

]′}∞
h=0

)
.

We can now formalize workers indexation-rule decision as follows: If worker i can re-negotiate his
labor contract in time t, he selects the rule that maximizes his conditional expected utility, i.e.

δ?i,t (Ξt) ∈ arg max
δi∈{δtrend,δpast}

Wi,t (δi,Ξt) subject to ℘ (Ξt) , (A.13)

where

Wi,t (δi,Ξt) = Et

( ∞∑
T=t

(βαw)T−t U (cT (ξT ,ΣT ) , `i,T (δi, ξT ,ΣT ))

)
. (A.14)

The term ℘ (Ξt) is a system of equations that summarizes all relevant general-equilibrium con-
straints that determine the allocation of the economy. Notice that Wi,t is constrained by the
expected duration of the labor contract (as the effective discount factor is βαw). In addition, indi-
vidual consumption equals the aggregate level, and it does not depend on the individual indexation
choice δi. It does, however, depend on aggregate indexation ξt and the current economic regime Σt

because, first, all households have the same wealth at the beginning of each period; and second,
because a worker’s individual indexation-rule choice has a negligible effect on aggregate indexation,
given the worker’s small size with respect to the aggregate. Thus, for worker i, ξt, Σt, and ct are
given, and as a consequence, the worker selects the indexation rule δi that minimizes this individual
expected labor disutility, given by Ω (δi,Ξt). In formal terms, δ?i,t (Ξt) also satisfies the problem

δ?i,t (Ξt) ∈ arg min
δi∈{δtrend,δpast}

Ω (δi,Ξt) , subject to ℘ (Ξt) ,

where

Ω (δi,Ξt) =
ψ

1 + ω
Et

( ∞∑
T=t

(βαw)T−t [`i,T (δi, ξT ,ΣT )]1+ω

)
. (A.15)

Labor market aggregation. The degree of aggregate indexation ξt is determined as follows:
each period, only a fraction 1 − αw of workers re-optimize their wages. Let χt denote the time t
proportion of workers from subset (1− αw) that selects δpast. Accordingly, ξt is given by

ξt = (1− αw)
∞∑
h=0

χt−h (αw)h , (A.16)

which recursively can be written as ξt = (1− αw)χt + αwξt−1. Without loss of generality, assume
that workers are sorted according to the indexation rule they have chosen, so workers in the interval
i ∈ Ipastt = [0, ξt] use δpast, while those in the interval i ∈ Itrendt = [ξt, 1] use δtrend. Measures of
wage dispersion for each of the two sectors can be computed by adding up total hours worked, which
are determined by the set of labor-specific demands. So, we have that

∫
i∈Ikt

`i,tdi = `tdispw
k,t, where
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dispw
k,t =

∫
i∈Ikt

(
Wi,t

Wt

)−θw
di. Recursive expressions for the wage dispersion measures are given by

dispw
k,t = (1− αw) χ̃kt

(
rwk,?t

)−θw
+ αw

(
1 + πwt
δkt−1,t

)θw
dispw

k,t−1, (A.17)

where χ̃kt =

χt if k = past

1− χt if k = trend
. (A.18)

Finally, given the Dixit-Stiglitz technology of the labor intermediary, the aggregate wage level is
given by W 1−θw

t =
∫ 1

0 W
1−θw
i,t di. This expression can be rewritten in terms of the sum relative wages

within each indexation-rule sector, which are given by w̃kt ≡
∫
i∈Ikt

(
Wi,t

Wt

)1−θw
di. Thus, it follows

that

1 = w̃1
t + w̃2

t , and (A.19)

w̃1
t = (1− αw)χt

[
rw1,?

t

]1−θw
+ αw

(
1 + πwt
δ1
t−1,t

)θw−1

w̃1
t−1, (A.20)

w̃2
t = (1− αw) (1− χt)

[
rw2,?

t

]1−θw
+ αw

(
1 + πwt
δ2
t−1,t

)θw−1

w̃2
t−1. (A.21)

Notice that these weights may change over time due to variations in rwkt and χt. The recursive law
of motion of w̃kt is given by

w̃kt = (1− αw) χ̃kt

[
rwk,?t

]1−θw,t
+ αw

(
1 + πwt
δkt−1,t

)θw−1

w̃kt−1. (A.22)

The rest of the model is quite standard, so we describe it briefly.

A.2 Firms

A.2.1 Final good producer

A perfectly competitive firm produces a homogenous good, yt, by combining a continuum of inter-
mediate goods, yj,t for j ∈ [0, 1], using a CES production function

yt =

(∫ 1

0
y

θp,t−1

θp,t

j,t dj

) θp,t
θp,t −1

,

where θp,t = θp,t−1 ≡ exp (εp,t) > 1 is the price elasticity of demand for intermediate good j
and εp,t is a stochastic disturbance with mean zero. Profit maximization yields the typical set of
input-specific demand functions

yj,t =

(
Pj,t
Pt

)−θp,t
yt ∀j.

The aggregate price level compatible with a zero-profit condition and the particular shape of the
production function is:

Pt =

(∫ 1

0
P

1−θp,t
j,t dj

) 1
1−θp,t

,

where Pj,t denotes the price of the type−j intermediate good.
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A.2.2 Intermediate-good firms

Each intermediate good yj,t is produced by a single monopolistic firm using the a decreasing returns
to scale of the form

yj,t = A exp (zt)n
φ−1

j,t ,

where 0 < φ−1 < 1, the rest of variable definitions remain the same. The real cost function is
denoted by S(yj,t) = wt [yj,t/ (A exp (zt))]

φ so the marginal cost is sj,t = φwt [yj,t]
φ−1 [A exp (zt)]

−φ .

Profit maximization now reads:

P ?j,t ∈ arg max
Pj,t

Êt

∞∑
T=t

(βαp)
T−tϕt,T

[
δpt,TPj,t

PT
yj,t,T − S (yj,t,T )

]
,

subject to yj,t,T =

(
δpt,TPj,t

PT

)−θp,t
yT

The first order condition, in terms of the relative price, is (derivation is simpler by noticing that

yj,t,T =

(
δpt,T
πt,T

pj,t

)−θp,T
yT and

∂yj,t,T
∂pj,t

= −θp,T
yj,t,T
pj,t

):

p?j,t ≡
P ?j,t
Pt

=
Êt
∑∞

T=t(βαp)
T−tθp,tϕt,T sj,t,T yj,t,T

Êt
∑∞

T=t(βαp)
T−t (θp,t − 1)ϕt,T

(
δpt,T /πt,T

)
yj,t,T

where πt,T ≡ PT /Pt. Replacing the input-specific demand into the marginal cost, the latter
becomes

sj,t,T = φ
wt [yT ]φ−1

Aφ exp (φzt)

(
δpt,T
πt,T

p?j,t

)−θp,t(φ−1)

.

Substituting into the optimal relative price yields (j sub-index is dropped)

p?t ≡
P ?j,t
Pt

=

Êt
∑∞

T=t(βαp)
T−tφθp,Tϕt,TwT

(
yT

A exp(zT )

)φ(πt,T
δpt,T

)θp,Tφ
[p?t ]
−θp,Tφ

Êt
∑∞

T=t(βαp)
T−t (θp,T − 1)ϕt,T

(
πt,T
δpt,T

)θp,T−1

[p?t ]
−θp,T yT

, or

[p?t ]
1+θp,t(φ−1) =

nump
t

denp
t

,

where

nump
t = φθp,twt

(
yt

A exp (zt)

)φ
+ βαpÊt

λt+1

λt

(
1 + πt+1

δpt,t+1

)θp,tφ
nump

t+1

 ,

denp
t = (θp,t − 1) yt + βαpÊt

λt+1

λt

(
1 + πt+1

δpt,t+1

)θp,t−1

denp
t+1
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Price dispersion and labor demand Since the aggregate price level equals Pt =
(∫ 1

0 P
1−θp,t
j,t dj

) 1
1−θp,t ,

it follows that

1 = (1− αp) (p?t )
1−θp,t + αp

(
1 + πt
δpt−1,t

)θp,t−1

.

