Risky Banks and MacroPrudential Policy for Emerging Economies

Gabriel Cuadra Victoria Nuguer

Banco de México

Sixth BIS CCA Research Conference
Mexico City, April 13, 2015

1The views expressed herein are those of the authors and do not necessarily reflect those of Bank of Mexico.
Motivation

Degree of interconnectedness among financial institutions $\uparrow \Rightarrow$ exposure of EMEs to AE financial shocks \uparrow, global banks played a key role

Portfolio capital flows and cross-border banking flows (non-core liabilities) create challenges for EMEs financial stability

- volatile, short-term, and pro-cyclical
- Hungarian case: banks borrowed from CH to finance mortgages
- important channel of international transmission of foreign shocks

What can EMEs do to mitigate the effects of volatile portfolio capital flows and cross-border banking flows, i.e. non-core liabilities? Implement MacroPrudential measures
This paper

What are the effects of the volatility of cross-border banking flows (non-core liabilities) in EMEs’ credit?

What can EMEs do to mitigate these effects on credit?

1. Empirical Evidence + VAR on the transmission of financial shocks from the U.S. to Mexico and Turkey (risky banks)

2. Two-country DSGE model
 - banks in the AE lend to banks in the EME
 - cross-border banking flows and risky EME banks
 - endogenous credit constraint faced by financial intermediaries (Gertler and Kiyotaki, 2010)

3. MacroPrudential policy in the EME to mitigate the effects of banks’ non-core liabilities
Results

1. VAR, a negative quality of capital shock in the U.S. prompts a negative impact in the EME
 - loans from U.S. banks to EME ↓
 - financial instability in the EME, credit ↓, GDP ↓
 - asset price co-movement across countries
 - when EME banks are risky for U.S. banks the crisis is deeper in the EME

2. Model replicates the facts from the VAR

3. MacroPrudential policy in the EME by ↓ the volatility of cross-border banking flows
 - ↓ sources of financial instability
 - EME consumers are better off
Mechanism

U.S. (AE)

↓ quality of K
↓ net worth
↓ credit
↓ investment
↓ output

tightening of borrowing constraint

EME

↓ net worth
↓ credit
↓ output
↓ investment
↓ asset price

Risky Banks: ↓↓ global lending ⇒ ↓↓ credit

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies
Table of Contents

1 Motivation

2 Empirical Evidence

3 The Model

4 IRF to a Neg. Quality of K Shock in the AE

5 MacroPrudential Policy

6 Welfare analysis

7 Conclusions
Empirical Evidence

In the last few years, cross-border banking flows have been very volatile

- financial crisis ⇒ ↓ of how much the U.S. lent to EMEs
- UMP, ZLB interest rate ⇒ ↑ of capital flows to EMEs
- normalization of MP ⇒ a new reverse of the capital flows

Non-core liabilities have been financing the increase in credit with respect to deposits in EMEs (Lane and McQuade, 2013)

How much are cross-border banking flows with respect to households’ deposits for Turkish and for Mexican commercial banks?

- Turkey: 6.5%
- Mexico: 1.9%

⇒ not big numbers but they can create lots of noise in the EME
Empirical Evidence

In the last few years, cross-border banking flows have been very volatile

- financial crisis ⇒ ↓ of how much the U.S. lent to EMEs
- UMP, ZLB interest rate ⇒ ↑ of capital flows to EMEs
- normalization of MP ⇒ a new reverse of the capital flows

Non-core liabilities have been financing the increase in credit with respect to deposits in EMEs (Lane and McQuade, 2013)

How much are cross-border banking flows with respect to households’ deposits for Turkish and for Mexican commercial banks?

- Turkey: 6.5%
- Mexico: 1.9%

⇒ not big numbers but they can create lots of noise in the EME
Empirical Evidence: Credit to Deposits Ratio

Bank Credit to Bank Deposits, Percent, Annual

Source: FRED, Federal Reserve Bank of St. Louis.

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies
Empirical Evidence

In the last few years, cross-border banking flows have been very volatile

- financial crisis ⇒ ↓ of how much the U.S. lent to EMEs
- UMP, ZLB interest rate ⇒ ↑ of capital flows to EMEs
- normalization of MP ⇒ a new reverse of the capital flows

Graph

Non-core liabilities have been financing the increase in credit with respect to deposits in EMEs (Lane and McQuade, 2013)

How much are cross-border banking flows with respect to households’ deposits for Turkish and for Mexican commercial banks?

