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Abstract

In this paper we extend a New Keynesian open economy model to include risk-averse FX
dealers and FX intervention by the monetary authority. These ingredients generate deviations
from the uncovered interest parity (UIP) condition. More precisely, in this setup dealers’ port-
folio decisions endogenously add a time-variant risk premium element to the traditional UIP
that depends on FX intervention by the central bank and FX orders by foreign investors. We
analyse the effectiveness of different strategies of FX intervention (eg unanticipated operations
or via a preannounced rule) to affect the volatility of the exchange rate and the transmission
mechanism of the interest rate. Additionally, we extend the model to include information
heterogeneity in the FX market, in line with Bacchetta and van Wincoop (2006) and Vi-
tale (2011). Also, we solve the model extending the methodology proposed by Townsend
(1983) to solve dynamic stochastic general equilibrium (DSGE) models with heterogeneous
expectations.

Our findings are as follows: (i) FX intervention has a strong interaction with monetary
policy in general equilibrium; (ii) FX intervention rules can have stronger stabilisation power
than discretion in response to shocks because they exploit the expectations channel; (iii) there
are some trade-offs in the use of FX intervention: it can help isolate the economy from external
financial shocks, but it prevents some necessary adjustments of the exchange rate in response
to nominal and real external shocks; and (iv) in the context of the model with heterogeneous
information, FX intervention can help restore the connection between the exchange rate and
observed fundamentals.
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1 Introduction

IInterventions by central banks in FX markets have been common in many countries, and they

have become even more frequent in the most recent past, in both emerging market economies

and some advanced economies. These interventions have been particularly large during periods

of capital inflows, when central banks bought foreign currency to prevent an appreciation of the

domestic currency. Also, they have been recurrent during periods of financial stress and capital

outflows, when central banks used their reserves to prevent sharp depreciations of their currencies.

For instance, in Figure 1 we can see that during 2009–12 the amount of FX interventions as a

percentage of FX reserves minus gold was between 30% and 100% in some Latin American

countries, and considerably more than 100% in Switzerland. Also, these FX interventions were

sterilised in most cases, thus enabling central banks to keep short-term interest rates in line with

policy rates.

Given the scale of interventions in FX markets by some central banks, it should be important

for them to include this factor in their policy analysis frameworks. A variety of questions need

to be addressed, such as: How does sterilised intervention affect the transmission mechanism of

monetary policy?, Which channels are at work? Are there benefits to intervention rules? What

should be the optimal monetary policy design in the context of FX intervention? To analyse

these questions we need an adequate framework of exchange rate determination in macroeconomic

models.

There is substantial empirical evidence that traditional approaches of exchange rate deter-

mination (eg asset markets) fail to explain exchange rate movements in the short run (see eg

Meese and Rogoff (1983) and Frankel and Rose (1995)). This empirical evidence shows that most

exchange fluctuations at short- to medium-term horizons are related to order flows – the flow

of transactions between market participants – as in the microstructure approach presented by

Lyons (2001), and not to macroeconomic variables. However, in most of the models used for

monetary policy analysis, the exchange rate is closely linked to macroeconomic fundamentals,

as in the uncovered interest rate parity (UIP) condition. Such inconsistency between the model

and real exchange rate determination in practice could lead in some cases to incorrect policy pre-

scriptions, eg overestimation of the impact of fundamentals and corresponding underestimation

of the impact of news and beliefs in the exchange rate.

Bacchetta and van Wincoop (2006) provide an alternative framework to analyse exchange

rate determination. They introduce symmetric information dispersion about future macroeco-

nomic fundamentals in a dynamic rational expectations model to explain some stylised facts of
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Figure 1: Intervention in the foreign exchange market: 2009 - 20121

exchange rates. When introducing information heterogeneity their model can account for the

short-run disconnection between exchange rate fluctuations and observed fundamentals, while

both variables become closely related over longer horizons. In their model, exchange rates are

closely related to order flow, defined as the private information component of FX orders. In a

related work, Vitale (2011) extends the Bacchetta and van Wincoop (2006) model to analyse the

impact of FX intervention on FX markets. This model is useful to analyse how FX intervention

influences exchange rates via both a portfolio balance and a signalling channel.

In order to provide a framework for analysis of FX intervention together with monetary policy,

we extend a standard New Keynesian small open economy model including market microstructure

of exchange rate determination in the spirit of Bacchetta and van Wincoop (2006). Unlike them,

we present a fully dynamic stochastic general equilibrium model with nominal rigidities, where

we can analyse the interaction with interest rate policy and FX intervention. In this setup,

we introduce risk-averse FX dealers, which generates deviations from the UIP condition. More
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precisely, in this alternative setup, the portfolio decision of dealers adds a time-variant risk

premium element to the traditional UIP that depends on both FX intervention by the central

bank and FX orders from foreign investors.

In our model, central bank FX intervention affects exchange rate determination through two

channels: the portfolio balance effect and the expectations/signalling effect. In the former, a

sterilised intervention alters the value of the currency because it modifies the ratio between

domestic and foreign assets held by the private sector; and according to the latter, operations

in foreign exchange markets by the monetary authority may signal changes in future monetary

policy, affecting market expectations and hence the exchange rate. We further extend the model

by including information heterogeneity in the FX market, in line with Bacchetta and van Wincoop

(2006) and Vitale (2010).

Our findings show that in general equilibrium, FX intervention can have important impli-

cations for monetary policy. In some cases it can mute the monetary transmission mechanism

through exchange rates, reducing the impact on aggregate demand and prices, while in others

it can amplify the impact. Also, FX intervention rules can have stronger stabilisation power in

response to shocks because they exploit the expectations channel. We also show that there are

some trade-offs in the use of FX intervention. On the one hand, it can help isolate the economy

from external financial shocks, but on the other it prevents some necessary adjustments of the

exchange rate in response to nominal and real external shocks. Moreover, we show in our ex-

tended model with heterogeneous information that FX intervention can magnify the response of

exchange rates to unobservable capital flow shocks, but in the aggregate intervention can help

restore the connection with observed fundamentals.

On the technical side, as the rational expectations equilibrium depends on portfolio decisions

of FX dealers with heterogeneous expectations, which in turn depend on the conditional variance

of the depreciation rate, the solution strategy follows an approach in line with Townsend (1983)

and Bacchetta and van Wincoop (2006). That is, we solve a signal extraction problem of the

investors to calculate the average expected depreciation rate in the modified uncovered interest

parity condition with an endogenous risk premium, which feeds from the rational expectations

solution of the model.