The aggregate labor demand is (using the definition of the production function and the input-
specific demand) ∫ 1

0
nj,tdj =

(
yt

A exp (zt)

)φ
dispp

t ,

where dispp
t =

∫ 1
0

(
Pj,t
Pt

)−θp,tφ
dj. In recursive form, this equation becomes:

dispp
t = (1− αp) [p?t ]

−θp,tφ + αp

(
1 + πt
δpt−1,t

)θp,tφ
dispp

t−1.

Labor market and goods market equilibrium See Erceg et al. (2000) and Benigno and
Woodford (2005). Aggregate supplied hours equal aggregate labor composite times a the wage
dispersion distortion, ∫ 1

0
`i,tdi = `t

∑
k∈{1,2}

dispw
k,t.

The labor composite is partitioned or distributed among all intermediate firms, according to
their labor-specific demand, so

`t =

∫ 1

0
nj,tdj.

Finally, aggregating the labor specific demand across firms yields an output composite times
the price dispersion distortion,

`t =

(
yt

A exp (zt)

)φ
dispp

t .

A.3 Government and Monetary Policy

The government budget constraint is balanced at all times (or there is no role, for debt in the
model), and government spending obeys

gt = g exp (εg,t) yt (A.23)

where 0 < g exp (εg,t) < 1 is the public-spending-to-GDP ratio and εg,t is a stochastic disturbance
with mean zero.

In the spirit of Cogley et al. (2010), the central bank chooses the gross nominal interest rate
according to the rule

Rt = [Rt−1]ρR [R∗t ]
1−ρR

[
1 + πt
1 + π∗t

]aπ(1−ρR) [ yt
yt−1

]a∆y(1−ρR)

exp (εm,t) with R∗t =
1 + π∗t+1

β
(A.24)
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A.4 Equilibrium

The resource constraint is given by
yt = ct + gt, (A.25)

The equilibrium of this economy is characterized by a set of prices {Pt, Pj,t, Wt,Wi,t, Rt} and a set
of quantities {yt, gt, ci,t, bi,t, nj,t, `t, `i,t}, for all i and j, such that all markets clear at all times, and
agents act consistently according to the maximization of their utility and profits. Notice that in
equilibrium ct =

∫ 1
0 ci,tdi,

∫ 1
0 `i,tdi =

∫ 1
0 nj,tdj,

∫ 1
0 bi,tdi = 0.

A.5 Summary of non-linear equations

A.5.1 All equations

Consumption and savings

1 = βÊt

{
λt+1

λt

Rt exp (εb,t)

1 + πt+1

}
, (A.26)

exp (εu,t)
(
ct − γhct−1

)−σ
− βγhÊt

{
exp (εu,t+1)

(
ct+1 − γhct

)−σ}
= λt. (A.27)

Wage-setting

[
rw?,kt

]1+ωθw
= ψ exp (εu,t)

numw
k,t

denw
k,t

, (A.28)

numw
k,t = θw [`t]

1+ω + βαwÊt


(

1 + πwt+1

δkt,t+1

)θw(1+ω)

numw
k,t+1

 (A.29)

denw
k,t = (θw − 1)λtwt`t + βαwÊt


(

1 + πwt+1

δkt,t+1

)θw−1

denw
k,t+1

 . (A.30)

1 = w̃1
t + w̃2

t (A.31)

w̃1
t = (1− αw)χt

[
rw?,1t

]1−θw
+ αw

(
1 + πwt
δ1
t−1,t

)θw−1

w̃1
t−1, (A.32)

w̃2
t = (1− αw) (1− χt)

[
rw?,2t

]1−θw
+ αw

(
1 + πwt
δ2
t−1,t

)θw−1

w̃2
t−1. (A.33)

dispw
1,t = (1− αw)χt

(
rw?,1t

)−θw
+ αw

(
1 + πwt
δ1
t−1,t

)θw
dispw

1,t−1, (A.34)

dispw
2,t = (1− αw) (1− χt)

(
rw?,2t

)−θw
+ αw

(
1 + πwt
δ2
t−1,t

)θw.t
dispw

2,t−1. (A.35)

δ1
t−1,t = 1 + πt−1 and δ2

t−1,t = 1 + π?t , (A.36)
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Price-setting

[p?t ]
1+θp,t(φ−1) =

nump
t

denp
t

, (A.37)

nump
t = φθp,twt

(
yt

A exp (zt)

)φ
+ βαpÊt

λt+1

λt

(
1 + πt+1

δpt,T

)θp,tφ
nump

t+1

 , (A.38)

denp
t = (θp,t − 1) yt + βαpÊt

λt+1

λt

(
1 + πt+1

δpt,T

)θp,t−1

denp
t+1

 (A.39)

1 = (1− αp) [p?t ]
1−θp,t + αp

(
1 + πt
δpt−1,t

)θp,t−1

, (A.40)

dispp
t = (1− αp) (p?t )

−θp,tφ + αp

(
1 + πt
δpt−1,t

)θp,tφ
dispp

t−1. (A.41)

Labor market

1 + πwt =
wt
wt−1

(1 + πt) (A.42)

`t =

(
yt

A exp (zt)

)φ
dispp

k,t (A.43)

ξt = (1− αw)χt + αwξt−1 (A.44)

Policy and equilibrium

gt = g exp (εg,t) yt (A.45)

Rt = [Rt−1]ρR [R∗t ]
1−ρR

[
1 + πt
1 + π∗t

]aπ(1−ρR) [ yt
yt−1

]a∆y(1−ρR)

exp (εm,t) with R∗t =
1 + π∗t+1

β
(A.46)

yt = ct + gt (A.47)

Technology and shocks

∆zt = ρz∆zt−1 + ηz,t. (A.48)

(1 + π∗t ) = (1 + π∗) exp (επ,t)

εx,t = ρxεx,t−1 + ηz,t for x ∈ {b, w, p, g, π, `} (A.49)
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A.5.2 Detrended economy

The model has an stochastic trend due to the technology shock process. All real trending variables
are divided by exp (zt) .

yst ≡
yt

exp (zt)
, cst ≡

ct
exp (zt)

, gst ≡
gt

exp (zt)
, wst ≡

wt
exp (zt)

, λst ≡ λt exp (zt) .