- Turkey: 6.5%
- Mexico: 1.9%

⇒ not big numbers but they can create a lot of noise in the EME
Empirical Evidence: VAR for Mexico and Turkey

Impulse Responses to Cholesky One-Std-Dev. Innovation to NCO on Commercial US Banks.

- U.S. NCO
- S&P 500
- Foreign claims of U.S. banks
- EME GDP
- Dom. Bank Credit
- EME Exchange Rate
- EME Stock Mkt Index

Note: VAR estimated for 2002Q1 to 2013Q4 for Mexico, and for 2001Q3 to 2013Q3 for Turkey.

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies
The Model

1. Two-country DSGE model
 - builds on Gertler and Kiyotaki (2010)
 - banking sector
 - endogenous credit constraint faced by financial intermediaries
 - U.S. (AE) banks invest (via EME banks) abroad ⇒ external financing
 - U.S. is a relatively big economy with a big financial sector
 - EME is a relatively small open economy with a small financial sector
 - EME banks might run away with debt from AE banks - risky EME banks

2. Study the transmission of a shock to the quality of capital in the U.S.

3. Analysis of MacroPrudential policy in the EME
 - welfare evaluation
General Setting

- **Households**: Deposits to Banks
- **Banks**: Loans to Non-financial firms
 - Cross-border banking flows
 - Eq. injection to CB
 - Levy
- **Non-financial firms**: Loans from Banks
- **Households**: Deposits
 - AE - m
 - EME - [1-m]

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies
Financial Frictions: AE Banks

Gertler and Kiyotaki with international flows

- raise deposits from AE households, d_t
- lend
 - to AE non-financial firms, s_t
 - to EME banks, b_t

Incentive compatibility constraint

$$V_t(s_t, b_t, d_t) \geq \theta (Q_t s_t + Q_b t b_t)$$

Net worth of AE banks

$$N_t = (\xi + \sigma) \{ R_{k, t} Q_{t-1} S_{t-1} \psi_t + R_{b, t} Q_{b, t-1} B_{t-1} \} - \sigma R_t D_{t-1}$$

At the end of the period $t - 1$ the value of the banks satisfies

$$V(s_{t-1}, b_{t-1}, d_{t-1}) = E_{t-1} \Lambda_{t-1, t} \left\{ (1 - \sigma) n_t + \sigma \max_{s_t, b_t, d_t} V(s_t, b_t, d_t) \right\}$$
Financial Frictions: EME Banks

- raise funds from
 - EME households, d^*_t
 - AE banks, b^*_t
- make loans to EME non-financial firms, s^*_t

Incentive compatibility constraint

- $\omega = 1$, safe EME banks
 \[
 V_t(s^*_t, b^*_t, d^*_t) \geq \theta^* (Q^*_t s^*_t - Q^*_t b^*_t)
 \]
- $0 < \omega < 1$, risky EME banks
 \[
 V_t(s^*_t, b^*_t, d^*_t) \geq \theta^* (Q^*_t s^*_t - \omega Q^*_t b^*_t)
 \]

Net worth of EME banks

\[\mathcal{N}_t^* = (\sigma^* + \xi^*)[Z^*_t + (1 - \delta) Q^*_t] S^*_{t-1} - \sigma^*(R^*_t D^*_{t-1} + R^*_{bt} Q^*_{b,t-1} B^*_{t-1})\]
IRF to a Neg. Quality of K Shock in the AE

1. Model with safe global banks (GB)
 - transmission across countries with asset price co-movement
 - cross-border banking flows fall
 - collapse of EME’s credit, financial instability
 - global financial crisis

2. Safe vs. risky EME banks
 - cross-border banking flows fall more
 - deeper transmission of the financial crisis

3. MacroPrudential policy by the EME CB

Calibration
- real sector: previous literature and Mexican data
- banking sector: previous literature and Mexican data on cross-border banking flows
IRF to a Neg. Quality of K Shock - Global Banks

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies
IRF to a Neg. Quality of K Shock - Risky Banks

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies
MacroPrudential Policy (MPP) in the EME