Related to our paper, other recent work also models FX intervention in the context of a New

Keynesian model. For example, Benes et al (2013) analyse the performance of a wide range of

hybrid inflation targeting and managed exchange rate regimes in the presence of different external

shocks. They find that FX intervention can help insulate the economy against certain shocks,
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but it may also hinder some necessary exchange rate adjustments, for example in the presence

of terms-of-trade shocks. In a related work, Vargas et al (2013) show that, given imperfect asset

substitutability, sterilised FX intervention can have an effect on credit supply by changing the

balance sheet composition of commercial banks.

In the next section we introduce the model, with a special focus on the FX market. In

Section 3 we show results from the simulation of the model. In Section 4 we modify the model

from Section 2, taking into account information heterogeneity in the dealer market, and show

some additional results that complement Section 3. The last section concludes.

2 The model

The model starts from a small open economy with nominal rigidities, in line with the contributions

from Obstfeld and Rogoff (1995), Chari et al (2002), Gali and Monacelli (2005), Christiano et al

(2005) and Devereux et al (2006), among others. To maintain the concept of general equilibrium,

we start from a two-country model taking the size of one of these economies as close to zero, such

that the small (domestic) economy does not affect the large (foreign) economy.

In this setup, dealers in the small domestic economy operate the secondary bond market.

They receive customer orders for the sale of domestic bonds from households and for the sale of

foreign bonds from foreign investors and the central bank. Dealers invest each period in both

domestic and foreign bonds, maximising their portfolio returns. This is a cashless economy. The

monetary authority intervenes directly in the FX market, selling or purchasing foreign bonds in

exchange for domestic bonds. The central bank issues the domestic bonds and sets the nominal

interest rates paid by these assets. The central bank can control the interest rate regardless

of the FX intervention, that is, we assume the central bank can always perform fully sterilised

interventions. 1

We assume the frequency of decisions is the same between dealers and other economic agents.

Households consume final goods, supply labour to intermediate goods producers and save in do-

mestic bonds. Firms produce intermediate and final goods. Additionally, we include monopolistic

competition and nominal rigidities in the retail sector, price discrimination and price to market in

the export sector, and incomplete pass-through from the exchange rate to imported good prices –

1However, in practice sterilised interventions have limits. For example, the sale of foreign currency by the central
bank is limited by the level of foreign reserves. On the other hand, the sterilised purchase of foreign currency is
limited by the availability of instruments to sterilise those purchases (eg given by the by the demand for central
bank bonds or by the stock of treasury bills in the hands of the central bank). Also, limits to the financial losses
generated by FX intervention can represent a constraint for intervention itself.
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characteristics that are important to analyse the transmission mechanism of monetary policy in

a small open economy. We also consider as exogenous processes foreign variables such as output,

inflation, the interest rate and non-fundamental capital flows.

2.1 Dealers

In the domestic economy there is a continuum of dealers d in the interval d ∈ [0, 1] . Each dealer d

receives $d
t and $d,cb

t in domestic bond sale and purchase orders from households and the central

bank, and $d∗
t and $d∗,cb

t in foreign bond sale orders from foreign investors and the central bank,

respectively. These orders are exchanged among dealers, that is $d
t −$

d,cb
t +St

(
$d∗
t +$d∗,cb

t

)
=

Bd
t + StB

d∗
t , where Bd

t and Bd∗
t are the ex-post holdings of domestic and foreign bonds by

dealer d, respectively. Each dealer receive the same amount of orders from households, foreign

investors and the central bank. The exchange rate St is defined as the price of foreign currency in

terms of domestic currency, such that a decrease (increase) of St corresponds to an appreciation

(depreciation) of the domestic currency. At the end of the period, any profits -either positive or

negative- are transferred to the households.

Dealers are risk averse and short-sighted. They select an optimal portfolio allocation in order

to maximise the expected utility of their end-of-period returns, where their utility is given by

a CARA utility function. The one-period dealer’s horizon gives tractability and captures the

feature that FX dealers tend to unwind their FX exposure at the end of any trading period, as

explained by Vitale (2010). The problem of dealer d is

max−Edt e−γΩdt+1

where Edt is the expectation operator for dealer d based on the information available at time t, γ

is the coefficient of absolute risk aversion and Ωd
t+1 is total investment after returns, given by:

Ωd
t+1 = (1 + it)B

d
t + (1 + i∗t )St+1B

d∗
t

≈ (1 + it)
[
$d
t −$

d,cb
t + St

(
$d∗
t +$d∗,cb

t

)]
+ (i∗t − it + st+1 − st)Bd∗

t

where we have made use of the resource constraint of dealers, we have log-linearised the excess

of return on investing in foreign bonds and st = lnSt. Since the only non-predetermined variable

is st+1, assuming it is normal distributed with time-invariant variance, the first-order condition
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for the dealers is:2

0 = −γ
(
i∗t − it + Edt st+1 − st

)
+ γ2Bd∗

t σ
2

where σ2 = vart (∆st+1) is the conditional variance of the depreciation rate. Then, the demand

for foreign bonds by dealer d is given by the following portfolio condition:

Bd∗
t =

i∗t − it + Edt st+1 − st
γσ2

(2.1)

According to this expression, the demand for foreign bonds will be larger the higher its return,

the lower the risk aversion or the lower the volatility of the exchange rate.

2.1.1 FX market equilibrium

Foreign bond equilibrium in the domestic market should sum FX market orders from foreign

investors (capital inflows) and central bank FX intervention, that is:∫ 1

0
Bd∗
t dd =

∫ 1

0

(
$d∗
t +$d∗,cb

t

)
dd = $∗t +$∗,cbt .

Replacing the FX market equilibrium condition in the aggregate demand for foreign bonds

yields the following arbitrage condition:

Etst+1 − st = it − i∗t + γσ2($∗t +$∗,cbt ) (2.2)

where Etst+1 is the average rational expectation of the exchange rate next period across all deal-

ers. Note that Etst+1 = Etst+1, given that all dealers have access to the same set of information,

expected exchange rate depreciation would be the same as well (this assumption will be relaxed

in Section 4). Condition (2.2) determines the exchange rate, and differs from the traditional UIP

on both the expectation term and the endogenous risk premium component. According to (2.2),

an increase (decrease) in capital inflows or sales (purchases) of foreign bonds by the central bank

appreciates (depreciates) the exchange rate st, ceteris paribus the remaining variables. This effect

is larger, the more risk-averse dealers are (larger γ) or the more volatile the expected depreciation

rate is (larger σ2).3

Equation (2.2) is useful to understand both mechanisms through which FX intervention can

affect the exchange rate. The last term on the right hand side captures the portfolio-balance

2Conditions that are verified later as satisfied.
3Sterilised intervention implies that a sale (purchase) of foreign currency by the central bank is accompanied

by purchases (sales) of domestic bonds by the monetary authority, such that the domestic interest rates are in line
with the policy target rate.
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channel. Given that dealers are risk-averse and hold domestic and foreign assets to diversify

risk, FX intervention changes the composition of domestic and foreign asset held by the dealers.