Consumption and savings

λst/ exp (zt) = βÊt

{
λst+1/ exp (zt+1)

Rt exp (εb,T )

1 + πt+1

}
, (A.50)

λst/ exp (zt) = Uc,t − βγhÊtUc,t+1 (A.51)

Uc,t =
(
cst exp (zt)− γhcst−1 exp (zt−1)

)−σ
(A.52)

Wage-setting

[
rw?,kt

]1+ωθw
= ψ

numw
k,t

denw
k,t

, (A.53)

numw
k,t = θw [`t]

1+ω + βαwÊt


(

1 + πwt+1

δkt,t+1

)θw(1+ω)

numw
k,t+1

 (A.54)

denw
k,t = (θw − 1)λstw

s
t `t + βαwÊt


(

1 + πwt+1

δkt,t+1

)θw−1

denw
k,t+1

 . (A.55)

1 = w̃1
t + w̃2

t (A.56)

w̃1
t = (1− αw)χt

[
rw?,1t

]1−θw
+ αw

(
1 + πwt
δ1
t−1,t

)θw−1

w̃1
t−1, (A.57)

w̃2
t = (1− αw) (1− χt)

[
rw?,2t

]1−θw
+ αw

(
1 + πwt
δ2
t−1,t

)θw−1

w̃2
t−1. (A.58)

dispw
1,t = (1− αw)χt

(
rw?,1t

)−θw
+ αw

(
1 + πwt
δ1
t−1,t

)θw
dispw

1,t−1, (A.59)

dispw
2,t = (1− αw) (1− χt)

(
rw?,2t

)−θw
+ αw

(
1 + πwt
δ2
t−1,t

)θw
dispw

2,t−1. (A.60)

δ1
t−1,t = 1 + πt−1 and δ2

t−1,t = 1 + π?t , (A.61)
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Price-setting

[p?t ]
1+θp,t(φ−1) =

nump
t

denp
t

, (A.62)

nump
t = φθp,tw

s
t exp (zt)

(
yst
A

)φ
+ βαpÊt

λt+1

λt

(
1 + πt+1

δpt,t+1

)θp,tφ
nump

t+1

 , (A.63)

denp
t = (θp,t − 1) yst exp (zt) + βαpÊt

λt+1

λt

(
1 + πt+1

δpt,t+1

)θp,t−1

denp
t+1

 (A.64)

1 = (1− αp) [p?t ]
1−θp,t + αp

(
1 + πt
δpt−1,t

)θp,t−1

, (A.65)

dispp
t = (1− αp) (p?t )

−θp,tφ + αp

(
1 + πt
δpt−1,t

)θp,tφ
dispp

t−1. (A.66)

Labor market

1 + πwt =
wst exp (zt)

wst−1 exp (zt−1)
(1 + πt) (A.67)

`t =

(
yt

A exp (zt)

)φ
dispp

k,t (A.68)

℘w1,t = (1− αw)χt + αw℘
w
1,t−1 (A.69)

℘w2,t = (1− αw) (1− χt) + αw℘
w
2,t−1. (A.70)

Policy and equilibrium

gst = g exp (εg,t) y
s
t (A.71)

Rt = [Rt−1]ρR [R∗t ]
1−ρR

[
1 + πt
1 + π∗t

]aπ(1−ρR) [ yst exp (zt)

yst−1 exp (zt−1)

]a∆y(1−ρR)

exp (εm,t) with R∗t =
1 + π∗t+1

β
(A.72)

yst = cst + gst (A.73)

Technology and shocks

∆zt = ρz∆zt−1 + ηz,t. (A.74)

(1 + π∗t ) = (1 + π∗) exp (επ,t) (A.75)

εx,t = ρxεx,t−1 + ηz,t for x ∈ {b, w, p, g,m} (A.76)
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A.5.3 Deterministic steady state

Consumption and savings

R =
1 + π∗

β
(A.77)

cs
(

1− γh
)−σ (

1− βγh
)

= λ (A.78)

Wage-setting

denw = ψµwnumw, with µw =
θw

θw − 1
. (A.79)

numw =
[`]1+ω

1− βαw
(A.80)

denw =
λw`

1− βαw
(A.81)

ψ =
1

µw

λw

`ω
(A.82)

1 = w̃1
t + w̃2

t (A.83)

w̃1 = χ (A.84)

w̃2
t = (1− χ) (A.85)

dispw
1 = χ (A.86)

dispw
2 = 1− χ (A.87)

Price-setting

p? = 1 (A.88)

nump =
1

1− βαp
φθpw

s

(
1

A

)φ
, (A.89)

denp =
1

1− βαp
(θp − 1) (A.90)

dispp = 1 (A.91)

Firms profits

Profits =
1

1− βαp
y
[
1− w

Aφ

]
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Labor market

A =
ys

`
(A.92)

℘1 = χ (A.93)

℘2 = 1− χ (A.94)

χ = ξ? (A.95)

ξ? the one at which workers have no incentives to change indexation rule.

Policy and resource constraint

g =
gs

ys
(A.96)

R =
1 + π∗

β
(A.97)

1− gs =
cs

ys
(A.98)

A.5.4 Flexible price/wage economy

Consumption and savings

λs,ft / exp (zt) = βÊt

{
λs,ft+1/ exp (zt+1) rft exp (εb,T )

}
, (A.99)

λst/ exp (zt) = ufc,t − βγhÊtu
f
c,t+1 (A.100)

ufc,t =
(
cs,ft exp (zt)− γhcs,ft−1 exp (zt−1)

)−σ
(A.101)

Wage-setting

(θw − 1)λs,ft ws,ft = ψθw

[
`ft

]ω
(A.102)

Price-setting

1 =
φθp,tw

s,f
t

(
ys,ft

)φ−1 (
1
A

)φ
(θp,t − 1)

, (A.103)

Labor market

`ft =

(
ys,ft
A

)φ
(A.104)

Policy and resource constraint

gs,ft = g exp (εg,t) y
s,f
t (A.105)

ys,ft = cs,ft + gs,ft (A.106)
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B Deterministic vs. Stochastic Steady State

This section explains the differences between the deterministic and stochastic steady states. We can
verify that the model has been correctly solved by comparing the suitable analytical expressions
with Dynare output. We show that this is particularly important for forward-looking variables. We
also deliver the analytical expressions for wage dispersion that are used in the main document.

B.1 Main differences.

Consider the household first order condition for consumption (stochastic shocks have been removed
to simplify the exposition):

λt =
(
ct − γhct−1

)−σ
− βγhEt

{(
ct+1 − γhct

)−σ}
,

In the absence of external habits (γh = 0), this condition establishes a contemporaneous relation
between λ and c. But the existence of habits makes this relationship inter-temporal, with a forward-
looking term for consumption.

Define the steady state level of variable xt as its unconditional expectation, so xss ≡ E (xt) ,
which, by definition, is time invariant. Now, suppose that all variables in the economy equal their
steady state level for periods t and t−1, and that all stochastic shock processes equal zero. Applying
the unconditional expectation operator to the last expression and re-arranging, we have

λss =
(
css

(
1− γh

))−σ
− βγhE

{(
ct+1 − γhcss

)−σ}
, (B.1)

The expectation term gauges the impact that future shocks will have on future variables.2 If there
is at least one shock with a strictly positive probability of realization (i.e., its variance is positive),

the expectation term takes it into account and so E
{(
ct+1 − γhcss

)−σ} 6= (
css
(
1− γh

))−σ
. To

see why, consider the second order Taylor approximation to the term
(
ct+1 − γhcss

)−σ
around the

point css :(
ct+1 − γhcss

)−σ
'

(
css

(
1− γh

))−σ
+ (ct+1 − css)

(
−σ
(
css

(
1− γh

))−σ−1
)

...+
1

2
(ct+1 − css)2

(
σ (σ + 1)

(
css

(
1− γh

))−σ−2
)
.

or (
ct+1 − γhcss

)−σ
'
(
css

(
1− γh

))−σ{
1− σ (ct+1 − css)

css (1− γh)
+

1

2

σ (σ + 1) (ct+1 − css)2

(css (1− γh))
2

}
.

It follows that the unconditional expectation of this term is affected by the second moment of the
random variable ct+1:

E

{(
ct+1 − γhcss

)−σ}
'
(
css

(
1− γh

))−σ
+

1

2

σ (σ + 1)

(css (1− γh))
2 var {ct+1} , .