The Korean Experience

- August 2011, the Bank of Korea put a **levy on non-core liabilities**
- Purpose: non-core liabilities can generate systemic risk (procyclical and global interconnection of financial institutions)
- Result: share of short-term in total foreign borrowing by banks dropped from 64% as of end-June 2010 to 47% at end-December 2012

In the Model

- There is a cost (tax) when assets grow faster than deposits

\[
\rho^*_t = \left(\frac{S^*_{t+1} - S^*_t}{S^*_t} \right) \tau^* g_t
\]

- Total net worth of EME banks

\[
N^*_t = (\sigma^* + \xi^*) R^*_k Q^*_{t-1} S^*_{t-1} - \sigma^* \left[R^*_t D^*_{t-1} + \rho^*_t R^*_b Q^*_{t-1} B^*_{t-1} \right]
\]
IRF to a Neg. Quality of K Shock - MPP

- AE capital
- AE asset price
- AE net worth
- AE investment
- AE consumption
- AE final dom. demand
- TOT
- Global asset
- EME capital
- EME asset price
- EME net worth
- EME investment
- EME consumption
- EME final dom. demand
- $\bar{\rho}_g$

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies
Welfare Analysis

- Moments of the second order approximation of the model

\[\text{Welf}_t = U(C_t, L_t) + \beta E_t \text{Welf}_{t+1} \]

- **Consumption Equivalent**: fraction of households consumption that would be needed to equate the welfare under no policy to the welfare under policy
AE and EME Consumption Equivalents for different τ_g^*

$\rho_{gt}^* \equiv \left(\frac{\text{asset growth}}{\text{deposits growth}} \right)^{\tau_g^*}$

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies
Conclusions

What are the effects of the volatility of cross-border banking flows (non-core liabilities) in EMEs’ credit?

- prompt instability for the EME
- specially when EME banks are risky for the AE
- model matches qualitative evidence from the VAR

What can EMEs do to mitigate these effects on credit?

- Macropudrential Policy: levy on non-core liabilities, i.e. foreign debt, cross-border banking flows
- EME shows a smoother reaction with the intervention
- EME households are better off with the policy
Related Literature

Empirical Evidence

- Cross-border banking flows channel
 Cetorelli and Goldberg (2011) and Morais, Peydró, and Ruiz (2014)

- Large capital inflows increase the probability of credit booms
 Mendoza and Terrones (2008), Avdjiev, McCauley, and McGuire (2012), and Magud, Reinhart, and Vesperoni (2014)

- Credit growth associated with banks’ net debt flows
 Lane and McQuade (2013)

Theoretical Analysis

- Relevance of non-core liabilities
 Shin (2010), Shin and Shin (2010)

- 2-country model with global banks
 Dedola, Karadi, and Lombardo (2013) and Nuguer (2015)

This Paper’s Contribution

- VAR for different EME with a US net charge-off banks shock (risky banks)

- Theoretical model with global banks with cross-border banking flow channel for EMEs and MPP

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies
Empirical Evidence

Foreign claims of US reporting banks on individual countries

Empirical Evidence: Funding of Commercial Banks

Turkey: Deposit Money Banks Liabilities, Annual

Mexico: Deposit Money Banks Liabilities, Annual

Source: Turkish Central Bank and Bank of Mexico.

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies
Empirical Evidence: Funding of Non-Financial Firms

Source: Bank of Mexico.

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies
Benchmark: The RBC Model in Financial Autarky

Advanced Economy (AE)

\[E_0 \sum_{t=0}^{\infty} \beta^t \left[\ln C_t - \frac{\chi}{1 + \gamma} L_t^{1+\gamma} \right] \]

\[X_t = A_t K_t^{\alpha} L_t^{1-\alpha} = X_t^H + X_t^* H \frac{1-m}{m} \]

\[Y_t = \nu \frac{1}{\eta} X_t^H \frac{n-1}{n} + (1-\nu) \frac{1}{\eta} X_t^F \frac{n-1}{n} \]

\[Y_t = C_t + \left[1 + f \left(\frac{l_t}{l_{t-1}} \right) \right] l_t + G_t \]

\[S_t = I_t + (1-\delta) K_t \]

\[K_{t+1} = S_t \psi_{t+1} \]

quality of capital shock

Financial autarky case: \[CA_t = \frac{1-m}{m} X_t^{H*} - X_t^{F*} \tau_t = 0 \]

EME is similar with variables with *. \[\psi_t \] and \[\psi^*_t \] are i.i.d. and mutually independent. We study a shock in \[\psi_t \].