This will be possible only if there is a change in the expected relative rate of returns of these

assets, which compensates for the change in the risk they bear. In other words, according to

the portfolio balance channel, a sale (purchase) of foreign bonds by the central bank augments

(reduces) the ratio between foreign and domestic assets held by dealers, inducing an appreciation

(depreciation) of the domestic currency because dealers require a greater (smaller) risk premium

to hold a larger (smaller) quantity of this currency.

The second mechanism at work is the expectations channel, also known as the signalling

channel. When central banks intervene in the FX markets they also signal future changes in

policy, which affect expectations as well. Therefore, changes in Etst+1 in the left hand side

caused by FX intervention will also have an effect on the spot exchange rate.

In an alternative model, Benes et al (2013) show that, in addition to a portfolio allocation

approach, a risk premium-adjusted UIP condition can be derived by including imperfect substi-

tutability between domestic and foreign assets.

2.2 Monetary authority

The central bank in the domestic economy intervenes in the FX market by selling/buying foreign

bonds to/from dealers in exchange for domestic bonds. Each period the central bank negotiates

directly with dealers, such that every dealer receives the same amount of sales/purchases of

foreign bonds from the central bank. Each period any dealer d receives a market order $d∗,cb
t

from the central bank, where $d∗,cb
t > 0

(
$d∗,cb
t < 0

)
when the central bank sells (purchases)

foreign bonds in exchange of domestic bonds. The total customer flow of foreign bonds received

by dealer d equals $d∗
t +$d∗,cb

t . We assume the central bank can always perform fully sterilised FX

interventions, therefore it maintains control over the interest rate regardless of the intervention.

Moreover, we further assume the central bank does not have to distribute profits/losses to the

households. That is, the monetary authority is not constrained by its balance sheet to perform

interventions in the FX market.4

4The balance sheet of the central bank is the following: StR
cb
t = Bcbt +NW cb

t , where Rcbt , Bcbt and NW cb
t are

the central bank’s reserves in foreign bonds, liabilities in domestic bonds and net worth, respectively. The first
two components evolve according to: Rcbt = (1 + i∗t )R

cb
t−1 −$∗,cb

t and Bcbt = (1 + it)B
cb
t−1 −$cb

t . Also, profits are

given by: PtΓ
cb
t =

[
St(1+i∗t )
St−1

− 1

]
St−1R

cb
t−1 − itB

cb
t−1 −

(
Stω

∗,cb
t − ωcbt

)
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2.2.1 FX intervention

The central bank can have three different strategies of FX intervention. First, it can perform

pure discretional intervention:

$∗cbt = εcb1t (2.3)

where the central bank intervenes via unanticipated or secret interventions. According to strategy

(2.3), FX intervention by the central bank is not anticipated.

We also assume the monetary authority can intervene by a pre-announced rule. As a second

case, the central bank can perform rule-based intervention taking into account the changes in the

exchange rate:

$∗cbt = φ∆s∆st + εcb2t (2.4)

According to this rule, when there are depreciation (appreciation) pressures on the domestic

currency, the central bank sells (purchases) foreign bonds to prevent the exchange rate from

fluctuating. φ∆s captures the intensity of the response of the FX intervention to pressures in the

FX market.

Finally, the monetary authority can take into account misalignments of the real exchange rate

as a benchmark for FX intervention:

$∗cbt = φrerrert + εcb3t (2.5)

where rert captures deviations of the real exchange rate with respect to its steady state. In the

same vein as rule 2, under this rule the central bank sells (purchases) foreign bonds when the

exchange rate depreciates (appreciates) in real terms from its long-run value. However there are

two important differences: rule 2 is expressed in nominal terms and takes into account only the

current variation of the exchange rate, whilst rule 3 takes into account the deviations in the level

of the exchange rate in real terms. That is, the rule in terms of real exchange rate misalignments

is history-dependent, while the rule based on the change in the exchange rate is not. Intuitively,

a key difference between rule 2 and 3 is that, under the former shocks to the exchange rate

are accommodated, while under the latter they are reversed. This distinction is similar to that

between inflation targeting and price level targeting for the case of shocks to the price level.
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2.2.2 Monetary policy

The central bank implements monetary policy by setting the nominal interest rate according to

a Taylor-type feedback rule that depends on CPI inflation. The generic form of the interest rate

rule that the central bank uses is given by:

(1 + it)(
1 + i

) =

(
Πt

Π

)ϕπ
exp

(
εMON
t

)
(2.6)

where ϕπ > 1. Π and i are the levels in steady state of inflation and the nominal interest rate.

The term εMON
t is a random monetary policy shock distributed according to N ∼

(
0, σ2

MON

)
.

2.3 Households

2.3.1 Preferences

The world economy is populated by a continuum of households of mass 1, where a fraction n of

them is allocated in the home economy, whereas the remaining 1 − n is in the foreign economy.

Each household j in the home economy enjoys utility from the consumption of a basket of final

goods, Cjt , and receives disutility from working, Ljt . Households’ preferences are represented by

the following utility function:

Ut = Et

[ ∞∑
s=0

βt+sU
(
Cjt+s, L

j
t+s,

)]
, (2.7)

where Et is the conditional expectation on the information set at period t and β is the intertem-

poral discount factor, with 0 < β < 1.

The consumption basket of final goods is a composite of domestic and foreign goods, aggre-

gated using the following consumption index:

Ct ≡
[(
γH
)1/εH (

CHt
) εH−1

εH +
(
1− γH

)1/εH (
CMt

) εH−1

εH

] εH
εH−1

, (2.8)

where εH is the elasticity of substitution between domestic (CHt ) and foreign goods (CMt ), and γH

is the share of domestically produced goods in the consumption basket of the domestic economy.