2The expectation operator does not apply to variables in t and t − 1 because, once their value is known, as it is
assumed in the example, they are no longer random variables.
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where var {ct+1} = E
{

(ct+1 − css)2
}
. When any stochastic shock has a positive probability of

realization in t + 1, the variance term var {ct+1} needs to be added to the equation determining
λss, which, up to the second-order approximation, becomes:

λss '
(
css

(
1− γh

))−σ (
1− βγh

)
− βγh σ (σ + 1)

2 (css (1− γh))
2 var {ct+1} . (B.2)

In the deterministic steady state, as by definition no shocks exist or are expected, the variance
term collapses to zero. It thus follows that in general the stochastic steady state will differ from its
deterministic counterpart.

Finally, notice that in the absence of habits, λss would not depend on var {ct+1} . In other
words, correcting ‘variance’ terms will appear in all equations that have forward-looking variables,
or future values of control variables. In contrast, equations that describe a contemporaneous
relation or depend on past variables (e.g., for state variables ) will not have correcting variance
terms, because no conditional expectations operator (i.e., Et {·}) is present in such equations. Some
examples are provided below.

B.2 Correction terms for the labor market equilibrium

Output and other real variables are lower in the stochastic steady state than in the deterministic
steady state because the possibility that shocks may happen entails welfare losses that agents would
like to prevent. Their decisions are thus affected by the risky character of their environment (see
Schmitt-Grohé and Uribe, 2004, 2007) From last subsection, we also know that the decision rules
of forward-looking variables are affected by their expected future variance. For instance, Amano
et al. (2007) show that the long-run stochastic mean of inflation differs from trend inflation (i.e.,
the central bank’s target). Their results support the notion that, when computing the stochastic
steady state levels of relative wages, aggregate wages, and wage dispersion, we should take into
account the long-run differences in the levels of inflation and trend inflation, and the expected
variances of forward-looking terms.

Before showing some partial results, define the differences between π, πw, and π? as:

1 + zt =
1 + πwt
δ1
t−1,t

=
1 + πwt

1 + πt−1
, and

1 + ∆t =
1 + πwt
δ2
t−1,t

=
1 + πwt
1 + π?t

.

If the expected growth rate of productivity is zero, we have that ‖∆ss‖ > ‖zss‖ ' 0 at the
stochastic steady state. This implies that ‖E (πwt )− E (π?t ) ‖ > 0 while ‖E (πwt )− E (πt) ‖ ' 0.3

B.2.1 Relative wages (heuristic).

Optimal relative wages, rwkt , at the stochastic steady state are distorted by the variances of the
terms 1 + zt+1 and 1 + ∆t+1 and their covariances with other forward-looking terms. To see why,
recall that [

rwk,?t

]1+ωθw
= ψµw

numw
k,t

denw
k,t

, for k ∈ {1, 2} (B.3)

3These differences hold in Dynare. For a formal proof, one needs to compute the unconditional expectations for
inflation and wage inflation, and then to show that they are indeed the same. This exercise is beyond the scope of
this appendix.
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with

numw
k,t = [`t]

1+ω + βαwEt

{
(1 + Λt+1)θw(1+ω) numw

k,t+1

}
,

denw
k,t = λtwt`t + βαwEt

{
(1 + Λt+1)θw−1 denw

k,t+1

}
,

where 1 + Λt = 1 + zt for δ1
t−1,t , and 1 + Λt = 1 + ∆t for δ2

t−1,t. A second-order approximation of

the term (1 + Λt+1)θw(1+ω) numw
k,t+1 is

(1 + Λt+1)θw(1+ω) numw
k,t+1 ' (1 + Λss)

θw(1+ω) numw
k,ss


1 + θw (1 + ω) Λ̂t+1 + n̂umw

k,t+1+

1
2

 θw (1 + ω) (θw (1 + ω)− 1)
(

Λ̂t+1

)2

2θw (1 + ω)
(

Λ̂t+1

) (
n̂umw

k,t+1

)

 ,

where x̂t = xt−xss
xss

. It follows that the unconditional expectation of this term is equal to

E
{

(1 + Λt+1)θw(1+ω) numw
k,t+1

}
' (1 + Λss)

θw(1+ω) numw
k,ss +Gn

(
Λt+1, numw

k,t+1

)
,

whereGn

(
Λt+1,numw

k,t+1

)
≡ 1

2

[
θw (1 + ω) (θw (1 + ω)− 1) var {Λt+1}+ 2θw (1 + ω) cov

{
Λt+1,numw

k,t+1

}]
.

The term numw
k,t at the stochastic steady state is thus equal to:

numw
k,ss =

1

1− βαw

(
[`ss]

1+ω +Gn
(
Λt+1,numw

k,t+1

))
.

A similar reasoning leads to an analytical expression for the term denw
k,ss,

denw
k,ss =

1

1− βαw
(
λsswss`ss +Gd

(
Λt+1, denw

k,t+1

))
.

Notice that in the deterministic steady state, we have that ψµwnumw
k,ss = denw

k,ss while Gn (·) =
Gd (·) = 0. However, in the stochastic steady state these equalities might not hold and the optimal

wage rwk,?ss might be above or below 1.

B.2.2 Aggregate wages.

Now, to have analytical expressions for the aggregation of wages within each sector, w̃kt ≡
∫
i∈IRk,t

[
Wi,t

Wt

]1−θw
di

for k = 1, 2, notice that this a state variable and it depends on past and present values of state and
control variables. Therefore, no correcting terms related to the expected variance are needed. At
the steady state, equations A.20 and A.21 become:

w̃1
ss = (1− αw) ξ

[
rw1,?

ss

]1−θw
+ αww̃

1
ss, and (B.4)

w̃2
ss = (1− αw) (1− ξ)

[
rw2,?

ss

]1−θw
+ αw (1 + ∆)θw−1 w̃2

ss. (B.5)

solving these equations, we have that

w̃1
ss = ξ ×

(
rw1,?

ss

)1−θw
, and (B.6)

w̃2
ss =

(
1− αw

1− αw (1 + ∆)θw−1

)
(1− ξ)×

(
rw2,?

ss

)1−θw
. (B.7)

These analytical expressions hold in Dynare.
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B.2.3 Wage dispersion and optimal wages.

The wage dispersion for each sector is also a state variable, so no correcting variance terms are
needed here. Following similar steps than for aggregate wages, we have that (has been checked
with Dynare)

dispw
1,ss = ξ ×

(
rw1,?

ss

)−θw
, and (B.8)

dispw
2,ss =

(
1− αw

1− αw (1 + ∆)θw

)
(1− ξ)×

(
rw2,?

ss

)−θw
. (B.9)

Comparing equations B.6 to B.9, it is apparent that

dispw
1,ss < w̃1

ss < ξ, when rw1,?
ss > 1,

dispw
1,ss > w̃1

ss > ξ, when rw1,?
ss < 1, and

dispw
1,ss = w̃1

ss = ξ, when rw1,?
ss = 1.

If ∆ is small enough, symmetry between w̃1
ss and w̃2

ss (the zero-profit condition of the labor in-

termediary, 1 =
∫ 1

0

(
Wi,t

Wt

)1−θw
di, imposes the symmetry) will lead to similar conclusions between

dispw
2,ss, w̃

2
ss, and 1 − ξ. In Dynare, we frequently observe that ‖ dispw

k,ss − ξ̃ ‖≥‖ w̃kss − ξ̃ ‖, for

ξ̃ = {ξ, 1− ξ} for #k = 1, 2 respectively.

C Welfare

We make a distinction between an individual’s conditional welfare, which depends on the duration
on his labor contract, and social welfare. We describe the latter first.