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies
Financial Frictions: Households

Each household consists of a continuum of members

1. Worker
 - supplies labor

2. Banker
 - with prob. σ continues being a banker
 - with prob. $1 - \sigma$ exits the banking business

Perfect consumption insurance within the household.

Problem

$$\max_{C_t, L_t, D_t} E_0 \sum_{t=0}^{\infty} \beta^t \left[\ln C_t - \frac{\chi}{1+\gamma} L_t^{1+\gamma} \right]$$

s.t. $C_t + D_t = W_t L_t + \Pi_t + R_t D_{t-1} + T_t$
Financial Frictions: Non Financial Firms

1. Good producers
 Profit per unit of capital

 \[Z_t = \frac{X_t - W_t L_t}{K_t} = \alpha A_t \left(\frac{L_t}{K_t} \right)^{1-\alpha} \]

 In order to finance new investment, they sell state-contingent claims, \(S_t \), to banks.

2. Capital good producers
 They choose investment to maximize profit

 \[Q_t = 1 + f \left(\frac{l_t}{l_{t-1}} \right) + \frac{l_t}{l_{t-1}} f' \left(\frac{l_t}{l_{t-1}} \right) - E_t \Lambda_{t,t+1} \left[\frac{l_{t+1}}{l_t} \right]^2 f' \left(\frac{l_{t+1}}{l_t} \right) \]

 with \(\Lambda_{t,t+1} = \beta \frac{C_t}{C_{t+1}} \)
Non-financial firms

No-cost technology for the final good production, problem:

$$\max_{X_t^H, X_t^F} Y_t = \left[\nu^\frac{1}{\eta} X_t^H \frac{H - 1}{\eta} + (1 - \nu)^\frac{1}{\eta} X_t^F \frac{H - 1}{\eta} \right]^\frac{\eta}{\eta - 1}$$

s.t. $P_t Y_t = Z_t = P_t^H X_t^H + P_t^F X_t^F$

The optimization problem yields

$$P_t = \left[\nu (P_t^H)^{1-\eta} + (1 - \nu) (P_t^F)^{1-\eta} \right]^{\frac{1}{1-\eta}}.$$

We can define everything in terms of TOT ($\tau = \frac{P_t^F}{P_t^H}$),

$$\frac{P_t^F}{P_t^H} = \left[\nu + (1 - \nu) \tau_t^{1-\eta} \right]^{\frac{1}{1-\eta}}.$$

The demands are defined by

$$X_t^H = \nu Y_t \left[\frac{P_t^H}{P_t} \right]^{-\eta} \text{ and } X_t^F = (1 - \nu) Y_t \left[\frac{P_t^F}{P_t} \right]^{-\eta}$$

Law of one price + home bias, the real exchange rate is

$$\varepsilon_t = \frac{S_t P_t^*}{P_t} = \left[\frac{\nu^* + (1 - \nu^*) \tau_t^{1-\eta}}{\nu + (1 - \nu) \tau_t^{1-\eta}} \right]^{\frac{1}{1-\eta}}$$
Non-financial firms - Adjustment Costs

CEE (2005)

\[F(i_t, i_{t-1}) = \left[1 - S\left(\frac{i_t}{i_{t-1}} \right) \right] i_t, \]

with \(S(1) = S'(1) = 0, \quad \varphi \equiv S''(1) > 0. \)

GK (2010) problem

\[\max_{l_t} E_t \sum_{\tau=t}^{\infty} \Lambda_{t,\tau} \left\{ Q_\tau l_\tau - \left[1 + f\left(\frac{l_\tau}{l_{\tau-1}} \right) \right] l_\tau \right\} \]

with \(f\left(\frac{l_\tau}{l_{\tau-1}} \right) = \left[\varphi \frac{l_\tau}{l_{\tau-1}} - \varphi \right]^2 \)

\(f(1) = 0, \quad f'(\frac{l_t}{l_{t-1}}) = 2\varphi \left[\varphi \frac{l_t}{l_{t-1}} - \varphi \right], \quad f'(1) = 0, \quad f''\left(\frac{l_t}{l_{t-1}} \right) = 2\varphi^2 \equiv \varphi > 0. \)