In turn, CHt and CMt are indices of consumption across the continuum of differentiated goods

produced in the home country and those imported from abroad, respectively. These consumption
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indices are defined as follows:

CHt ≡

[(
1

n

) 1
ε
∫ n

0
CHt (z)

ε−1
ε dz

] ε
ε−1

, CMt ≡

[(
1

1− n

) 1
ε
∫ 1

n
CMt (z)

ε−1
ε dz

] ε
ε−1

(2.9)

where ε > 1 is the elasticity of substitution across goods produced within the home economy,

denoted by CHt (z), and within the foreign economy, CMt (z). Households’ optimal demands for

home and foreign consumption are given by:

CHt (z) =
1

n
γH
(
PHt (z)

PHt

)−ε(
PHt
Pt

)−εH
Ct, (2.10)

CMt (z) =
1

1− n
(
1− γH

)(PMt (z)

PMt

)−ε(
PMt
Pt

)−εH
Ct (2.11)

This set of demand functions is obtained by minimising the total expenditure on consumption

PtCt, where Pt is the consumer price index. Notice that the consumption of each type of goods is

increasing in the consumption level, and decreasing in their corresponding relative prices. Also, it

is easy to show that the consumer price index, under these preference assumptions, is determined

by the following condition:

Pt ≡
[
γH
(
PHt
)1−εH

+ (1− γH)
(
PMt

)1−εH] 1
1−εH (2.12)

where PHt and PMt denote the price level of the home-produced and imported goods, respectively.

Each of these price indices is defined as follows:

PHt ≡
[

1

n

∫ n

0
PHt (z)1−εdz

] 1
1−ε

, PMt ≡
[

1

1− n

∫ 1

n
PMt (z)1−εdz

] 1
1−ε

(2.13)

where PHt (z) and PMt (z) represent the prices expressed in domestic currency of the variety z of

home-produced and imported goods, respectively.

2.3.2 Households’ budget constraint

For simplicity, we assume domestic households save only in domestic currency.5 The budget

constraint of the domestic household (j) in units of home currency is given by:

$j
t = (1 + it−1)$j

t−1 −
ψ

2

(
$j
t −$

)2
+WtL

j
t − PtC

j
t + PtΓ

j
t (2.14)

5This way the only portfolio decision is made by dealers, which simplifies the analysis.
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where $j
t is wealth in domestic assets, Wt is the nominal wage, it is the domestic nominal

interest rate, and Γjt are nominal profits distributed from firms and dealers in the home economy

to the household j. Each household owns the same share of firms and dealer agencies in the home

economy. Households also face portfolio adjustment costs, for adjusting wealth from its long-run

level.6 Households maximise (2.7) subject to (2.14) .

2.3.3 Consumption decisions and the supply of labour

The conditions characterising the optimal allocation of domestic consumption are given by the

following equation:

UC,t = βEt

UC,t+1

 1 + it

1 + ψ
(
$j
t −$

)
 Pt
Pt+1

 (2.15)

where we have eliminated the index j for the assumption of representative agent. UC,t denotes

the marginal utility for consumption. Equation (2.15) corresponds to the Euler equation that

determines the optimal path of consumption for households in the home economy, by equalising

the marginal benefits of saving to its corresponding marginal costs. The first-order conditions

that determine the supply of labour are characterised by the following equation:

−
UL,t
UC,t

=
Wt

Pt
(2.16)

where Wt
Pt

denotes real wages. In a competitive labour market, the marginal rate of substitution

equals the real wage, as in equation (2.16).

2.4 Foreign economy

The consumption basket of the foreign economy is similar to that of the foreign economy, and is

given by:

C∗t ≡
[(
γF
)1/εF (

CXt
) εF−1

εF +
(
1− γF

)1/εF (
CFt
) εF−1

εF

] εF
εF−1

(2.17)

where εF is the elasticity of substitution between domestic (CXt ) and foreign goods (CFt ), re-

spectively, and γF is the share of domestically produced goods in the consumption basket of the

foreign economy. Also, CXt and CFt are indices of consumption across the continuum of differen-

tiated goods produced similar to CHt and CMt defined in equations (2.9). The demand for each

6This assumption is necessary to provide stationarity in the asset position held by the households. See Schmitt-
Grohe and Uribe (2004).
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type of good is given by:

CXt (z) =
1

n
γF
(
PXt (z)

PXt

)−ε(
PXt
P ∗t

)−εH
C∗t (2.18)

CFt (z) =
1

1− n
(
1− γF

)(PFt (z)

PFt

)−ε(
PFt
P ∗t

)−εH
C∗t (2.19)

where PXt and PFt correspond to the price indices of exports and the goods produced abroad,

respectively. P ∗t is the consumer price index of the foreign economy:

P ∗t ≡
[
γF
(
PXt
)1−εF

+ (1− γF )
(
PFt
)1−εF ] 1

1−εF (2.20)

2.4.1 The small open economy assumption

Following Sutherland (2005), we parameterise the participation of foreign goods in the con-

sumption basket of home households,
(
1− γH

)
, as follows:

(
1− γH

)
= (1− n) (1− γ), where n

represents the size of the home economy and (1− γ) the degree of openness. In the same way,

we assume the participation of home goods in the consumption basket of foreign households,

as a function of the relative size of the home economy and the degree of openness of the world

economy, that is γF = n (1− γ∗).
This particular parameterisation implies that as the economy becomes more open, the fraction

of imported goods in the consumption basket of domestic households increases, whereas as the

economy becomes larger, this fraction falls. This parameterisation allows us to obtain the small

open economy as the limiting case of a two-country economy model when the size of the domestic

economy approaches zero, that is n → 0. In this case, we have that γH → γ and γF → 0.

Therefore, in the limiting case, the use in the foreign economy of any home-produced intermediate

goods is negligible, and the demand condition for domestic, imported and exported goods can be

re-written as follows:

Y H
t = γ

(
PHt
Pt

)−εH
Ct (2.21)

Mt = (1− γ)

(
PMt
Pt

)−εH
Ct (2.22)

Xt = (1− γ∗)
(
PXt
P ∗t

)−εF
C∗t (2.23)

Thus, given the small open economy assumption, the consumer price index for the home and
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foreign economy can be expressed in the following way:

Pt ≡
[
γ
(
PHt
)1−εH

+ (1− γ)
(
PMt

)1−εH] 1
1−εH (2.24)

P ∗t = PFt (2.25)

Given the small open economy assumption, the foreign economy variables that affect the

dynamics of the domestic economy are foreign output, Y ∗t , the foreign interest rate, i∗, the

external inflation rate, Π∗, and capital inflows, $∗t . To simplify the analysis, we assume these

four variables follow an autoregressive process in logs.

2.5 Firms

2.5.1 Intermediate goods producers

A continuum of mass n of z intermediate firms exists. These firms operate in a perfectly com-

petitive market and use the following linear technology:

Y int
t (z) = AtLt (z) (2.26)

Lt (z) is the amount of labour demand from households, At is the level of technology.