C.1 Social welfare

Define Wt as the un-weighted sum of instantaneous household utilities:

Wt =

∫
i
exp (εu,T )U(ci,t, `i,t)di

= exp (εu,T )

∫ 1

0

((
ci,T − γhci,T−1

)1−σ − 1

1− σ
− ψ

`1+ω
i,T

1 + ω

)
di

= exp (εu,T )

(
cT − γhcT−1

)1−σ − 1

1− σ
− ψ exp (εu,T )

∫ 1

0

`1+ω
i,T

1 + ω
di. (C.1)

The last line follows from the fact that consumption is equal across households under the model
assumptions.

Expected social welfare is then defined as:

SWt = Et

{ ∞∑
T=t

βT−tT WT

}
= Wt + βEt {SWt+1} .
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At the steady state, social welfare equals its unconditional expectation:

E {SWt} = E

{ ∞∑
T=t

βT−tWT

}

=
1

1− β
E {Wt} , since E {WT } = E {Wt} ∀T.

Notice that in equation (C.1) aggregate labor disutility can be decomposed into∫ 1

0

`1+ω
i,t

1 + ω
di =

∫
i∈IRw1,t

`1+ω
i,t

1 + ω
di+

∫
i∈IRw2,t

`1+ω
i,t

1 + ω
di,

where ∫
i∈IRwk,t

`1+ω
i,t

1 + ω
di =

ψ

1 + ω
[`T ]1+ω dispVk,tdi

with dispVk,t =
∫
i∈IRwk,t

(
Wi,t

Wt

)−θw(1+ω)
di. Dispersion in wages entails welfare costs, just as price

dispersion. Following the approach for the dispw
k,t formulations in A.17, one can show that:

dispV1,t = (1− αw)χt

(
rw1,?

t

)−θw(1+ω)
+ αw

(
1 + πwt
δ1
t−1,t

)θw(1+ω)

dispV1,t−1, (C.2)

dispV2,t = (1− αw) (1− χt)
(
rw2,?

t

)−θw(1+ω)
+ αw

(
1 + πwt
δ2
t−1,t

)θw(1+ω)

dispV2,t−1. (C.3)

C.2 Private welfare

The relevant welfare criterion for workers drawn to choose a new indexation rule is their own
expected lifetime utility conditional on the duration of the labor contract:

Wi,t (δi,Ξt) = Et

( ∞∑
T=t

(βαw)T−t U (cT (ξT ,ΣT ) , `i,T (δi, ξT ,ΣT ))

)
. (C.4)

Notice that the discount factor takes into account that the labor contract might end each period
with probability 1− αw. Since individual consumption is equal to aggregate consumption, we can
decompose the welfare criterion into two terms, one related to consumption and the other to labor
disutility: Wi,t (δi,Ξt) = Γt − Ωi,t (δ,Ξt) where

Γt = Et

{ ∞∑
T=t

(βαw)T−t exp (εu,T )

(
cT − γhcT−1

)1−σ − 1

1− σ

}
, and

Ωi,t (δ,Ξt) = Et

{ ∞∑
T=t

(βαw)T−t exp (εu,T )
ψ

1 + ω
`1+ω
i,T

}
.
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C.2.1 Recursive expressions

A recursive expression for Γt (δ) is simply:

Γt = exp (εu,t)

(
ct − γhct−1

)1−σ − 1

1− σ
+ βαwEtΓt+1. (C.5)

In turn, for the the discounted conditional expected disutility of labor, assume that Ξt = Ξ for all
t. Then, simplify notation to Ωk

t = Ω (δi,t,Ξ) for δk and make use of the labor-specific demand

`ki,t,T =

(
δkt,T
πwt,T

rwkt

)−θw
`T to obtain

Ωk
t =

ψ

1 + ω
Et

 ∞∑
T=t

(βαw)T−t exp (εu,T )

( δkt,T
πwt,T

rwkt

)−θw
`T

1+ω .

Next, expand the expression and factorize common terms:

Ωk
t =

ψ

1 + ω
Et


(
rwkt

)−θw(1+ω)



exp (εu,t) [`t]
1+ω +

βαw exp (εu,t+1)

[(
δkt,t+1

πwt,t+1

)−θw
`t+1

]1+ω

+

(βαw)2 exp (εu,t+2)

[(
δkt,t+2

πwt,t+2

)−θw
`t+2

]1+ω

+ ...




.

Notice that Ωk
t+1 is:

Ωk
t+1 =

ψ

1 + ω
Et


(
rwkt+1

)−θw(1+ω)



exp (εu,t+1) [`t+1]1+ω +

βαw exp (εu,t+2)

[(
δkt+1,t+2

πwt+1,t+2

)−θw
`t+2

]1+ω

+

(βαw)2 exp (εu,t+3)

[(
δkt+1,t+3

πwt+1,t+3

)−θw
`t+3

]1+ω

+ ...




.

So we can write Ωk
t as :

Ωk
t =

ψ

1 + ω
exp (εu,t)

[(
rwkt

)−θw
`t

]1+ω

+ βαwEt


(
πwt,t+1

δkt,t+1

rwkt+1

rwkt

)θw(1+ω)

Ωk
t+1

 .

(trick 1: write
δkt,t+T
πwt,t+T

=
δkt,t+1

πwt,t+1

δkt+1,t+T

πwt+1,t+T
; trick 2: multiply by

(
rwkt+1

rwkt+1

)−θw(1+ω)

and re-arrange).

C.2.2 A second-order approximation to labor disutility

The indexation criterion prompts workers to choose the contract associated with the lowest labor
disutility at the stochastic steady steady state. For this subsection, we depart from the definition
of labor disutility to obtain a second-order approximation, i.e.,

Ωk
t =

ψ

1 + ω
Et

( ∞∑
T=t

(βαw)T−t exp (εu,T )
[
`kt,T

]1+ω
)
.
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Notice that at the steady state, we have that `kss,l =

(
δkss,l
πwss,l

rwkss

)−θw
`ss, where l ∈ {0, 1, 2, 3, ...} is

the number of periods since the last re-optimization. If we assume that
δkss,l
πwss,l

≈ 1 for all l (recall

that, because of the stochastic steady state, there might be small differences between inflation and
target inflation; see Section B), then we have that hours in sector k do not depend on the periods
since last re-optimization but only on the relative optimal wages of each labor contract, i.e.

`kss =
(
rwkss

)−θw
`ss.

Now, assume that εu,T = 0 ∀ T. A second-order approximation of term
[
`kt,T

]1+ω
around its steady

state reads[
`kt,T

]1+ω
≈
[
`kss

]1+ω
+
(
`kt,T − `kss

)
(1 + ω)

[
`kss

]ω
+

1

2

(
`kt,T − `kss

)2
ω (1 + ω)

[
`kss

]ω−1
.

It follows that Ωk
t can be expressed as:

Ωk
t ≈ ψ

1 + ω
Et


∞∑
T=t

(βαw)T−t


[
`kss
]1+ω

+
(
`kt,T − `kss

)
(1 + ω)

[
`kss
]ω

+1
2

(
`kt,T − `kss

)2
ω (1 + ω)

[
`kss
]ω−1


 ,

≈ ψ

1 + ω

[
`kss
]1+ω

1− βαw
+ ψEt


∞∑
T=t

(βαw)T−t


(
`kt,T − `kss

) [
`kss
]ω

+1
2

(
`kt,T − `kss

)2
ω
[
`kss
]ω−1


 .

