Macro-prudential Policies in a Commodity Exporting Economy

Andrés González1 Franz Hamann2 Diego Rodríguez2

1Department of Economics
Universidad de los Andes

2Gerencia Técnica
Banco de la República

BIS CCA Research Network Conference, 2014
Outline

Motivation

Event-study analysis
 Oil price shock
 Event analysis

The model
 Key elements
 Experiment: unexpected oil price reversal
Motivation

- Small, open and commodity exporting economies are subject to large foreign shocks, like commodity prices or international interest rates.
Motivation

- Small, open and commodity exporting economies are subject to large foreign shocks, like commodity prices or international interest rates.

- In good times risk premia shrinks, credit booms, economic activity picks up and the real exchange rate appreciates.
Motivation

- Small, open and commodity exporting economies are subject to large foreign shocks, like commodity prices or international interest rates.

- In good times risk premia shrinks, credit booms, economic activity picks up and the real exchange rate appreciates.

- Not much is known about how monetary and macroprudential policies cope with foreign shocks in a commodity exporting economy.
Motivation

- Small, open and commodity exporting economies are subject to large foreign shocks, like commodity prices or international interest rates.

- In good times risk premia shrinks, credit booms, economic activity picks up and the real exchange rate appreciates.

- Not much is known about how monetary and macroprudential policies cope with foreign shocks in a commodity exporting economy.

- We estimate a model to bring it into a policy environment. We use the model to assess the benefits and the costs of conventional and unconventional policy instruments in the face of foreign shocks.
Outline

Motivation

Event-study analysis
 Oil price shock
 Event analysis

The model
 Key elements
 Experiment: unexpected oil price reversal
Large increases in oil prices

Oil shock \equiv the maximum value of the oil price during the last 36 months. It occurs when the oil price change is larger than two std. deviations, Hamilton (2003).
Outline

Motivation

Event-study analysis
 Oil price shock
 Event analysis

The model
 Key elements
 Experiment: unexpected oil price reversal
Macro variables around oil price shocks

González et al. (2014) Macro-prudential policies
Outline

Motivation

Event-study analysis
 Oil price shock
 Event analysis

The model
 Key elements
 Experiment: unexpected oil price reversal
Key elements of the model

- Small open economy DSGE with three sectors: tradable, non-tradable and oil exporting sector
Key elements of the model

- Small open economy DSGE with three sectors: tradable, non-tradable and oil exporting sector
- The oil sector oil does not use domestic labor or capital for production, but generates large foreign income flows.
Key elements of the model

- Small open economy DSGE with three sectors: tradable, non-tradable and oil exporting sector
- The oil sector oil does not use domestic labor or capital for production, but generates large foreign income flows.
- Sticky nominal prices in NT sector, flexible prices in T sector.
Key elements of the model

- Small open economy DSGE with three sectors: tradable, non-tradable and oil exporting sector
- The oil sector oil does not use domestic labor or capital for production, but generates large foreign income flows.
- Sticky nominal prices in NT sector, flexible prices in T sector.
- Capital is specific to both T and NT sectors, labor can move freely between sectors.
Key elements of the model

- Small open economy DSGE with three sectors: tradable, non-tradable and oil exporting sector
- The oil sector oil does not use domestic labor or capital for production, but generates large foreign income flows.
- Sticky nominal prices in NT sector, flexible prices in T sector.
- Capital is specific to both T and NT sectors, labor can move freely between sectors.
- Key: financial accelerator (BGG) in both sectors where net worth is influenced by valuation effects.
Key 1: Financial accelerator
tradable and nontradable ($j = N, T$)

- Perfectly competitive banks make commercial loans to entrepreneurs, b_t^j, by taking deposits from households, d_t, and borrowing from international financial markets, b_t^*.

González et al. (2014) Macro-prudential policies BIS-CCA 2014
Key 1: Financial accelerator
tradable and nontradable \((j = N, T)\)

- Perfectly competitive banks make commercial loans to entrepreneurs, \(b^j_t\), by taking deposits from households, \(d_t\), and borrowing from international financial markets, \(b^*_t\).