These firms take as given the real wage, Wt/Pt, paid to households and choose their labour

demand by minimising costs given the technology. The corresponding first-order condition of this

problem is:

Lt (z) =
MCt (z)

Wt/Pt
Y int
t (z)

where MCt (z) represents the real marginal costs in terms of home prices. After replacing the

labour demand in the production function, we can solve for the real marginal cost:

MCt (z) =
Wt/Pt
At

(2.27)

Given that all intermediate firms face the same constant returns to scale technology, the real

marginal cost for each intermediate firm z is the same, that is MCt (z) = MCt. Also, given

these firms operate in perfect competition, the price of each intermediate good is equal to the

marginal cost. Therefore, the relative price Pt (z) /Pt is equal to the real marginal costs in terms

of consumption unit (MCt).
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2.5.2 Final goods producers

Goods sold domestically Final goods producers purchase intermediate goods and transform

them into differentiated final consumption goods. Therefore, the marginal costs of these firms

equal the price of intermediate goods. These firms operate in a monopolistic competitive market,

where each firm faces a downward-sloping demand function, given below. Furthermore, we assume

that each period t final goods producers face an exogenous probability of changing prices given

by (1− θH). Following Calvo (1983), we assume that this probability is independent of the last

time the firm set prices and the previous price level. Thus, given a price fixed from period t, the

present discounted value of the profits of firm z is given by:

Et

{ ∞∑
k=0

(
θH
)k

Λt+k

[
PH,ot (z)

PHt+k
−MCHt+k

]
Y H
t,t+k(z)

}
(2.28)

where Λt+k = βk
UC,t+k
UC,t

is the stochastic discount factor, MCHt+k = MCt+k
Pt+k
PHt+k

is the real marginal

cost expressed in units of goods produced domestically, and Y H
t,t+k(z) is the demand for good z

in t+ k conditioned to a fixed price from period t, given by

Y H
t,t+k(z) =

[
PH,ot (z)

PHt+k

]−ε
Y H
t+k

Each firm z chooses PH,ot (z) to maximise (2.28). The first order condition of this problem is:

Et

{ ∞∑
k=0

(
θH
)k

Λt+k

[
PH,ot (z)

PHt
FHt,t+k − µMCHt+k

] (
FHt,t+k

)−ε
Y H
t+k

}
= 0

where µ ≡ ε
ε−1 and FHt,t+k ≡

PHt
PHt+k

.

Following Benigno and Woodford (2005), the previous first order condition can be written

recursively using two auxiliary variables, V D
t and V N

t , defined as follows:

PH,ot (z)

PHt
=
V N
t

V D
t

where

V N
t = µUC,tY

H
t MCHt + θHβEt

[
V N
t+1

(
ΠH
t+1

)ε]
(2.29)

V D
t = UC,tY

H
t + θHβEt

[
V D
t+1

(
ΠH
t+1

)ε−1
]

(2.30)
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Also, since in each period t only a fraction
(
1− θH

)
of these firms change prices, the gross rate

of domestic inflation is determined by the following condition:

θH
(
ΠH
t

)ε−1
= 1−

(
1− θH

)(V N
t

V D
t

)1−ε

(2.31)

The equations (2.29), (2.30) and (2.31) determine the supply (Phillips) curve of domestic pro-

duction.

Exported goods We assume that firms producing final goods can discriminate prices between

domestic and external markets. Therefore, they can set the price of their exports in foreign

currency. Also, when selling abroad they face an environment of monopolistic competition with

nominal rigidities, with a probability 1− θX of changing prices.

The problem of retailers selling abroad is very similar to that of firms that sell in the domestic

market, which is summarised in the following three equations that determine the supply curve of

exporters in foreign currency prices:

V N,X
t = µ

(
Y X
t UC,t

)
MCXt + θXβEt

[
V N,X
t+1

(
ΠX
t+1

)ε]
(2.32)

V D,X
t =

(
Y X
t UC,t

)
+ θXβEt

[
V D,X
t+1

(
ΠX
t+1

)ε−1
]

(2.33)

θX
(
ΠX
t

)ε−1
= 1−

(
1− θX

)(V N,X
t

V D,X
t

)1−ε

(2.34)

where the real marginal costs of the goods produced for export are given by:

MCXt =
PtMCt

StPXt

=
MCt

RERt

(
PXt
P ∗
t

) (2.35)

which depend inversely on the real exchange rate (RERt =
StP ∗

t
Pt

) and the relative price of exports

to external prices
(
PXt
P ∗
t

)
.

2.5.3 Retailers of imported goods

Those firms that sell imported goods buy a homogeneous good in the world market and dif-

ferentiate it into a final imported good YM
t (z). These firms also operate in an environment of

monopolistic competition with nominal rigidities, with a probability 1− θM of changing prices.
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The problem for retailers is very similar to that of producers of final goods. The Phillips

curve for importers is given by:

V N,M
t = µ

(
YM
t UC,t

)
MCMt + θMβEt

[
V N,M
t+1

(
ΠM
t+1

)ε]
(2.36)

V D,M
t =

(
YM
t UC,t

)
+ θMβEt

[
V D,M
t+1

(
ΠM
t+1

)ε−1
]

(2.37)

θM
(
ΠM
t

)ε−1
= 1−

(
1− θM

)(V N,M
t

V D,M
t

)1−ε

(2.38)

where the real marginal cost for the importers is given by the cost of purchasing the goods abroad

(StP
∗
t ) relative to the price of imports (PMt ):

MCMt =
StP

∗
t

PMt
(2.39)

where MCMt also measures the deviations from the law of one price.7

2.6 Market clearing

Total domestic production is given by:

P deft Yt = PHt Y
H
t + StP

X
t Y

X
t (2.40)

After using equations (2.21) and (2.22) and the definition of the consumer price index (2.24), the

equation (2.40) can be decomposed into:

P deft Yt = PtCt + StP
X
t Y

X
t − PMt YM

t (2.41)

To identify the gross domestic product (GDP) of this economy, Yt, it is necessary to define the

GDP deflator, P deft , which is the weighted sum of the consumer, export and import price indices:

P deft = φCPt + φXStP
X
t − φMPMt (2.42)

where φC , φX and φM are steady state values of the ratios of consumption, exports and imports to

GDP, respectively. The demand for intermediate goods is obtained by aggregating the production

7See Monacelli (2005) for a similar formulation.
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for home consumption and exports:

Y int
t (z) = Y H

t (z) + Y X
t (z) (2.43)

=

(
PHt (z)

PHt

)−ε
Y H
t +

(
PXt (z)

PXt

)−ε
Y X
t

Aggregating (2.43) with respect to z, we obtain:

Y int
t =

1

n

∫ n

0
Y int
t (z) dz = ∆H

t Y
H
t + ∆X

t Y
X
t (2.44)

where ∆H
t = 1

n

∫ n
0

(
PHt (z)

PHt

)−ε
dz and ∆X

t = 1
n

∫ n
0

(
PXt (z)

PXt

)−ε
dz are measures of relative price

dispersion, which have a null impact on the dynamic in a first-order approximation of the model.