In order to find the steady-state value Ωk
ss, we need to apply the unconditional expectation operator

to each side of the last expression, which leads to:

E
{

Ωk
t

}
≡ Ωk

ss ≈ E

 ψ

1 + ω

[
`kss
]1+ω

1− βαw
+ ψ

∞∑
T=t

(βαw)T−t


(
`kt,T − `kss

) [
`kss
]ω

+1
2

(
`kt,T − `kss

)2
ω
[
`kss
]ω−1


 ,

since E
{(
`kt,T − `kss

)}
= 0 and var

(
`kt,T

)
= E

{(
`kt,T − `kss

)2
}
, it follows that

Ωk
ss ≈

ψ

1− βαw

[
`kss
]1+ω

1 + ω
+
ψ

2
ω
[
`kss

]ω−1
∞∑
T=t

(βαw)T−t var
(
`kt,T

)
,

From this expression, it is evident that labor disutility at the stochastic steady state is composed
by two terms related to the expected level of hours worked as well as its variance. If we maintain the

assumption that
δkss,l
πwss,l
≈ 1, then the second term can be simplified into ψ

(1−βαw)
ω
2

[
`kss
]ω−1

var
(
`kt
)
,

where the subscript T has being removed. And Ωk
ss can be rewritten as

Ωk
ss ≈

ψ

1− βαw

(
Rkss + V k

ss

)
, where

Rkss =

[
`kss
]1+ω

1 + ω
,

V k
ss =

ω

2

[
`kss

]ω−1
var
(
`kt

)
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Now, notice that we can use the labor-specific demand to substitute `kss =
(
rwkss

)−θw `ss from
the expressions above. Further, notice that at the stochastic steady state, relative wages and wage
dispersion are altered as follows

dispw
1,ss

ξ
=

(
rw1,?

ss

)−θw
, and

dispw
2,ss

1− ξ
≈

(
rw2,?

ss

)−θw
given that

δkss,l
πwss,l
≈ 1.

C.2.3 Wage dispersion and the expected variance of hours worked.

The optimal policy literature usually describes the price and wage dispersion measures in terms of
the volatility of wages using a second-order approximation (see Rotemberg and Woodford, 1998;
Erceg and Levin, 2003; Gaĺı and Monacelli, 2004) To build up intuition, we will compute similar
expressions for our labor market. Notice that, since we have two sectors in the labor market (one
for each indexation rule), some extra terms are added to the otherwise typical expressions for
dispersion found in the aforementioned papers.

The first step is to approximate the term
(
Wi,t

Wt

)1−θw
using the transformationX = exp (ln (X)) ,

and define wt (i) ≡ lnWi,t,, wt ≡ lnWt, and ŵt (i) ≡ wt (i) − wt. The approximation is centered
around 1 (or, equivalently, ŵ0 = 0). This number is arbitrarily chosen, but it helps greatly to
simplify the computations (another candidate point would be ŵss (i) = wss (i)− wss, in case ŵss (i)
is not unique due to wage dispersion and the distortions caused by the stochastic steady state,
but the computations become cumbersome). So, the transformation and then Taylor expansion of(
Wi,t

Wt

)1−θw
is given by

(
Wi,t

Wt

)1−θw
= exp ((1− θw) ŵt (i))

= exp ((1− θw) ŵ0)

(
1 + (1− θw) ŵt (i) +

(1− θw)2

2
ŵ2
t (i)

)
+ o

(
‖a3‖

)
' 1 + (1− θw) ŵt (i) +

(1− θw)2

2
ŵ2
t (i) (up to the second order).

Integrating the latter over the interval [0, ξ] leaves

w̃1
t ≡

∫ ξ

0

(
Wi,t

Wt

)1−θw
di ' ξ + (1− θw) Eξ0 {ŵt (i)}+

(1− θw)2

2
Eξ0
{
ŵ2
t (i)

}
,

where Eξ0 {x (i)} ≡
∫ ξ

0 x (i) di is the partial expectation operator on the interval [0, ξ] . Solving this

equation for Eξ0 {ŵt (i)} yields

Eξ0 {ŵt (i)} ' 1

θw − 1

(
ξ − w̃1

t

)
+
θw − 1

2
Eξ0
{
ŵ2
t (i)

}
The second step to approximate the term

(
Wi,t

Wt

)−θw
using the same methodology as before, so
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(
Wi,t

Wt

)−θw
' 1− θwŵt (i) +

θ2
w

2
ŵ2
t (i) (up to the second order).

Again, integrating over the interval [0, ξ] yields

dispw
1,t ≡

∫ ξ

0

(
Wi,t

Wt

)−θw
di ' ξ − θwEξ0 {ŵt (i)}+

θ2
w

2
Eξ0
{
ŵ2
t (i)

}
.

Now, substituting Eξ0 {ŵt (i)} yields:

dispw
1,t ≡

∫ ξ

0

(
Wi,t

Wt

)−θw
di ' ξ +

θw
2

Eξ0
{
ŵ2
t (i)

}
− µw

(
ξ − w̃1

t

)
,

Relative wage dispersion
dispw

1,t

ξ is thus

dispw
1,t

ξ
' 1 +

θw
2ξ

Eξ0
{
ŵ2
t (i)

}
− µw

(
ξ − w̃1

t

ξ

)
.

It proves convenient to restate the term Eξ0
{
ŵ2
t (i)

}
as a function related to the distance of the secto-

rial wages wt (i) = lnWi,t from the the aggregate wage level wt = lnWt. Let vector w̄kt contain all the
(log of) relatives wages ŵt (i) = lnWi,t− lnWt for labor contract k, such as w̄kt = {ŵt (i) : i ∈ IRk} .

Now, define function Dk

(
w̄kt
)

= 1
ξ̃

∫
i∈IRk (lnWi,t − lnWt)

2 di, where ξ̃ =

ξ if k = 1

1− ξ if k = 2
. Func-

tion Dk is proportional to the square of the Euclidean norm of vector w̄kt , i.e. Dk

(
w̄kt
)

= 1
ξ̃

∥∥w̄kt `∥∥2
.

Function Dk effectively measures the square of the distance between all the wages perceived in
sector k and the aggreate wage level, normalized by the proportion of workers choosing indexation
rule k. In other words, the larger is Dk , the farther away are the sectorial wages from the economy
average. Now we can write the relative dispersion measure as:

dispw
1,t

ξ
' 1 +

θw
2

D1

(
w̄1
t

)
− µw

(
ξ − w̃1

t

ξ

)
.

At the stochastic steady state, this expression becomes

E

{
dispw

1,t

ξ

}
≡

dispw
1,ss

ξ
' 1 +

θw
2

E
{

D1

(
w̄1
t

)}
− µw

(
ξ − E

{
w̃1
t

}
ξ

)
≷ 1.

The term −µw
(
ξ−E{w̃1

t}
ξ

)
appears because in the steady state w̃1

ss might differ from ξ (see above).

A similar expression can be found for k = 2. First, notice that

E1
ξ {ŵt (i)} ' 1

θw − 1

(
(1− ξ)− w̃2

t

)
+
θw − 1

2
D2

(
w̄2
t

)
where var2 {lnWi,t} = 1

1−ξ
∫ 1
ξ (lnWi,t − lnWt)

2 di. For relative dispersion, at the stochastic steady
state, we have that

E

{
dispw

2,t

1− ξ

}
≡

dispw
2,ss

1− ξ
' 1 +

θw
2

E
{

D2

(
w̄2
t

)}
− µw

(
(1− ξ)− E

{
w̃2
t

}
1− ξ

)
≷ 1.
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To conclude, notice that labor demand implies that

`i,t
`t

=

(
Wi,t

Wt

)−θw
, which implies

− (ln `i,t − ln `t)
1

θw
= (lnWi,t − lnWt) ,

and so, we can write Dk

(
w̄kt
)

= 1
ξ̃

∫
i∈IRk

(
−
(

ln `ki,t − ln `t

)
1
θw

)2
di = 1

θ2
w

Dk

(
¯̀k
t

)
, where ¯̀k

t ={
ln `ki,t − ln `t : i ∈ IRk

}
. The dispersion measures could be written as:

dispw
k,ss

ξ̃
' 1 +

1

2θw
E
{

Dk

(
¯̀k
t

)}
− µw

(
ξ̃ − w̃kss

ξ̃

)
, (C.6)

where ξ̃ =

ξ if k = 1

1− ξ if k = 2
.