The optimization problem yields

\[Q_t = 1 + f\left(\frac{l_t}{l_{t-1}} \right) + \frac{l_t}{l_{t-1}} f'\left(\frac{l_t}{l_{t-1}} \right) - E_t \Lambda_{t, t+1} \left(\frac{l_{t+1}}{l_t} \right)^2 f'\left(\frac{l_{t+1}}{l_t} \right) \]

\[= 1 + \left[\varphi \frac{l_t}{l_{t-1}} - \varphi \right]^2 + \frac{l_t}{l_{t-1}} 2\varphi \left[\varphi \frac{l_t}{l_{t-1}} - \varphi \right] - E_t \Lambda_{t, t+1} \left(\frac{l_{t+1}}{l_t} \right)^2 \left[\varphi \frac{l_{t+1}}{l_t} - \varphi \right] \]
AE Banks Optimization

Bellman equation

\[
V(s_t, b_t, d_t) = \nu_{st}s_t + \nu_{bt}b_t - \nu_{dt}d_t
\]

\[
= E_t\Lambda_{t,t+1} \left\{ (1 - \sigma)n_{t+1} + \sigma \max_{d_{t+1},s_{t+1},b_{t+1}} V(s_{t+1}, b_{t+1}, d_{t+1}) \right\}
\]

The optimization implies

\[
\nu_t = E_t[\Lambda_{t,t+1}\Omega_{t+1}R_{t+1}]
\]

\[
\mu_t = E_t[\Lambda_{t,t+1}\Omega_{t+1}(R_{kt+1} - R_{t+1})]
\]

\[
\phi_t = \frac{\nu_t}{\theta - \mu_t}
\]

\[
\mu_t = \frac{\nu_{st}}{Q_t} - \nu_t
\]

\[
\frac{\nu_{st}}{Q_t} = \frac{\nu_{bt}}{Q_{bt}} \Rightarrow E_t\Lambda_{t,t+1}\Omega_{t+1}R_{kt+1} = E_t\Lambda_{t,t+1}\Omega_{t+1}R_{bt+1}
\]

where

\[
\Omega_{t+1} = 1 - \sigma + \sigma(\nu_{t+1} + \mu_{t+1}\phi_{t+1})
\]

\[
R_{kt+1} = \psi_{t+1} \frac{Z_{t+1} + (1 - \delta)Q_{t+1}}{Q_t}
\]
EME Banks Optimization

Bellman equation

\[V(s^*_t, b^*_t, d^*_t) = \nu^*_{st} s^*_t - \nu^*_{bt} b^*_t - \nu^*_t d^*_t \]

\[= E_t \Lambda^*_{t, t+1} \left\{ (1 - \sigma^*) n^*_{t+1} + \sigma^* \max_{d^*_{t+1}, s^*_{t+1}, b^*_{t+1}} V(s^*_{t+1}, b^*_{t+1}, d^*_{t+1}) \right\} \]

The optimization implies

\[\nu^*_t = E_t [\Lambda^*_{t, t+1} \Omega^*_{t+1} R^*_t] \]

\[\mu^*_t = E_t [\Lambda^*_{t, t+1} \Omega^*_{t+1} (R^*_t - R^*_t)] = \frac{\nu^*_{st}}{Q^*_t} - \nu^*_t \]

\[\phi^*_t = \frac{\nu^*_t}{\theta^* - \mu^*_t} \]

\[\mu^*_{bt} = E_t [\Lambda^*_{t, t+1} \Omega^*_{t+1} (R^*_t - R^*_t)] = \frac{\nu^*_{bt}}{Q^*_t} - \nu^*_t \]

\[\phi^*_{bt} = \frac{\nu^*_t}{\theta^* \omega - \mu^*_t} \]

\[\omega = 1 \frac{\nu^*_{st}}{Q^*_t} = \frac{\nu^*_{bt}}{Q^*_t} \Rightarrow E_t \Lambda^*_{t, t+1} \Omega^*_{t+1} R^*_t = E_t \Lambda^*_{t, t+1} \Omega^*_{t+1} R^*_t = E_t \Lambda^*_{t, t+1} \Omega^*_{t+1} R^*_t \]

\[\omega < 1 \frac{\nu^*_{st}}{Q^*_t} = \left[\frac{\nu^*_{bt}}{Q^*_t} - (1 - \omega) \nu^*_t \right] \frac{1}{\omega} \Rightarrow \mu^*_{bt} = \omega \mu^*_t \]

where

\[\Omega^*_{t+1} = 1 - \sigma^* + \sigma^* (\nu^*_t + \mu^*_t + \phi^*_t) \]

\[R^*_t = \psi^*_{t+1} \frac{Z^*_{t+1} + (1 - \delta^*) Q^*_t}{Q^*_t} \]
Risky EME Banks