Similarly, the aggregate demand for labour is:

Lt =
MCt
Wt/Pt

(
∆H
t Y

H
t + ∆X

t Y
X
t

)
(2.45)

After aggregating households’ budget constraints, firms’ and dealers’ profits, and including the

equilibrium condition in the financial market that equates household wealth with the stock of

domestic bonds, we obtain the aggregate resources constraint of the home economy:

Bt
Pt
− Bt−1

Pt−1
+
ψ

2

(
Bt
Pt
− B

P

)2

=
P deft

Pt
Yt − Ct (2.46)

+

{
(1 + it−1)

Πt
− 1

}
Bt−1

Pt−1
+RESTt

Equation (2.46) corresponds to the current account of the home economy. The left-hand side is

the change in the net asset position in terms of consumption units. The right-hand side is the

trade balance, the difference between GDP and consumption which is equal to net exports, and

investment income. The last term, RESTt ≡ PMt
Pt
YM
t

(
1−∆M

t MCMt
)

is negligible and takes into

account the monopolistic profits of retail firms.

A complete set of the log-linearised equations of the model can be found in Appendix B.

3 Results

3.1 Calibration

Instead of calibrating the parameters to a particular economy, we set the parameters to values that

are standard in the new open economy literature, as shown in Table 1. The standard deviation of
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all exogenous processes was set to 0.01 and the autocorrelation coefficient to 0.5. The coefficient

of absolute risk aversion for dealers was set to 500 as in Bacchetta and van Wincoop (2006). In

the benchmark case, we calibrate the FX intervention reaction to exchange rate changes and real

exchange rate misalignments to 0.5 for both cases, and analyse robustness to those parameters.

Table 1: Baseline calibration

.

Parameter Value Description

β 0.9975 Consumers time-preference parameter.

χ 0.5 Labour supply elasticity.

γc 1 Risk aversion parameter.

ε 0.75 Elasticity of substitution btw. home and foreign goods.

εX 0.75 Elasticity of substitution btw. exports and foreign goods.

ψ 0.6 Share of domestic tradables in domestic consumption.

θH 0.75 Domestic goods price rigidity.

θM 0.5 Imported goods price rigidity.

θX 0.5 Exported goods price rigidity.

ψb 0.1 Portfolio adjustment costs.

ϕπ 1.5 Taylor rule reaction to inflation deviations.

γ 500 Absolute risk aversion parameter (dealers)

φ$ 0.5 Net asset position over GDP ratio.

φC 0.68 Consumption over GDP ratio.

σx 0.01 S.D. of all shocks x

ρx 0.5 AR(1) coefficient for all exogenous processes

3.2 Model dynamics

3.2.1 Rational expectations (RE) equilibria

As shown in the previous section, the risk premium-adjusted uncovered interest parity condition

(equation 2.2) depends, among other things, on the conditional variance of the depreciation

rate. This, in turn, depends on the RE equilibrium of the model. Therefore, to solve for the

linear RE equilibria entails solving for a fixed point problem on the conditional variance of

the depreciation rate. In Figure 2 we plot the mappings of the conjectured and the implied

conditional variance of the depreciation rate for different parameterisations of the FX intervention

reaction function. Intersections with the 45-degree straight line correspond to fixed points for

the conditional variance of the depreciation rate.

As shown in the left-hand panels, there are two RE equilibria in the case of no FX intervention,
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corresponding to a low-variance stable equilibrium and a high-variance unstable equilibrium.8

This type of multiple equilibria is similar to the one found by Bacchetta and van Wincoop (2006)

in a model without FX intervention. However, as shown in the centre and right-hand panels,

FX intervention helps to rule out the second unstable equilibrium. Under both rules of FX

intervention there is only a unique and stable equilibrium. Also, the intensity of FX intervention

reduces the RE equilibrium variance of the exchange rate change.

The RE equilibrium variance of the exchange rate change also affects the direct impact of

FX intervention and capital flows on the exchange rate, as shown in equation (2.2). Therefore, a

more intensive FX intervention strategy also reduces its effectiveness as the reduction in variance,

dampens the impact of interventions on the exchange rate.
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(a) Int. Rule 1 (ϕ∆s = 0)
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(b) Int. Rule 1 (ϕ∆s = 0.25)
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(c) Int. Rule 1 (ϕ∆s = 0.50)
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(d) Int. Rule 2 (ϕrer = 0)
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(e) Int. Rule 2 (ϕrer = 0.15)
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Figure 2: Existence of equilibria under FX intervention rules

8A slope lower (higher) than one of the mapping of the conjectured and the implied conditional variance of
the depreciation rate, evaluated at the intersection with the 45-degree straight line, indicates a stable (unstable)
equilibrium.
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3.2.2 Intervention under rules and discretion

In Figure 3 we show the effects on impact of a 1% increase in sales of foreign bonds by the

central bank. We compare the cases when the authority performs this policy under – entirely

unanticipated – discretion and by deviations from an intervention rule. Since a shock to an

FX intervention rule in the first period implies an endogenous response of intervention in the

following periods, to make both scenarios comparable we have simulated in each case a series of

discretional interventions that matches the series of endogenous rule-based interventions.

As shown, in both cases, the appreciation on impact of the exchange rate in response to

the sale of foreign bonds by the central bank is larger under rules than under discretion. This

effect is clearer in the case of the ∆st rule. The reason is that under rule-based interventions,

an intervention also announces a series of future interventions, consistent with the paths in the

upper panels of Figure 3. Hence, the reaction on impact of the exchange rate is stronger. In the

case of the second rule, which targets the misalignments of the real exchange rate, the differences

will not be large, since interventions will not generate a strong expectation effect.9

Figure A.2 in the appendix shows the reaction of the economy to an FX intervention shock,

where we do not normalise the size of interventions. In this case, we can compare the reaction of

the economy to a pure surprise shock. Here we can observe the “surprise effect” as discretionary

interventions have a larger effect than interventions under a rule. The reason is that under a rule-

based intervention, FX sales by the central bank will be followed by contemporaneous purchases,

as the former generate an appreciation of the currency. Hence, the market will not react on

impact as much as in the case of full discretionary intervention. Nevertheless, once we net the

surprise and expected effects, the central bank is able to stabilise the exchange rate through

smaller interventions.