It follows that the farther away are the expected hours worked in sector k from the economy
average, relative wage dispersion increases, and so does labor disutility.

C.3 Welfare costs measures

We quantify welfare costs due to the presence of stochastic shocks with respect to a benchmark
welfare level. Schmitt-Grohé and Uribe (2007) measure welfare costs in terms of the deterministic
steady state consumption. We choose to measure them in terms of the deterministic steady state
labor, thus highlighting the differences across labor contracts (although we reach exactly the same
conclusions with the consumption-based measure). We assume in what follows that utility in
consumption is logarithmic (σ = 1).

Social welfare in the deterministic steady state is given by:

SW (cd, `d) =
1

1− β
U(cd, `d),

=
1

1− β

{
log
(
cd

(
1− γh

))
− ψ

1 + ω
[`d]

1+ω

}
,

where Notice that this level does not depend on ξ. In contrast, at the stochastic steady state, social
welfare will vary with ξ and the structure of shocks, and the current policy practices.

SWss ≡ E

{ ∞∑
T=t

βT−tT

∫ 1

0
exp (εu,T )U(ci,t, `i,t)di

}
.

For reasons explained above, SWss ≤ SW (cd, `d) when at least one of the shock variances is
strictly positive. For expressing welfare costs in terms of deterministic consumption, let the fraction
λc represent the proportional cost in cd that makes the social planner indifferent between the
deterministic environment and the stochastic one, i.e.

SWss = SW ((1− λc) cd, `d)

=
1

1− β

{
log
(

(1− λc) cd
(

1− γh
))
− ψ

1 + ω
[`d]

1+ω

}
.
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Solving for λc yields

SWss (1− β) = log
(
cd

(
1− γh

))
− ψ

1 + ω
[`d]

1+ω + log (1− λc)

log (1− λc) = SWss (1− β)− SW (cd, `d)

λc = 1− exp {SWss (1− β)− SW (cd, `d)} .

As an alternative, we propose to measure these costs in terms of leisure. Let λ` denote the
percentage increase in deterministic steady state labor that makes the social planner indifferent
between the deterministic environment and the stochastic one. Formally, λ` is defined as

SWss = SW
(
cd,
(

1 + λ`
)
`d

)
=

1

1− β

{
log
(
cd

(
1− γh

))
− ψ

1 + ω

[(
1 + λ`

)
`d

]1+ω
}
.

Solving for λ` yields

λ` =

[
SWss (1− β)− log

(
cd
(
1− γh

))
− ψ

1+ω [`d]
1+ω

] 1
1+ω

− 1.

Notice that − ψ
1+ω [`d]

1+ω = SW (cd, `d) (1− β) − log
(
cd
(
1− γh

))
, so we can rewrite the above

expression as

λ` =

[
SWss (1− β)− log

(
cd
(
1− γh

))
SW (cd, `d) (1− β)− log (cd (1− γh))

] 1
1+ω

− 1.

For individual workers, the benchmark welfare is the one that is conditional on the expected dura-
tion of the labor contract, and which value is maximum at the stochastic steady state, i.e.,

W (cd, `d) =
1

1− βαw
U(cd, `d).

Notice that this benchmark is equal amid agents, and does not depend on ξ neither. Similarly to
social welfare, in the stochastic long-run equilibrium, individual welfare will depend on ξ, on the
structure of shocks, on current policy practices, and on the indexation rule a worker decides upon.

Wss

(
δk
)

= E

{ ∞∑
T=t

(βαw)T−t exp (εu,T )U(ci,t, `i,t)

}
.

Let λ`,k denote the percentage increase in deterministic steady state labor that makes an worker with
indexation rule k indifferent between the deterministic and the stochastic environment. Formally,
λ`,k is implicitly given by

Wss

(
δk
)

= W
(
cd,
(

1 + λ`,k
)
`d

)
.

=
1

1− βαw

{
log
(
cd

(
1− γh

))
− ψ

1 + ω

[(
1 + λ`,k

)
`d

]1+ω
}
.
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Solving for λ`,k yields

λ`,k =

[
Wss

(
δk
)

(1− βαw)− log
(
cd
(
1− γh

))
W (cd, `d) (1− βαw)− log (cd (1− γh))

] 1
1+ω

− 1.

D New-Keynesian Wage Phillips Curve with fixed indexation co-
efficients

Proposition 1 If the proportion of workers indexing their wages to past inflation is exogenous and
fixed, so ξ = γw ∈ [0, 1] , then the log-linearized equation for wage inflation collapses to a typical
New-Keynesian wage Phillips curve of the form

π̂wt − γwπ̂t−1 − (1− γw)π̂?t =
(1− βαw) (1− αw)

αw
κw0 m

w
t + βEt

(
π̂wt+1 − γwπ̂t − (1− γw)π̂?t+1

)
,

where κw0 = (1 + ωwθw)−1 and mw
t = ωw ˆ̀

t − λ̂t − ŵt.

Proof. First, we need to log-linearize the equations for the optimal relative wages (eq. A.28, A.29,
and A.30), and the equations for labor-market aggregating equations (eq. A.31, A.32, and A.33),
which give

r̂w?,1t = (1− βαw)κw0 m
w
t + βαwÊt

(
π̂wt+1 − π̂t

)
+ βαwÊtr̂w

?,1
t+1, (D.1)

r̂w?,2t = (1− βαw)κw0 m
w
t + βαwÊt

(
π̂wt+1 − π̂?t,t+1

)
+ βαwÊtr̂w

?,2
t+1 (D.2)

0 = γw
(̂̃w1

t

)
+ (1− γw)

(̂̃w2

t

)
(D.3)

̂̃w1

t = (1− αw)
(

(1− θw) r̂w?,1t

)
+ αw

(
(θw − 1) (π̂wt − π̂t−1) + ̂̃w1

t−1

)
(D.4)

̂̃w2

t = (1− αw) (1− θw) r̂w?,2t + αw

(
(θw − 1) (π̂wt − π̂?t ) + ̂̃w2

t−1

)
(D.5)

Substituting eq. D.4 and D.5 into D.3 results in

: −γw (1− αw) (1− θw) r̂w?,1t − γwαw
(

(θw − 1) (π̂wt − π̂t−1) + ̂̃w1

t−1

)
= (D.6)

(1− γw) (1− αw) (1− θw) r̂w?,2t + (1− γw)αw

(
(θw − 1) (π̂wt − π̂?t ) + ̂̃w2

t−1

)
.

