Foreign Exchange Intervention and Monetary Policy Design: A Market Microstructure Analysis
Carlos Montoro and Marco Ortiz

Discussion: Santiago, 26 April 2013
by Paolo Vitale

Ud’A
Contribution: Mix a GE approach with a market microstructure component to analyze FX intervention and monetary policy:

- Within a DSGE model for a small open economy with nominal rigidities;
- FX transactions are completed via risk-averse dealers;
- the CB follows a Taylor rule and undertakes FX intervention to either lean against the wind or reduce exchange rate volatility;
- heterogeneously informed agents apply infinite regression.
Contribution: Mix a GE approach with a market microstructure component to analyze FX intervention and monetary policy:

- Within a DSGE model for a small open economy with nominal rigidities;
- FX transactions are completed via risk-averse dealers;
- the CB follows a Taylor rule and undertakes FX intervention to either lean against the wind or reduce exchange rate volatility;
- heterogeneously informed agents apply infinite regression.
Contribution: Mix a **GE** approach with a **market microstructure** component to analyze FX intervention and monetary policy:

- Within a **DSGE** model for a small open economy with nominal rigidities;
- FX transactions are completed via risk-averse dealers;
- the **CB** follows a Taylor rule and undertakes FX intervention to either lean against the wind or reduce exchange rate volatility;
- heterogeneously informed agents apply infinite regression.
Overview

Contribution: Mix a GE approach with a market microstructure component to analyze FX intervention and monetary policy:

- Within a DSGE model for a small open economy with nominal rigidities;
- FX transactions are completed via risk-averse dealers;
- the CB follows a Taylor rule and undertakes FX intervention to either lean against the wind or reduce exchange rate volatility;
- heterogeneously informed agents apply infinite regression.
Contribution: Mix a GE approach with a market microstructure component to analyze FX intervention and monetary policy:

- Within a DSGE model for a small open economy with nominal rigidities;
- FX transactions are completed via risk-averse dealers;
- the CB follows a Taylor rule and undertakes FX intervention to either lean against the wind or reduce exchange rate volatility;
- heterogeneously informed agents apply infinite regression.
Overview

Comments:

★ Paper very interesting (mixing a GE approach with a market microstructure component is unprecedented and very ambitious)

Suggestions:

★ Welfare analysis is possible within a GE formulation;
★ The GE formulation allows for normative analysis;
★ FX intervention and monetary policy can be coordinated;
★ FX intervention plays a signalling role;
★ Homogeneous information simplifies analysis and magnifies the role of central bank;
★ The trade account makes dynamics and welfare analysis richer.
Overview

Comments:

★ Paper very interesting (mixing a GE approach with a market microstructure component is *unprecedented and very ambitious*)

Suggestions:

★ Welfare analysis is possible within a GE formulation;
★ The GE formulation allows for normative analysis;
★ FX intervention and monetary policy can be coordinated;
★ FX intervention plays a signalling role;
★ Homogeneous information simplifies analysis and magnifies the role of central bank;
★ The trade account makes dynamics and welfare analysis richer.
Overview

Comments:

★ Paper very interesting (mixing a GE approach with a market microstructure component is *unprecedented and very ambitious*).

Suggestions:

★ Welfare analysis is possible within a GE formulation;
★ The GE formulation allows for normative analysis;
★ FX intervention and monetary policy can be coordinated;
★ FX intervention plays a signalling role;
★ Homogeneous information simplifies analysis and magnifies the role of central bank;
★ The trade account makes dynamics and welfare analysis richer.
Overview

- Comments:
 - Paper very interesting (mixing a GE approach with a market microstructure component is *unprecedented and very ambitious*).

