A Proposed Methodology to Analyze Macroprudential Policies

0

Presentation for the Closing Conference of the BIS CCA Research Network on "Incorporating Financial Stability Considerations into Central Bank Policy Models" Mexico City, Jan. 29-30, 2015

Proposed methodology

- Build quantitative non-linear financial crisis framework with three key features:
 - I. Endogenous fin. amplification drives realistic crisis dynamics
 - 2. Explicit market failure justifies policy intervention
 - 3. Provides a mapping from MPP instruments to agents' incentives to targets and goals (frequency & magnitude)
- Background papers:
 - "Macroprudential Policy with News Shocks and Global Liquidity Regime-Switching" by J. Bianchi and E.G. Mendoza (2015)
 - Appendix: Algorithm and instructions for Matlab code
 - 2. "Optimal, Time-Consistent Macroprudential Policy," by J. Bianchi and E.G. Mendoza (2013,2015)

Layout of the presentation

- 1. Financial instability, amplification and nonlinearities: General argument
- 2. Crises framework: Collateral constraint causes Fisherian deflation & pecuniary externality
- 3. Show the model produces strong financial amplification and crises with realistic features
- 4. Solve for optimal policy and study its effectiveness (frequency, magnitude of crises)
- 5. Show importance of news shocks and global liquidity shifts

Pricing debts with financial instability

Yield

Amplification, nonlinearities and MPP

liability position

Non-linear financial crises framework

- Credit market frictions induce collateral constraints that depend on market prices
- Two key implications:
- 1. <u>Amplification</u>: Feedback loop between prices and borrowing capacity (Fisherian debt-deflation)
- 2. <u>Pecuniary externality</u>: Agents do not internalize how borrowing decisions made in "good times" affect collapse of collateral prices in a crisis
- Large literature on positive and normative implications: Financial Accelerator, EM Sudden Stops, Macroprudential Policy, etc

MPP with News & Global Liquidity Switches

- Start with canonical model of Sudden Stops/MPP (Mendoza (02), Bianchi (11), Benigno et al. (13)...)
 - I. SOE with tradables & nontradables sectors
 - 2. Liability dollarization: debt denominated in tradables, backed-up by total income
 - 3. Fluctuations in relative price of nontradables affect borrowing capacity
- Add noisy but informative news about nextperiod's fundamentals (TFP,TOT, resources, etc)
- Add regime switches in global liquidity (interest rates or borrowing capacity)
- Solve DE without policy, constrained-efficient SP problem, and optimal MPP (debt taxes)

Decentralized Equilibrium: Households

$$c = \left[\omega\left(c^{T}\right)^{-\eta} + (1-\omega)\left(c^{N}\right)^{-\eta}\right]^{-\frac{1}{\eta}}, \eta > 1, \omega \in (0,1).$$

$$q_t b_{t+1} + c_t^T + p_t^N c_t^N = b_t + \pi_t^T + \pi_t^N + w_t \overline{h}$$

$$q_t b_{t+1} \geq -\kappa \left(x_t + w_t h_t + \pi_t^T + \pi_t^N \right).$$

Decentralized Equilibrium: Firms

$$\max_{\substack{h_t^T \\ h_t^N}} \pi_t^T = A^T h_t^{T\alpha} - w_t h_t^T$$
$$\max_{\substack{h_t^N \\ h_t^N}} \pi_t^N = p_t^N A^N h_t^{N\alpha} - w_t h_t^N$$

News shocks (Durdu et al. (2013))

• Signal s_t informs about x_{t+1} , with precision θ :

$$p(s_t = i | x_{t+1} = l) = \begin{cases} \theta & \text{if } i = l \\ \frac{1-\theta}{N-1} & \text{if } i \neq l \end{cases}$$

--Uninformative if $\theta=\frac{1}{N}$, perfectly informative if $\;\theta=1$

Conditional forecast probability:

$$p(x_{t+1} = l | s_t = i, x_t = j) = \frac{p(s_t = i | x_{t+1} = l)p(x_{t+1} = l | x_t = j)}{\sum_n p(s_t = i | x_{t+1} = n)p(x_{t+1} = n | x_t = j)}$$

• Joint (s,x) Markov transition probabilities:

$$\Pi(x_{t+1}, s_{t+1}, x_t, s_t) \equiv p(s_{t+1} = k, x_{t+1} = l | s_t = i, x_t = j)$$

$$= p(x_{t+1} = l | s_t = i, x_t = j) \sum_{m} \left[p(x_{t+2} = m | x_{t+1} = l) p(s_{t+1} = k | x_{t+2} = m) \right]$$