The parameter \(\omega \) introduces a level of riskiness in the EME’ cross-border banking flows. EME banks can run away with a fraction \(\theta^*(1 - \omega) \) of international flows. ⇒ risky EME banks

For \(0 < \omega < 1 \)

\[
E_t \Lambda^*_{t,t+1} \Omega^*_{t+1} R^*_kt_{t+1} > E_t \Lambda^*_{t,t+1} \Omega^*_{t+1} R^*_bt_{t+1} > E_t \Lambda^*_{t,t+1} \Omega^*_{t+1} R^*_bt_{t+1}
\]

vs. \(\omega = 1 \)

\[
E_t \Lambda^*_{t,t+1} \Omega^*_{t+1} R^*_kt_{t+1} = E_t \Lambda^*_{t,t+1} \Omega^*_{t+1} R^*_bt_{t+1} > E_t \Lambda^*_{t,t+1} \Omega^*_{t+1} R^*_bt_{t+1}
\]

When EME banks can run away with a fraction of cross-border banking flows, EME banks borrow more from AE banks and they are more exposed to events in the AE.
IRF to a Neg. Quality of K Shock in the AE

1. Benchmark (no financial frictions and in financial autarky) vs. banks in financial autarky ▶ IRF
 - amplification of the shock
 - transmission across countries very small

2. Model with banks and in financial autarky vs. model with global banks (GB) ▶ IRF
 - transmission across countries with asset price co-movement
 - cross-border banking flows work as an insurance
 - global financial crisis

3. Model with GB and safe vs. risky EME banks
 - cross-border banking flows fall more
 - deeper transmission of the financial crisis

4. MacroPrudential policy by the EME CB

Calibration
Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AE</th>
<th>EME</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.9900</td>
<td>0.9900</td>
</tr>
<tr>
<td>γ</td>
<td>0.1000</td>
<td>0.1000</td>
</tr>
<tr>
<td>χ</td>
<td>5.0130</td>
<td>5.0130</td>
</tr>
<tr>
<td>α</td>
<td>0.3330</td>
<td>0.3330</td>
</tr>
<tr>
<td>δ</td>
<td>0.0250</td>
<td>0.0250</td>
</tr>
<tr>
<td>ν</td>
<td>0.8500</td>
<td>0.9625</td>
</tr>
<tr>
<td>η</td>
<td>1.5000</td>
<td>1.5000</td>
</tr>
<tr>
<td>m</td>
<td>0.9600</td>
<td>0.0400</td>
</tr>
<tr>
<td>\bar{g}</td>
<td>0.2000</td>
<td>0.2670</td>
</tr>
<tr>
<td>ξ</td>
<td>0.0018</td>
<td>0.0018</td>
</tr>
<tr>
<td>θ</td>
<td>0.4067</td>
<td>0.4074</td>
</tr>
<tr>
<td>σ</td>
<td>0.9720</td>
<td>0.9710</td>
</tr>
<tr>
<td>Φ</td>
<td>0.1000</td>
<td></td>
</tr>
<tr>
<td>ω</td>
<td>0.6000</td>
<td></td>
</tr>
<tr>
<td>ψ</td>
<td>-0.0500</td>
<td></td>
</tr>
</tbody>
</table>

$\Rightarrow \theta$ matches $R_k - R = 110$ basis point per year and $\theta^*, R_k^* - R^* = 115$
IRF to a Neg. Quality of K Shock - Benchmark
IRF to a Neg. Quality of K Shock - No global banks

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies
IRF to a Neg. Quality of K Shock - Global Banks

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies
IRF to a Neg. Quality of K Shock - Risky Banks

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies
Consumption Equivalent

AE and EME Consumption Equivalents for different ω

- AE all shocks
- EME all shocks

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies
IRF to a Neg. Quality of K Shock - MPP+UMP

Cuadra and Nuguer (Banco de México) - Risky Banks and MacroPrudential Policy for Emerging Economies