- Suggestions:
 - Welfare analysis is possible within a GE formulation;
 - The GE formulation allows for *normative analysis*;
 - FX intervention and monetary policy can be *coordinated*;
 - FX intervention plays a signalling role;
 - Homogeneous information simplifies analysis and magnifies the role of central bank;
 - The trade account makes dynamics and welfare analysis richer.
Overview

Comments:

- Paper very interesting (mixing a GE approach with a market microstructure component is *unprecedented and very ambitious*)

Suggestions:

- Welfare analysis is possible within a GE formulation;
- The GE formulation allows for *normative analysis*;
- FX intervention and monetary policy can be *coordinated*;
- FX intervention plays a *signalling role*;
- Homogeneous information simplifies analysis and magnifies the role of central bank;
- The trade account makes dynamics and welfare analysis richer.
Comments:

★ Paper very interesting (mixing a GE approach with a market microstructure component is *unprecedented and very ambitious*)

Suggestions:

★ Welfare analysis is possible within a GE formulation;
★ The GE formulation allows for *normative analysis*;
★ FX intervention and monetary policy can be *coordinated*;
★ FX intervention plays a *signalling role*;
★ Homogeneous information simplifies analysis and magnifies the role of central bank;
★ The trade account makes dynamics and welfare analysis richer.

Paolo Vitale
BIS CCA Research Network Conference
Overview

Comments:

★ Paper very interesting (mixing a GE approach with a market microstructure component is unprecedented and very ambitious)

Suggestions:

★ Welfare analysis is possible within a GE formulation;
★ The GE formulation allows for normative analysis;
★ FX intervention and monetary policy can be coordinated;
★ FX intervention plays a signalling role;
★ Homogeneous information simplifies analysis and magnifies the role of central bank;
★ The trade account makes dynamics and welfare analysis richer.
Comments:

- Paper very interesting (mixing a GE approach with a market microstructure component is *unprecedented and very ambitious*).

Suggestions:

- Welfare analysis is possible within a GE formulation;
- The GE formulation allows for *normative analysis*;
- FX intervention and monetary policy can be *coordinated*;
- FX intervention plays a *signalling role*;
- *Homogeneous information* simplifies analysis and magnifies the role of central bank;
- The *trade account* makes dynamics and welfare analysis richer.
Comments:
- Paper very interesting (mixing a GE approach with a market microstructure component is *unprecedented and very ambitious*).

Suggestions:
- Welfare analysis is possible within a GE formulation;
- The GE formulation allows for *normative analysis*;
- FX intervention and monetary policy can be *coordinated*;
- FX intervention plays a *signalling role*;
- Homogeneous information simplifies analysis and magnifies the role of central bank;
- The *trade account* makes *dynamics and welfare analysis* richer.
Research on FX intervention

- Dominguez and Frankel (1993b, 1993c) show that FX intervention affects exchange rate expectations.

- Dominguez and Frankel (1993b) show that FX intervention affects FX risk-premia.

Research on FX intervention

- Dominguez and Frankel (1993b, 1993c) show that FX intervention affects exchange rate expectations.

- Dominguez and Frankel (1993b) show that FX intervention affects FX risk-premia.

Research on FX intervention

* Dominguez and Frankel (1993b, 1993c) show that FX intervention affects exchange rate expectations.

* Dominguez and Frankel (1993b) show that FX intervention affects FX risk-premia.

Research on FX intervention

- Dominguez and Frankel (1993b, 1993c) show that FX intervention affects exchange rate expectations.

- Dominguez and Frankel (1993b) show that FX intervention affects FX risk-premia.

Research on FX intervention

- Dominguez and Frankel (1993b, 1993c) show that FX intervention affects exchange rate expectations.

- Dominguez and Frankel (1993b) show that FX intervention affects FX risk-premia.

Research on FX intervention

- Dominguez and Frankel (1993b, 1993c) show that FX intervention affects exchange rate expectations.

- Dominguez and Frankel (1993b) show that FX intervention affects FX risk-premia.

Research on **FX market microstructure**

- Evans and Lyons (2002), Payne (2003), Berger et al. (2005), Biønnes and Rime (2005), Froot and Ramadorai (2005) show **large, persistent and significant impact** of order flow on returns.
- Evans and Lyons (2008) show that customer order flow **predicts** FX fundamentals.
- Breedon and Vitale (2010) show that order flow impacts FX returns via both portfolio-balance and information effects.
Research on FX market microstructure

- Evans and Lyons (2002), Payne (2003), Berger et al. (2005), Biønnes and Rime (2005), Froot and Ramadorai (2005) show large, persistent and significant impact of order flow on returns.
- Evans and Lyons (2008) show that customer order flow predicts FX fundamentals.
- Breedon and Vitale (2010) show that order flow impacts FX returns via both portfolio-balance and information effects.
Research on FX market microstructure

- Evans and Lyons (2002), Payne (2003), Berger et al. (2005), Biønnes and Rime (2005), Froot and Ramadorai (2005) show large, persistent and significant impact of order flow on returns.
- Evans and Lyons (2008) show that customer order flow predicts FX fundamentals.
- Breedon and Vitale (2010) show that order flow impacts FX returns via both portfolio-balance and information effects.
Research on **FX market microstructure**

- Evans and Lyons (2002), Payne (2003), Berger et al. (2005), Biønnes and Rime (2005), Froot and Ramadorai (2005) show *large, persistent and significant impact* of order flow on returns.