Global liquidity regimes

- Shifts in global liquidity result in regimes of persistently high or low real interest rates
- Standard two-point regime-switching process:
 - I. Regimes:

$$R^h > R^l$$

2. Transition probabilities

$$F_{hh} \equiv p(R_{t+1} = R^h \mid R_t = R^h)$$
$$F_{ll} \equiv p(R_{t+1} = R^l \mid R_t = R^l)$$

3. Mean durations:

$$1/F_{hl}$$
 $1/F_{lh}$

Decentralized Eq.: Optimality conditions $\lambda_t = u_T(t)$

$$p_t^N = \left(\frac{1-\omega}{\omega}\right) \left(\frac{c_t^T}{c_t^N}\right)^{\eta+1}$$
$$\lambda_t = \frac{\beta}{q_t} \mathbb{E}_t \left[\lambda_{t+1} + \mu_t\right]$$

$$b_{t+1} + \kappa \left(x_t + w_t h_t + \pi_t^T + \pi_t^N \right) \ge 0$$

$$p_t^N A^N \alpha h_t^{N\alpha - 1} = w_t$$
$$A^T \alpha h_t^{T\alpha - 1} = w_t$$

Effects of news & liquidity regimes

- News effects:
 - I. Good news at t strengthen incentives to borrow
 - 2. ...and increase expected future borrowing capacity
 - 3. ...but if followed by low x_{t+1} , prob. of crisis rises (higher leverage)
- Global liquidity shifts:
 - I. Persistent high liquidity induces more borrowing
 - 2. Expectation of regime switch is low
 - 3. Shift to low liquidity after spell of high liquidity triggers severe crisis (low prob. by construction)
- DE and SP have identical information sets

Financial regulator (planner's) problem: $V(b,z) = \max_{p^{N}.h^{T}.h^{N}.c^{T}.c^{N}.b'} \left[u(\omega(c^{T})^{-\eta} + (1-\omega)(c^{N})^{-\eta-\frac{1}{\eta}}) + \beta \mathbb{E}V(b',z') \right]$ $c^{T} + qb' = b + A^{T} \left(h^{T}\right)^{\alpha}$ $\bar{h} = h^T + h^N$ $c^{N} = A^{N} \left(h^{N} \right)^{\alpha}$ $qb' \ge -\kappa (x + A^T (h^T)^{\alpha} + p^N A^N (h^N)^{\alpha})$ $p^{N} = \frac{A^{T}}{A^{N}} \left(\frac{h^{T}}{h^{N}}\right)^{\alpha - 1}$ $p^{N} = \left(\frac{1-\omega}{\omega}\right) \left(\frac{c^{T}}{c^{N}}\right)^{\eta+1}$

Externality & optimal policy

• Wedge in the marginal costs of borrowing in periods of financial stability ($\mu_t = 0$):

I. **DE:**
$$u_T(t) = \frac{\beta}{q_t} \mathbb{E}_t \left[u_T(t+1) \right]$$

2. SP:
$$u_T(t) = \frac{\beta}{q_t} \mathbb{E}_t \left[u_T(t+1) + \mu_{t+1} \psi_{t+1} \right]$$

$$\psi_t \equiv \kappa \left[\frac{A_t^T \bar{h} (1-\alpha) (h_t^T)^{\alpha-2}}{\alpha A_t^T (h_t^T)^{\alpha-1} - \phi(h_t^T)} \right]$$

• Optimal debt tax:

$$\tau_t = \frac{\mathbb{E}_t \left[\mu_{t+1} \psi_{t+1} \right]}{\mathbb{E}_t \left[u_T(t+1) \right]}$$

Questions for quantitative analysis:

- I. Does the Fisherian mechanism produce strong financial amplification and crisis dynamics?
- 2. Do news shocks and global liquidity shifts add to this mechanism?
- 3. Is MPP effective to reduce frequency and magnitude of fin. crises?
- 4. How does news precision affect effectiveness?
- 5. Does it matter what the signals are about?
- 6. How complex is the optimal policy (i.e. how does it vary across news and liquidity regimes)

Baseline Calibration a'la Bianchi (11) (endowment economy case)

y N	1
N _y T	3
$E[y^T]$	1
$\rho_y \tau$	0.54
$\sigma_y \tau$	0.059
β	0.91
γ	2
η	0.205
κ_L	0.32
ω	0.31
θ	$\frac{2}{3}$
R^h	1.0369
R'	1.0
<i>F_{hh}</i>	0.9833
F _{II}	0.9

Global liquidity phases

Baseline results: Long-run dist. of NFA

Baseline results: Main moments

Financial crises events

Shocks during crisis events

Effects of higher signal precision

Non-monotonic effect on crisis probs.