3.2.3 Impact of monetary policy

In Figure 4 we show the effects of a 1% increase in the policy rate under no intervention and

both types of FX intervention rules. In this case we have not normalised by the amount of

interventions since we want to understand how these rules affect the transmission mechanism of

monetary policy. In all cases the exchange rate appreciates, but this is larger in the case of no

FX intervention. This generates two opposite effects on inflation. In the first place, the lower

9It is easy to show this effect by substituting equations (2.4) and (2.5) into (2.2). An intervention based
on changes of the exchange rate will generate a dynamic equation that amplifies the intervention through the
expectation channel. In the case of the real exchange rate, this effect is determined by the size of the pass-through;
a higher pass-through dampens this effect.
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Figure 3: FX Intervention: rules vs. discretion

appreciation decreases inflation by less because of the pass-through from the exchange rate to

inflation. On the other hand, FX intervention can lengthen the duration of real appreciation,

which in turn dampens exports and aggregate demand, and consequently reduces inflation. As

shown in Figure 4, under a nominal exchange rate smoothing rule, the real exchange rate remains

deviated from its equilibrium value for a longer period, amplifying the impact of monetary policy

on inflation. In contrast, under the real exchange rate stabilisation rule the former effect is more

important, hence reducing the impact of monetary policy on inflation.

3.2.4 Transmission of external shocks

In Table 2 we present unconditional relative variances of some main macroeconomic variables

assuming only one source of volatility at the time for different FX intervention regimes10. For

comparison, relative variances are normalised with respect to the no intervention case.

10Exercises are simulated using the conditional variance of the depreciation rate in equilibrium in equation 2.2.
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Figure 4: Reaction to a 1% monetary policy shock - rules vs. no intervention
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As shown, not surprisingly, FX intervention reduces the volatility of the change of the ex-

change rate in all cases. However, this exercise highlights some trade-offs in the use of FX

intervention. In particular, the effects of FX intervention on the volatility of other macroeco-

nomic variables will depend on the source of the shock. FX intervention helps to isolate domestic

macroeconomic variables from financial external shocks, but amplifies fluctuations in some do-

mestic variables from nominal and real external shocks.

For instance, the volatility of consumption, exports, output and inflation generated by foreign

interest rate and capital flow shocks is reduced under both types of FX intervention regimes.

However, the use of FX interventions to smooth the nominal exchange rate amplifies the volatility

of inflation and output generated by foreign inflation shocks. Similarly, the use of a real exchange
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rate misalignment rule increases the volatility of consumption, exports, output and inflation

generated by foreign output shocks. In this case, FX intervention prevents the adjustment of the

real exchange rate as a macroeconomic stabiliser.

In Figures A.3, A.4 and A.5 in the appendix we compare the dynamic effects of external

shocks under discretion, rules and no intervention. Overall, the effectiveness of intervention rules

is confirmed. In other words, given that it is known the central bank will enter the FX market to

prevent large fluctuations in the exchange rate, the amount of intervention necessary to reduce

fluctuations is smaller. This means that the FX sales and purchases by the central bank necessary

to stabilise the exchange rate will be much higher under discretion because it does not influence

expectations as in the case of an intervention rule.

In Figure A.3 we show the reaction to a portfolio or non-fundamental capital flow shock.

Capital inflows generate an appreciation of the exchange rate that under no intervention affects

the whole economy. In the case where the central bank intervenes through rules or discretion, the

effects of these shocks are dampened, stabilising the economy. For the case of a foreign interest

rate shock, in Figure A.4 we show how interventions can ease the pressure of capital outflows on

the exchange rate. It is interesting to see how interventions have similar effects when reacting to

non-fundamental (order flow) and fundamental (interest rate) shocks. Finally, in Figure A.5 we

show the reaction to a foreign inflation shock. In this case, as in the previous ones, interventions

provide a channel to counter the impact of external shocks on the economy. Foreign inflation will

generate an exchange rate appreciation and a current account deficit. An active central bank is

capable of reversing these effects through foreign exchange interventions, since the combination of

a low nominal depreciation under the exchange rate smoothing rule with higher foreign inflation

can generate a depreciation of the real exchange rate.
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Table 2: Macroeconomic volatility under FX intervention rules (Equilibrium σ∆s)

Endogenous variable RER ∆ Ex.
Rate

Cons. Exp. Int.
Rate

Prod. Infl.

Foreign interest rate shock (εi∗)

No intervention 1 1 1 1 1 1 1
ϕ∆s = 0.25 0.31 0.69 0.48 0.92 0.44 0.12 0.41
ϕ∆s = 0.50 0.10 0.56 0.26 0.89 0.21 0.03 0.17
ϕrer = 0.15 0.76 0.90 0.84 0.97 0.86 0.66 0.84
ϕrer = 0.30 0.64 0.85 0.75 0.96 0.78 0.49 0.74

Non-fundamental capital flow shock (εω
∗
)

No intervention 1 1 1 1 1 1 1
ϕ∆s = 0.25 0.25 0.23 0.31 0.28 0.34 0.32 0.31
ϕ∆s = 0.50 0.15 0.13 0.21 0.17 0.24 0.21 0.21
ϕrer = 0.15 0.38 0.38 0.40 0.38 0.42 0.39 0.40
ϕrer = 0.30 0.24 0.23 0.25 0.24 0.27 0.25 0.26

Foreign inflation shock (επ
∗
)

No intervention 1 1 1 1 1 1 1
ϕ∆s = 0.25 0.90 0.78 0.99 0.92 1.08 1.02 1.06
ϕ∆s = 0.50 0.84 0.67 0.96 0.85 1.13 1.01 1.08
ϕrer = 0.15 0.76 0.74 0.77 0.75 0.81 0.78 0.80
ϕrer = 0.30 0.63 0.62 0.66 0.63 0.71 0.66 0.69

Foreign output shock (εy
∗
)

No intervention 1 1 1 1 1 1 1
ϕ∆s = 0.25 1.28 0.93 0.89 0.99 0.72 0.92 0.63
ϕ∆s = 0.50 1.42 0.85 0.85 0.98 0.59 0.89 0.46
ϕrer = 0.15 0.72 0.73 1.10 1.02 1.15 1.09 1.18
ϕrer = 0.30 0.59 0.62 1.15 1.02 1.24 1.14 1.30

Note: The table shows normalised unconditional relative variances of the model assuming the
only source of volatility is the shock in the table heading. We have considered changes in variance
produced by intervention rules themselves, and how these affect the overall volatility of the
economy.

