Macroeconomic and Financial Interactions in Chile: An Estimated DSGE Model

Javier García-Cicco^{1,2} Markus Kirchner¹ Santiago Justel¹

¹Central Bank of Chile, Macroeconomic Analysis Division*

²Universidad Católica Argentina

Fifth BIS CCA Research Conference on "Challenges from changing international financial conditions"

Bogota, Colombia, 22-23 May 2014

^{*}The views and conclusions presented are exclusively those of the authors and do not necessarily reflect the position of the Central Bank of Chile or its Board members.

- The literature on fluctuations in emerging countries has focused on financial frictions between domestic and foreign agents:
 - Endogenous country premia (e.g. Neumeyer and Perri, 2005; Uribe and Yue, 2008; Garca-Cicco *et al.*, 2010; Mendoza, 2010).
 - Sovereign defaults (e.g. Arellano, 2008; Yue, 2010; Mendoza and Yue, 2012).
 - Dollarization and currency mismatches (e.g. Céspedes *et al.* 2004; Devereux *et al.* 2006; Gertler *et al.* 2007).
- However, in the new century, the picture has significantly changed for many emerging countries:
 - Fiscal situation seems under control (some governments are even net foreign lenders).
 - Dollarization has been reduced dramatically.
 - Country premia have not displayed the high levels they used to show years ago.

External Spreads (annual b.p.)

Domestic Spreads (annual b.p.)

- Hence, *external* financial frictions seem less important today, while *domestic* financial frictions seem more relevant.
- Such frictions may have implications for monetary policy, and might introduce a rationale for "complementary" policies.
- To address this issue, we set up a DSGE model of a small open economy with two types of domestic financial frictions:
 - Between depositors and banks, as in Gertler and Karadi (2011, GK).
 - Between banks and firms, as in Bernanke et al. (1999, BGG).
- We estimate the model with Chilean data from 2001 to 2012 following a Bayesian approach, and evaluate two roles for financial frictions:
 - To understand the dynamics of macroeconomic and financial variables (in particular, domestic financial spreads).
 - To analyze the role of complementary policies (in particular, reserve requirements) and their interaction with normal-times monetary policy.

Summary of the model

- Fairly standard NK model of a small open economy.
- Conceptual approach to financial frictions:
 - Different interest rates (real rates in steady state):
 - r^* , international rate; r^D , domestic deposit rate.
 - r^{L} , rate at which banks are willing to lend risk-free (not observable).
 - r^{Le} , interest rate paid on loans (linked to return on capital).
 - Frictionless models: $r^* = r^D = r^L = r^{Le}$.
 - External financial frictions: $r^* < r^D = r^L = r^{Le}$.
 - Domestic frictions between banks and firms: $r^* = r^D = r^L < r^{Le}$.
 - Domestic frictions between depositors and banks: $r^* = r^D < r^L = r^{Le}$.
 - Our model: $r^* \approx r^D < r^L < r^{Le}$.
- Bank spread emanates from a moral hazard problem, as in GK (2011), while firm spread (i.e. external finance premium) emanates from a costly state verification problem, following BGG (1999).
- Our model thus includes two different financial accelerators, with feedbacks from bank and firm leverage on firms' financing costs.

→ HD Corp Spread → HD Bank Spread

- Use the model to simulate a spread compression and credit boom.
- The underlying financial shock is a "risk shock" (Christiano *et al.*, 2014) to the cross-sectional SD of entrepreneurs' productivity $(\sigma_{\omega,t})$.
- According to the estimated model, this shock is an important driver of corporate and, to a lesser extent, bank lending spreads in Chile.

• The baseline monetary policy through a Taylor rule for the short-term interest rate is not sufficient to contain expansion of GDP, investment and (asset price) inflation due to the credit boom.

 However, a feedback rule for the required reserves ratio (with feedbacks from credit and bank lending spreads) can contain the credit boom and complement interest rate policy.
 R policy.

Appendix

Details of the model and references <Return

- See García-Cicco, J., M. Kirchner, and S. Justel, 2014, "Financial Frictions and the Transmission of Foreign Shocks in Chile," *Working Papers Series* 722, Central Bank of Chile.
- Simplified version of Medina and Soto (2007) model used for policy analysis and forecasting at the Central Bank of Chile. Basic structure similar to Adolfson *et al.* (2007) model.
- Main elements of the real side:
 - Consumption of home goods and imported goods.
 - Staggered price-setting à la Calvo with indexation both for domestic producers and importers (i.e. delayed pass-through).
 - Sticky wages à la Calvo with indexation.
 - Labor-augmenting productivity growth.
 - Commodity sector (endowment, exogenous world price).
 - Habits in consumption, investment adjustment costs.
 - Non-Ricardian households.
 - Elastic country premium.
 - Taylor rule (smoothing, inflation and GDP growth).
 - Exogenous government expenditure (Ricardian equivalence).

Historical decomposition of corporate spread / EFP • Return

Corporate A vs AAA Spread (annual b.p., Δ from average)

Historical decomposition of bank lending spread

Bank Lending Spread (annual b.p., Δ from average)

García-Cicco, Kirchner & Justel

Macroeconomic and Financial Interactions in Chile May 2014

Bank balance sheet at the end of period t:

$$L_t = (1 - \tau_t)D_t + N_t,$$

where τ_t is the fraction of deposits that the CB requires to hold as reserves, remunerated at $R_t^{RR} < R_t$.¹ Net worth evolves as:

$$N_{t+1} = r_{t+1}^{L}L_{t} - r_{t+1}D_{t} + r_{t+1}^{RR}\tau_{t}D_{t} = (r_{t+1}^{L} - r_{t+1}^{D})L_{t} + r_{t+1}^{D}N_{t},$$

where $r_t^D = (r_t - \tau_{t-1} r_t^{RR})/(1 - \tau_{t-1})$. The process for τ_t is:

$$\frac{1-\tau_t}{1-\bar{\tau}} = \left(\frac{1-\tau_{t-1}}{1-\bar{\tau}}\right)^{\rho_{\tau}} \left[\left(\frac{L_t}{L}\right)^{\alpha_t} \left(\frac{spr_t}{spr}\right)^{\alpha_{spr}} \right]^{1-\rho_{\tau}} \exp(\varepsilon_t^{\tau}).$$

with parameters $\rho_{\tau} \in [0, 1]$, $\alpha_l \leq 0$, $\alpha_{spr} \geq 0.^2$

¹In Chile, the CB pays a small interest of 50% of monthly inflation. As the CB has not used this interest rate as an active policy tool, we set $R_t^{RR} = 1$.

²The RR ratio is 9.0% for demand deposits and 3.6% for time deposits, so we set $\bar{\tau} = 6.3\%$. The CB has statutory authority to increase these percentages to as much as 40% for demand deposits and as much as 20% for time deposits.

García-Cicco, Kirchner & Justel

May 2014

Simulated dynamics under different policies • Return

Impulse responses to a shock to $\sigma_{\omega,t}$, baseline monetary policy and policy with feedbacks on required reserves ($\Delta \log$ from ss \times 100, quarterly basis).

May 2014 13 / 7