- Evans and Lyons (2008) show that customer order flow *predicts* FX fundamentals.

- Breedon and Vitale (2010) show that order flow impacts FX returns via both *portfolio-balance and information* effects.
Research on FX market microstructure

- Evans and Lyons (2002), Payne (2003), Berger et al. (2005), Biønnes and Rime (2005), Froot and Ramadorai (2005) show large, persistent and significant impact of order flow on returns.
- Evans and Lyons (2008) show that customer order flow predicts FX fundamentals.
- Breedon and Vitale (2010) show that order flow impacts FX returns via both portfolio-balance and information effects.
Literature Background: Theory

- **FX market microstructure**

- **FX intervention**

- **Comment**: What’s missing? A GE formulation!
Overview

Background

A GE model of FX Intervention

Comments and Suggestions

Literature Background: Theory

- FX market microstructure

- FX intervention

- Comment: What’s missing? A GE formulation!

Paolo Vitale
BIS CCA Research Network Conference
Literature Background: Theory

- **FX market microstructure**

- **FX intervention**

- **Comment**: What’s missing? A GE formulation!
Overview
Background
A GE model of FX Intervention
Comments and Suggestions

Literature Background: Theory

- **FX market microstructure**

- **FX intervention**

- **Comment**: What’s missing? A GE formulation!
FX market microstructure

FX intervention

Comment: What’s missing? A GE formulation!
Literature Background: Theory

- **FX market microstructure**

- **FX intervention**

Comment: What’s missing? A GE formulation!
Literature Background: Theory

- **FX market microstructure**

- **FX intervention**

- **Comment**: What’s missing? A GE formulation!
Literature Background: Theory

- **FX market microstructure**

- **FX intervention**
 - Vitale (2011): model of *signalling* and *portfolio-balance channels*.
 - Vitale (2003): model of *FX intervention* and *monetary policy*.

- **Comment**: What’s missing? A GE formulation!
Montoro and Ortiz’s Formulation

- **General Equilibrium:**
 - Households’ preferences over leisure and consumption of domestic and foreign goods;
 - Labor is the input of competitive intermediate goods firms;
 - Monopolistic competitive firms produce domestic and foreign final goods.

- **FX market microstructure:**
 - Risk-averse dealers absorb capital inflows from investors and central bank;
 - Market clearing yields modified UIP:

 \[E_t[\bar{s}_{t+1}] = (i_t - i^*_t) + \gamma \sigma^2 (\bar{w}_t^d + \bar{w}_t^{cb}). \]
Montoro and Ortiz’s Formulation

- **General Equilibrium:**
 - households’ preferences over leisure and consumption of domestic and foreign goods;
 - labor is the input of competitive intermediate goods firms;
 - monopolistic competitive firms produce domestic and foreign final goods.

- **FX market microstructure:**
 - risk-averse dealers absorb capital inflows from investors and central bank;
 - market clearing yields modified UIP:

\[
E_t[s_{t+1}] = (i_t - i^*_t) + \gamma \sigma^2 (\bar{w}^*_t + \bar{w}^*_t cb).
\]
Montoro and Ortiz’s Formulation

- General Equilibrium:
 - households’ preferences over leisure and consumption of domestic and foreign goods;
 - labor is the input of competitive intermediate goods firms;
 - monopolistic competitive firms produce domestic and foreign final goods.