0	(]	l) 25	(2)		(3	3)			(5)	
θ	υ.	35	0.55		0.00		0.12		0.95	
Long-run Moments	DE	SP	DE	SP	DE	SP	DE	SP	DE	SP
E[B/Y] (%)	29.41	29.35	29.55	29.45	29.76	29.58	29.98	29.76	31.32	31.18
$\sigma(CA/Y)$	0.019	0.007	0.021	0.009	0,023	0.013	0.025	0,015	0.028	0.024
Prob of Crisis (%)	3.5	0.0	4.3	0.5	3.4	2	2.7	2.1	0.8	0.6
Welfare Gain (%)	0.082	na	0.08	na	0.08	na	0.08	na	0.048	na

Financial Crisis Moments										
$\Delta C (\%)$	-8.6	-4.9	-9.9	-6.1	-11.6	-7.4	-13.8	-9.2	-20.9	-20.9
$\Delta RER (\%)$	25.9	14.1	30.5	17.7	37.6	22.1	45.6	28.2	83.5	80.9
$\Delta CA/Y$ (%)	6.3	2.0	7.8	3.2	10.2	4.8	12.7	6.9	23.7	18.5
$\Delta y^T (\%)$	-9.93	-9.93	-9.88	-9.88	-9.91	-9.91	-9.89	-9.89	-9	-9.4
$E[\tau]$ pre-crisis (%)	4.27	na	4.05	na	4.05	na	3.61	na	3.19	na

Magnitude of crises increases

Effectiveness of optimal MPP diminishes

Optimal MP debt tax around crises

Optimal tax schedule & global liquidity

Optimal tax & news shocks

Different news shocks

	(1)		(2)		(1	3)	(4)		
Model Moment	κ news		y^T ne	ews, <i>R</i>	y^T n	ews, κ	R news		
Long-run Moments	DE	SP	DE	SP	DE	SP	DE	SP	
$\sigma(CA/Y)$	0.0327		0.0231		0.0	262	0.0321		
Welfare Gain (%)	0.115		0.079		0.077		0.063		
E[B/Y] (%)	-28	-28.31		-29.72		-28.55		-29.51	
Prob of Crisis	4.3%	0.02%	3.6%	2%	3.24%	1.78%	2.09%	0.52%	
Financial Crisis Mon	nents								
ΔC	-15.42%	-10.26%	-11.53%	-7.46%	-12.3%	-8.24%	20.55%	17.5%	
ΔRER	52.52%	32.25%	36.69%	22.17%	40.7%	25.45%	77.04%	62.12%	
$\Delta CA/Y$	14%	7.2%	9.86%	4.78%	11.3%	6%	19.9%	15.4%	
$\Delta y^T (\%)$	-12.4%		-9.94%		-9.(06%	-15.6%		
$E[\tau]$ pre-crisis	4.74%		4.29%		3.4	8%	11.34%		

Assets as collateral

• Bianchi & Mendoza (2013) consider:

$$-\frac{b_{t+1}}{R} + \theta p_m m_t \le \frac{\kappa_t q_t k_t}{R}$$

- Physical assets valued at market price used as collateral
- Collateral used for both intertemporal debt & working capital
- Pecuniary externality yields this wedge:

$$u'(c_t) = \beta R \mathbb{E}_t \left\{ u'(c_{t+1}) - \kappa \mu_{t+1} q_{t+1} \frac{u''(c_{t+1})}{u'(c_{t+1})} \right\}$$

- Analogous results about MPP effectiveness
- ...but debt tax lacks credibility under commitment (time inconsistency), so optimal policy must also align incentives of future financial regulators

Effectiveness of Optimal MPP

Conclusions

- Fisherian models provide useful quantitative framework for studying financial amplification & crisis dynamics, and for evaluating MPP
- News shocks and global liquidity regimes strengthen Fisherian amplification mechanism
- MPP remains effective, but it becomes more complex (varies with news & liquidity regimes)
- Future work: Production model, financial frictions in supply side, simpler policies (Financial Taylor Rule)