- Financial intermediation subject to frictions (CSV problem) on the side of the asset side of the banks. Thus, spreads depend on firms’ net worth, \(n^j_t\) and the value of capital, \(p^k_t k^j_t\).

\[
\mathbb{E}_t \left[r_{t+1}^{k^j_t} \right] = \left(\frac{n^j_t}{p^k_t k^j_t} \right)^{-v^j_t} (1 + r_t)(rp_t)
\]

We define a “regulation premium”, \(rp_t\), as any policy that increases credit costs.
Key 1: Financial accelerator
tradable and nontradable ($j = N, T$)

- Perfectly competitive banks make commercial loans to entrepreneurs, b_t^j, by taking deposits from households, d_t, and borrowing from international financial markets, b_t^*.
- Financial intermediation subject to frictions (CSV problem) on the side of the asset side of the banks. Thus, spreads depend on firms’ net worth, n_t^j and the value of capital, $p_t^{kj} k_t^j$.

\[
\mathbb{E}_t \left[r_{t+1}^{kj} \right] = \left(\frac{n_t^j}{p_t^{kj} k_t^j} \right)^{-v_t^j} (1 + r_t) (r p_t)
\]

- We define a “regulation premium”, $r p_t$, as any policy that increases credit costs.
Key 2: Conventional and unconventional tools

- Monetary policy rule: reacts to deviations of total inflation relative to the target $\overline{\pi}$

$$i_t = i_t^{\rho_i} \left(i \left(\frac{\pi_t}{\overline{\pi}} \right)^{\varphi_\pi} \right) \exp (\varepsilon_t^\mu)$$
Key 2: Conventional and unconventional tools

- Monetary policy rule: reacts to deviations of total inflation relative to the target $\bar{\pi}$
 \[i_t = i_{t-1}^\rho \left(\bar{i} \left(\frac{\pi_t}{\bar{\pi}} \right)^{\varphi_{\pi}} \right) \exp \left(\varepsilon_t^\mu \right) \]

- Regulation premium rule: reacts to credit deviations from its long-run value
 \[r_{pt} = \exp \left(\mu_{rp} \left(\frac{c_{rt}}{c_r} - 1 \right) \right) \]
Key 3: Oil production and country risk

- Changes in oil revenues are ultimately transferred to households, relaxing their budgets. In addition, oil affects the country risk premium:

\[
(1 + i_t^*) = (1 + \bar{r}^*)(1 + \pi_t^*) Z_t^* \frac{\exp \left(\nu_{b} \left(\frac{q_t b_t^*}{\text{GDP}_t} - \bar{b}^* \right) \right)}{\exp \left(\nu_{oil} \left(oil_t - \bar{oil} \right) \right)}
\]

- The value of oil activities is exogenous:

\[
oil_t = \rho_{z_{oil}} oil_{t-1} + (1 - \rho_{z_{oil}}) \log(\bar{oil}) + \epsilon_{oil}^t
\]
Outline

Motivation

Event-study analysis
 Oil price shock
 Event analysis

The model
 Key elements
 Experiment: unexpected oil price reversal

González et al. (2014) Macro-prudential policies BIS-CCA 2014
Unexpected oil price reversal
Conventional policy response to persistent oil shock

\(\pi_{ct} \)

Total inflation (\(\pi_{ct} \))

Nominal interest rate (\(i_t \))

RER (\(q_t \))

 Tradable Output (\(y^T_t \))

Non Tradable Output (\(y^N_t \))

Tradable Credit (\(b^T_t \))

Non Tradable Credit (\(b^N_t \))

González et al. (2014) Macro-prudential policies BIS-CCA 2014 15 / 17
Conventional policy response to unexpected oil price reversal

González et al. (2014)
Conventional policy response to unexpected oil price reversal

González et al. (2014) Macro-prudential policies

persistent reversal macro-prudential