- FX market microstructure:
 - risk-averse dealers absorb capital inflows from investors and central bank;
 - market clearing yields modified UIP:

\[E_t[\tilde{s}_{t+1}] = (i_t - i^*_t) + \gamma \sigma^2 (\tilde{w}^*_t + \tilde{w}^*_c + \tilde{w}^*_b) \]
Montoro and Ortiz’s Formulation

- **General Equilibrium:**
 - households’ preferences over leisure and consumption of domestic and foreign goods;
 - labor is the input of competitive intermediate goods firms;
 - monopolistic competitive firms produce domestic and foreign final goods.

- **FX market microstructure:**
 - risk-averse dealers absorb capital inflows from investors and central bank;
 - market clearing yields modified UIP:
 \[E_t[\tilde{s}_{t+1}] = (i_t - i^*_t) + \gamma \sigma^2 (\tilde{w}_t + \tilde{w}^*_{t;cb}) . \]
Montoro and Ortiz’s Formulation

- **General Equilibrium:**
 - households’ preferences over leisure and consumption of domestic and foreign goods;
 - labor is the input of competitive intermediate goods firms;
 - monopolistic competitive firms produce domestic and foreign final goods.

- **FX market microstructure:**
 - risk-averse dealers absorb capital inflows from investors and central bank;
 - market clearing yields modified UIP:

\[
\bar{E}_t[\tilde{s}_{t+1}] = (i_t - i^*_t) + \gamma\sigma^2 (\bar{w}_t^* + \bar{w}^*_t,cb).
\]
Montoro and Ortiz’s Formulation

- **General Equilibrium:**
 - households’ preferences over leisure and consumption of domestic and foreign goods;
 - labor is the input of competitive intermediate goods firms;
 - monopolistic competitive firms produce domestic and foreign final goods.

- **FX market microstructure:**
 - risk-averse dealers absorb capital inflows from investors and central bank;
 - market clearing yields modified UIP:

\[
E_t[\bar{s}_{t+1}] = (i_t - i_t^*) + \gamma \sigma^2 (\bar{w}_t^* + \bar{w}_t^{*,cb}).
\]
Montoro and Ortiz’s Formulation

- **General Equilibrium:**
 - households’ preferences over leisure and consumption of domestic and foreign goods;
 - labor is the input of competitive intermediate goods firms;
 - monopolistic competitive firms produce domestic and foreign final goods.

- **FX market microstructure:**
 - risk-averse dealers absorb capital inflows from investors and central bank;
 - market clearing yields modified UIP:

\[
\bar{E}_t[\tilde{s}_{t+1}] = (i_t - i_t^*) + \gamma \sigma^2 (\tilde{w}_t^* + \tilde{w}_t^{*,cb}).
\]
Monetary Policy and FX Intervention

- Monetary policy follows simple **Taylor rule**: \(i_t = f(\Pi_t) + \eta_t \).

- As FX intervention is sterilized, monetary policy is autonomous.

- FX intervention can be:
 - discretionary: \(w_t^{*\Delta} = \epsilon_t \);
 - pre-announced: \(w_t^{*\Delta} = \phi_\Delta \Delta s_t + \epsilon_t \) or \(w_t^{*\Delta} = \phi_{rer\Delta} s_t + \epsilon_t \).

- Pre-announced FX intervention affects spot rate expectations, even if it does not convey information on FX fundamentals.
Monetary policy follows simple Taylor rule: \(i_t = f(\Pi_t) + \eta_t \).

- As FX intervention is sterilized, monetary policy is autonomous.

FX intervention can be:

- discretionary: \(w_t^{\text{db}} = \epsilon_t \);
- pre-announced: \(w_t^{\text{db}} = \phi \Delta s_t + \epsilon_t \) or \(w_t^{\text{db}} = \phi \text{rer}_t + \epsilon_t \).

Pre-announced FX intervention affects spot rate expectations, even if it does not convey information on FX fundamentals.
Monetary Policy and FX Intervention

- Monetary policy follows simple **Taylor rule**: \(i_t = f(\Pi_t) + \eta_t \).
 - As FX intervention is sterilized, monetary policy is autonomous.

- FX intervention can be:
 - discretionary: \(w_t^{*,cb} = \epsilon_t \);
 - pre-announced: \(w_t^{*,cb} = \phi \Delta s_t + \epsilon_t \), or \(w_t^{*,cb} = \phi \text{rer} + \epsilon_t \).
 - Pre-announced FX intervention affects spot rate expectations, even if it does not convey information on FX fundamentals.
Monetary Policy and FX Intervention

- Monetary policy follows simple Taylor rule: \(i_t = f(\Pi_t) + \eta_t \).
 - As FX intervention is sterilized, monetary policy is autonomous.