After simplifying eq. D.6 by using eq. D.3 in order to eliminate the ̂̃w1

t−1 and ̂̃w2

t−1 terms we
obtain

π̂wt − (1− γw)π̂?t − γwπ̂t−1 =
1− αw
αw

(
γwr̂w?,1t + (1− γw) r̂w?,2t

)
. (D.7)

Substituting eq. D.1 and D.2 into the above expression gives

(π̂wt − (1− γw)π̂?t − γwπ̂t−1)
αw

1− αw
= (D.8)

(1− βαw)κw0 m
w
t + βαwEt

(
π̂wt+1 − (1− γw)π̂∗t,t+1 − γwπ̂t

)
+

βαwEt

(
χr̂w?,1t+1 + (1− χ) r̂w?,2t+1

)
.
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After iterating one period forward eq. D.7 and substituting it into the last term on the right
hand side of eq. D.8, plus some manipulations, we obtain that

π̂wt − γwπ̂t−1 − (1− γw)π̂?t =
(1− βαw) (1− αw)

αw
κw0 m

w
t + βEt

(
π̂wt+1 − γwπ̂t − (1− γw)π̂?t+1

)
.

E Sensitivity analysis

Figure (1) illustrates some cases where parameter changes affect equilibrium indexation in a non-
linear fashion. We start from the 2000:Q1 calibration and increase the volatility of the technology
shock by 15%. This benchmark calibration results in an aggregate indexation level of ξ? = .55
and serves as a reference point. This point is marked by a star in each box. Each panel shows
how different values for a structural parameter, given on the x-axis and holding all other structural
parameters at their benchmark values, results in different levels of aggregate indexation ξ? (on the
y-axis). It is apparent that shifting the structural parameters away from the reference point can
result in some pronounced nonlinear effects on ξ?, a result that also comes to attention in Section
4.2 in the main paper.

28



F
ig

u
re

1:
S

en
si

ti
v
it

y
an

al
y
si

s

1
1.

2
1.

4
1.

6
1.

8
0

0.
2

0.
4

0.
6

0.
81

a
π
,
co

ef
.
in
fl
a
ti
o
n

χ
⋆

0
0.

05
0.

1
0.

15
0.

2
0.

25
0

0.
2

0.
4

0.
6

0.
81

a
y
,
co

ef
.
o
u
tp
u
t
g
a
p

χ
⋆

0
0.

1
0.

2
0.

3
0.

4
0.

5
0

0.
2

0.
4

0.
6

0.
81

a
∆
y
,
co

ef
.
g
ro
w
th

o
f
o
u
p
u
t
g
a
p

χ
⋆

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

σ
π
⋆
,
vo

la
ti
li
ty

o
f
π
⋆
sh
o
ck

χ
⋆

0
0.

2
0.

4
0.

6
0

0.
2

0.
4

0.
6

0.
81
σ
z
,
vo

la
ti
li
ty

o
f
p
ro
d
u
ct
iv
it
y
sh
o
ck

χ
⋆

0
2

4
6

8
0

0.
2

0.
4

0.
6

0.
81

σ
g
,
vo

la
ti
li
ty

o
f
d
em

a
n
d
sh
o
ck

χ
⋆

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

α
p
,
p
ri
ce

ri
g
id
it
ie
s

χ
⋆

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

α
w
,
n
o
m
in
a
l
w
a
g
e
ri
g
id
it
ie
s

χ
⋆

5
10

15
20

25
0

0.
2

0.
4

0.
6

0.
81

θ w
,
el
a
st
ic
it
y
o
f
la
b
o
r
d
em

a
n
d

χ
⋆

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

1 ω
,
F
ri
sc
h
el
a
st
ic
it
y
o
f
la
b
o
r
su
p
p
ly

χ
⋆

M
O

N
E

T
A

R
Y

 P
O

L
IC

Y

V
O

L
A

T
IL

IT
Y

 O
F 

A
G

G
R

E
G

A
T

E
 S

H
O

C
K

S

O
T

H
E

R
 S

T
R

U
C

T
U

R
A

L
 F

A
C

T
O

R
S

N
o
te

:
T

h
e

re
sp

o
n

se
s

fo
r

se
le

ct
ed

v
a
ri

a
b

le
s

a
re

sh
o
w

n
a
ft

er
sh

o
ck

s
in

p
ro

d
u

ct
iv

it
y,

g
o
v
er

n
m

en
t

sp
en

d
in

g
(d

em
a
n

d
sh

o
ck

),
a
n

d
th

e
in

fl
a
ti

o
n

ta
rg

et
.

F
o
r

p
ro

d
u

ct
iv

it
y,

it
is

a
ss

u
m

ed
th

a
t

o
u

tp
u

t
ri

se
s

1
p

er
ce

n
t

in
th

e
lo

n
g
-r

u
n

.
F

o
r

d
em

a
n

d
sh

o
ck

,
g
o
v
er

n
m

en
t

sp
en

d
in

g
ri

se
a
t

im
p

a
ct

b
y

1
p

er
ce

n
t.

F
in

a
ll
y,

th
e

in
fl

a
ti

o
n

-t
a
rg

et
sh

o
ck

ri
se

s
b
y

2
p

er
ce

n
t

a
t

im
p

a
ct

;
in

th
e

fi
rs

t
ca

se
,

th
e

ri
se

is
te

m
p

o
ra

ry
w

h
il
e

in
th

e
se

co
n

d
o
n
e,

th
e

ch
a
n

g
e

is
p

er
m

a
n

en
t.

29



F Validation exercise with a monetary policy shock

This section complements Section 4.1 of the main paper. We vary the standard deviation of
monetary policy shocks and check the implications for equilibrium indexation. As mentioned in
the paper, Gray (1976) and Fischer (1977) state that the relative importance of nominal shocks in
explaining output fluctuations is a determinant of the degree of wage indexation to past inflation.
Since there is evidence that the variance of shocks to the interest rate equation has changed over
time (see e.g. Boivin and Giannoni, 2006, Canova and Gambetti, 2009), it could be that changes in
the non-systematic component of monetary policy was an important driver of the changes in U.S.
wage indexation. Table (1) shows the equilibrium indexation levels after adding a monetary policy
shock to the model. As Hofmann et al. (2012) do not include a monetary shock to their model, we
take the values from the estimation of Cogley et al. (2010) as measures for the standard deviation
of monetary policy shocks. It follows that introducing the monetary policy shock to the model has
only a negligible influence on equilibrium indexation ξ? in the 1974 calibration and no effect at
all in the 2000 calibration. Compared with the other shocks in the model, it is not an important
contributor to the business cycle. We conclude that changes in this parameter cannot explain the
changes in wage indexation, which is why we leave it out of the main text.
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Table 1. Validation exercise with monetary policy shock

Great Moderation Great Inflation
2000 (benchmark) 1974

Common parameters

β Subj. discount factor .99 .99
σ Intertemp. elasticity of subst. 1 1

φ−1 Labor share 1 1
ω−1 Frisch elast. of labor supply 2 2
θw Elast. labor demand 10 10
θp Elast. input demand 10 10

Specific parameters

γh Habit formation .37 .71
γp Inflation inertia .17 .8
αp Calvo-price rigidity .78 .84
αw Calvo-wage rigidity .54 .64
aπ Taylor Rule: inflation 1.35 1.11
ay Taylor Rule: output gap .1 .11
a∆y Taylor Rule: output gap growth .39 .5
ρR Taylor Rule: smoothing .78 .69
σz Std. dev. Tech. shock .31 1.02
σg Std. dev. Dem. shock 3.25 4.73
σm Std. dev. Mon pol shock .07 .16
ρg Autocorr. Dem. shock .91 .89

ξ̂ Estimated indexation by HPS .17 .91

Case 1: σπ? = 0

ξ? Implied equilibrium indexation 0 .86

ξS Implied social optimum 1 0

Case 2: σπ? > 0

σπ∗ Std. dev. inflation target .049 .081
ξ? Implied equilibrium indexation 0 .87

ξS Implied social optimum 1 0
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