- FX intervention can be:
 - discretionary: \(w_t^{*,cb} = \epsilon_t \);
 - pre-announced: \(w_t^{*,cb} = \phi \Delta \Delta s_t + \epsilon_t \), or \(w_t^{*,cb} = \phi_{rer} + \epsilon_t \).
 - Pre-announced FX intervention affects spot rate expectations, even if it does not convey information on FX fundamentals.
Monetary Policy and FX Intervention

- Monetary policy follows simple Taylor rule: \(i_t = f(\Pi_t) + \eta_t \).
 - As FX intervention is sterilized, monetary policy is autonomous.

- FX intervention can be:
 - discretionary: \(w_{t,cb}^* = \epsilon_t \);
 - pre-announced: \(w_{t,cb}^* = \phi_{\Delta} \Delta s_t + \epsilon_t \), or \(w_{t,cb}^* = \phi_{\text{rer}} \text{rer}_t + \epsilon_t \).
 - Pre-announced FX intervention affects spot rate expectations, even if it does not convey information on FX fundamentals.
Monetary Policy and FX Intervention

- Monetary policy follows simple Taylor rule: $i_t = f(\Pi_t) + \eta_t$.
 - As FX intervention is sterilized, monetary policy is autonomous.

- FX intervention can be:
 - discretionary: $w_{t,cb}^* = \epsilon_t$;
 - pre-announced: $w_{t,cb}^* = \phi_\Delta \Delta s_t + \epsilon_t$, or $w_{t,cb}^* = \phi_{rer} rer_t + \epsilon_t$.
 - Pre-announced FX intervention affects spot rate expectations, even if it does not convey information on FX fundamentals.
The **GE formulation** allows to see the impact of monetary policy and FX intervention on macro-variables.

- FX intervention *stabilizes* the economy and *reduces* volatility.
- The impact of discretionary FX intervention is larger than that of pre-announced FX intervention.
- FX intervention *reduces* the impact of monetary policy.
- FX intervention *reduces* the impact of capital inflows.
- The impact of capital inflows is smaller with heterogeneously informed than with fully informed dealers.
The **GE formulation** allows to see the impact of monetary policy and FX intervention on macro-variables.

- FX intervention *stabilizes* the economy and *reduces* volatility.
- The impact of discretionary FX intervention is larger than that of pre-announced FX intervention.
- FX intervention *reduces* the impact of monetary policy.
- FX intervention *reduces* the impact of capital inflows.
- The impact of capital inflows is smaller with heterogeneously informed than with fully informed dealers.
Main Results

- The **GE formulation** allows to see the impact of monetary policy and FX intervention on macro-variables.

- FX intervention *stabilizes* the economy and *reduces* volatility.

- The impact of **discretionary** FX intervention is larger than that of **pre-announced** FX intervention.

- FX intervention *reduces* the impact of monetary policy.

- FX intervention *reduces* the impact of capital inflows.

- The impact of capital inflows is smaller with heterogeneously informed than with fully informed dealers.
Main Results

- The **GE formulation** allows to see the impact of monetary policy and FX intervention on macro-variables.

- FX intervention *stabilizes* the economy and *reduces* volatility.

- The impact of *discretionary* FX intervention is larger than that of *pre-announced* FX intervention.

- FX intervention *reduces* the impact of monetary policy.

- FX intervention *reduces* the impact of capital inflows.

- The impact of capital inflows is smaller with *heterogeneously informed* than with *fully informed* dealers.
Main Results

- The GE formulation allows to see the impact of monetary policy and FX intervention on macro-variables.

- FX intervention stabilizes the economy and reduces volatility.

- The impact of discretionary FX intervention is larger than that of pre-announced FX intervention.

- FX intervention reduces the impact of monetary policy.

- FX intervention reduces the impact of capital inflows.

- The impact of capital inflows is smaller with heterogeneously informed than with fully informed dealers.
Main Results

- The GE formulation allows to see the impact of monetary policy and FX intervention on macro-variables.

- FX intervention stabilizes the economy and reduces volatility.

- The impact of discretionary FX intervention is larger than that of pre-announced FX intervention.

- FX intervention reduces the impact of monetary policy.

- FX intervention reduces the impact of capital inflows.

- The impact of capital inflows is smaller with heterogeneously informed than with fully informed dealers.
Overview

Background

A GE model of FX Intervention

Comments and Suggestions

Comments

• Paper shows plenty of results: some need economic intuition.

• Show moments of macro-variables at different leads.

• Consider sensitiveness analysis to parametrization. Could choose calibration specific to Latin-American countries.

• Compare the impact of FX intervention on existence of equilibria (Figure 2) with Vitale (2011).

• Because of complexity, consider only full information.
Paper shows plenty of results: some need economic intuition.

Show moments of macro-variables at different leads.

Consider sensitivity analysis to parametrization. Could choose calibration specific to Latin-American countries.

Compare the impact of FX intervention on existence of equilibria (Figure 2) with Vitale (2011).

Because of complexity, consider only full information.
Paper shows plenty of results: some need economic intuition.

Show moments of macro-variables at different leads.

Consider sensitiveness analysis to parametrization. Could choose calibration specific to Latin-American countries.

Compare the impact of FX intervention on existence of equilibria (Figure 2) with Vitale (2011).

Because of complexity, consider only full information.
Comments

- Paper shows plenty of results: some need economic intuition.
- Show moments of macro-variables at different leads.
- Consider sensitiveness analysis to parametrization. Could choose calibration specific to Latin-American countries.
- Compare the impact of FX intervention on existence of equilibria (Figure 2) with Vitale (2011).
- Because of complexity, consider only full information.
Paper shows plenty of results: some need economic intuition.

Show moments of macro-variables at different leads.

Consider sensitiveness analysis to parametrization. Could choose calibration specific to Latin-American countries.

Compare the impact of FX intervention on existence of equilibria (Figure 2) with Vitale (2011).

Because of complexity, consider only full information.
The **GE formulation** allows for **welfare analysis**.

- Numerical methods could permit:
 - normative analysis;
 - analysis of coordinated FX intervention and monetary policy;
- FX intervention could signal monetary shocks, $w^\text{CH}_t = \varphi w_{t+1}$, and improve welfare.
The GE formulation allows for welfare analysis.

- Numerical methods could permit:
 - normative analysis; and
 - analysis of coordinated FX intervention and monetary policy.

- FX intervention could signal monetary shocks, \(w_t^{*,cb} = \phi_t l_{t+1} \), and improve welfare.
The GE formulation allows for welfare analysis.

- Numerical methods could permit:
 - normative analysis; and
 - analysis of coordinated FX intervention and monetary policy.

- FX intervention could signal monetary shocks, $w^*_t, cb = \phi_{t+1}$, and improve welfare.
The **GE formulation** allows for welfare analysis.

- Numerical methods could permit:
 - normative analysis; and
 - analysis of *coordinated* FX intervention and monetary policy.

- FX intervention could signal monetary shocks, $w_t^{*,cb} = \phi_\eta \eta_{t+1}$, and improve welfare.
The **GE formulation** allows for **welfare analysis**.

- Numerical methods could permit:
 - normative analysis; and
 - analysis of *coordinated* FX intervention and monetary policy.

- FX intervention could signal monetary shocks, $w_t^{*,cb} = \phi_\eta \eta_{t+1}$, and improve welfare.
The trade account makes dynamics and welfare analysis richer.

- In the FX market customers’ orders correspond to capital and commercial flows, but in the model:

 - Capital flows are exogenous.
 - Commercial flows are absent.

 Commercial flows stem from the trade account balance:

 \[B_t - B_{t-1} = P_{t-1}^d Y_t - C_t + \left(1 + \frac{r_t}{100} - 1 \right) B_{t-1} + \text{REST}_t. \]

- An important interaction between the macro-economy and the FX market is shut down.

- While analytically challenging, investigating it could be fruitful.
Comments

The **trade account** makes **dynamics and welfare analysis** richer.

- In the FX market customers’ orders correspond to **capital and commercial flows**, but in the model:
 - capital flows are **exogenous**
 - and commercial flows are **absent**.

- Commercial flows stem from the the trade account balance:
 \[
 \frac{B_t}{P_t} - \frac{B_{t-1}}{P_{t-1}} = \frac{p_{f}^{\text{def}}}{P_t} Y_t - C_t + \left(\frac{1 + r_{t-1}}{\Pi_t} - 1 \right) \frac{B_{t-1}}{P_{t-1}} + \text{REST}_t.
 \]

- An important interaction between the macro-economy and the FX market is shut down.

- While analytically challenging, investigating it could be fruitful.
The trade account makes dynamics and welfare analysis richer.

- In the FX market customers’ orders correspond to capital and commercial flows, but in the model
 - capital flows are *exogenous*
 - and commercial flows are *absent*.

- Commercial flows stem from the trade account balance:
 \[
 \frac{B_t}{P_t} - \frac{B_{t-1}}{P_{t-1}} = \frac{P_t^{\text{def}}}{P_t} Y_t - C_t + \left(\frac{1 + i_{t-1}}{\Pi_t} - 1 \right) \frac{B_{t-1}}{P_{t-1}} + \text{REST}_t.
 \]

- An important interaction between the macro-economy and the FX market is shut down.

- While analytically challenging, investigating it could be fruitful.
Overview
Background
A GE model of FX Intervention
Comments and Suggestions

Comments

The **trade account** makes **dynamics and welfare analysis** richer.

- In the FX market customers’ orders correspond to **capital and commercial flows**, but in the model:
 - capital flows are **exogenous**
 - and commercial flows are **absent**.

- Commercial flows stem from the the trade account balance:

 \[
 \frac{B_t}{P_t} - \frac{B_{t-1}}{P_{t-1}} = \frac{P_t^{\text{def}}}{P_t} Y_t - C_t + \left(\frac{1 + i_{t-1}}{\Pi_t} - 1 \right) \frac{B_{t-1}}{P_{t-1}} + \text{REST}_t.
 \]

- An important interaction between the macro-economy and the FX market is shut down.

- While analytically challenging, investigating it could be fruitful.
Comments

The **trade account** makes **dynamics and welfare analysis** richer.

- In the FX market customers’ orders correspond to **capital and commercial flows**, but in the model
 - capital flows are **exogenous**
 - and commercial flows are **absent**.

- **Commercial flows stem from the trade account balance:**

\[
\frac{\bar{B}_t}{P_t} - \frac{\bar{B}_{t-1}}{P_{t-1}} = \frac{P_t^{\text{def}}}{P_t} Y_t - C_t + \left(\frac{1 + i_{t-1}}{\Pi_t} - 1 \right) \frac{\bar{B}_{t-1}}{P_{t-1}} + \text{REST}_t.
\]

- An important interaction between the macro-economy and the FX market is shut down.

- While analytically challenging, investigating it could be fruitful.
The trade account makes dynamics and welfare analysis richer.

- In the FX market customers’ orders correspond to capital and commercial flows, but in the model:
 - capital flows are *exogenous*
 - and commercial flows are *absent*.

- Commercial flows stem from the trade account balance:
 \[
 \frac{\bar{B}_t}{P_t} - \frac{\bar{B}_{t-1}}{P_{t-1}} = \frac{P_t^{\text{def}}}{P_t} Y_t - C_t + \left(\frac{1 + i_{t-1}}{\Pi_t} - 1 \right) \frac{\bar{B}_{t-1}}{P_{t-1}} + \text{REST}_t.
 \]

- An important interaction between the macro-economy and the FX market is shut down.

- While analytically challenging, investigating it could be fruitful.
The trade account makes dynamics and welfare analysis richer.

- In the FX market customers’ orders correspond to capital and commercial flows, but in the model
 - capital flows are *exogenous*
 - and commercial flows are *absent*.

- Commercial flows stem from the trade account balance:
 \[
 \frac{\overline{B}_t - \overline{B}_{t-1}}{P_t/P_{t-1}} = \frac{P^\text{def}_t}{P_t} (Y_t - C_t) + \left(\frac{1 + i_{t-1}}{\Pi_t} - 1\right) \frac{\overline{B}_{t-1}}{P_{t-1}} + \text{REST}_t.
 \]

- An important interaction between the macro-economy and the FX market is shut down.

- While analytically challenging, investigating it could be fruitful.