3.2.5 Contribution of shocks and FX intervention

Up to now we have proved the effectiveness of FX interventions by the central bank as a mecha-

nism to cope with the effects of external shocks. To show this we have kept the variance of the

exchange rate constant across regimes, as a way to make results comparable. However, as shown

by Figure 2, intervention rules reduce the equilibrium value of the exchange rate volatility. This

is key to understanding an additional effect of interventions. The impact of portfolio shocks on
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the exchange rate value is a function of the risk dealers bear for holding more foreign currency

in their portfolio. Hence, a lower volatility will reduce the risk and consequently the premia

they charge for these holdings. This makes interventions less effective when dealing with most

external shocks, as shown by Table 2, while improving the resilience of the economy to portfolio

or non-fundamental capital shocks.

Thus, an intervention rule that reduces the volatility of the exchange rate will affect as well

the relative importance the shocks have in explaining this variance. In Figure 5 we show the

variance decomposition of the exchange rate variation under different shocks. Our result is then

a robust one, when the central bank intervenes in the FX market through rules, non-fundamental

capital flows explain a smaller fraction of the fluctuations of the change of the exchange rate,

while the effect of others, such as foreign interest rate shocks, increases.
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Figure 5: Variance decomposition

4 Extension: dealers with heterogeneous information

The model presented in Section 2 is useful to analyse the interaction of different FX intervention

strategies with conventional monetary policy. However, this model also shares the weakness of

standard macroeconomic models in explaining the short-run fluctuations of the exchange rate. As

documented by Meese and Rogoff (1983), Frankel and Rose (1995) and others, in the short run

a random walk predicts exchange rates better than macroeconomic models. This disconnection

between macroeconomic fundamentals and the exchange has been referred to by Lyons (2001) as

”the exchange rate determination puzzle”.

Bacchetta and van Wincoop (2011) suggested that certain assumptions about the informa-
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tion under which participants operate in the FX market are crucial to explain this puzzle. In

particular, typically in macroeconomic models FX market participants are assumed to: i) have

identical information; ii) perfectly know the model; iii) use the available information at all times.

Assumptions that are quite inconsistent with how FX markets operate in reality. Bacchetta and

van Wincoop (2011) show that relaxing these assumptions enables various exchange rate puzzles

to be explained, such as the disconnection between exchange rates and fundamentals and the

forward premium puzzle. In line with this, we extend the model by relaxing the first assumption,

acknowledging that FX dealers can have access to different sources of information and can have

different expectations about future macroeconomic variables. As shown by Bacchetta and van

Wincoop (2006) in a more tractable model, these characteristics magnify the response of the

exchange rate to unobserved variables and generate a disconnection in the short run between the

exchange rate and observed fundamentals.

More precisely, we extend the model to include dealers that have access to heterogeneous

information, as in Bacchetta and van Wincoop (2006). We introduce two sources of information

heterogeneity among dealers: we assume they face idiosyncratic shocks in the amount of customer

orders from foreign investors and also receive noisy signals about some future shocks. Therefore,

as dealers have access to different sets of information, expected exchange rate depreciation in

(2.2) would differ among them as well.

We assume the foreign investor exposure for each dealer is equal to the average plus an

idiosyncratic term:

$d∗
t = $∗t + εdt (4.1)

where εdt has variance that approaches infinity, so that knowing one‘s own foreign investor ex-

posure provides no information about the average exposure as in Bacchetta and van Wincoop

(2006). $∗t is unobservable and follows an AR(1) process:

$∗t = ρ$∗$∗t−1 + ε$
∗

t (4.2)

where ε$
∗

t ∼ N
(
0, σ2

$∗
)
. The assumed autoregressive process is known by all agents.

We assume that dealers observe past and current fundamental shocks, while they also receive

private signals about some future shocks. More precisely, we assume dealers receive one signal

each period about the foreign interest rate one period ahead.11 That is, at time t dealer d receives

11This assumption can be extended to the case where dealers receive each period a vector of signals of a set of
fundamental variables.
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a signal

vdt = i∗t+1 + εvdt , ε
vd
t ∼ N

(
0, σ2

vd

)
(4.3)

where εvdt is independent from i∗t+1 and other agents’ signals. This idiosyncratic signal can be

reconciled with the fact that dealers have different models to forecast future fundamentals, so

each can imperfectly observe future variables with an idiosyncratic noise. We also assume that

the average signal received by investors is i∗t+1, that is

∫ 1

0
vdt dd = i∗t+1. The foreign interest rate

follows an AR(1) process known by dealers:

i∗t = ρi∗i
∗
t−1 + εi

∗
t (4.4)

where εi
∗
t ∼ N

(
0, σ2

i∗
)
. Dealers solve a signal extraction problem for the unknown innovations(

ε$
∗

t , εi
∗
t+1

)
, given the observed depreciation rate and signal

(
∆st, v

d
t

)
.12

4.1 Computational strategy

The computational strategy consists in dividing the system of log-linearised equations into two

blocks. In the first block we take into account all the equations but the risk premium-adjusted

UIP, which is included in the second block. Then, we solve for the rational expectations equilib-

rium of the first block taking the depreciation rate as an exogenous variable. This solution feeds

into the second block to solve for the policy function of the depreciation rate. Note that with this

computational strategy we also eliminate any informational spillovers between dealers and other

economic agents, such as households and firms. However, the segmented information in the FX

market seems a reasonable assumption, since it takes account of the fact that dealers have access

to private information which is not known by other economic agents.

Accordingly, in the first block the depreciation rate only appears in the real exchange rate

equation:

rert = rert−1 + ∆st + π∗t − πt (4.5)

This system of equations can be written as:

A0

[
Xt

EtYt+1

]
= A1

[
Xt−1

Yt

]
+A2∆st +B0εt (4.6)

where Xt = [rert, it, π
∗
t , w

∗
t , i
∗
t , ...]

′ is a size n1 vector of backward looking variables, Yt = [πt, ...]
′ is

12As explained by Bacchetta and van Wincoop (2006), if the B(L) polynomial in equation (4.10) is invertible,
knowledge of the depreciation rate at times t− 1 and earlier and of the interest rate shocks at time t and earlier,
reveals the shocks ε$

∗
at times t− 1 and earlier. That is, ε$

∗
t−s becomes observable at time t for s > 1.
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a size n2 vector of forward looking variables, such as nT = n1+n2+1 is the number of endogenous

variables. εt is the vector of observable shocks in the model. A2 = [1, 0..0]′ is a (n1 + n2) × 1

matrix.13

The second block corresponds to the risk-premium adjusted UIP condition:

Et∆st+1 = it − i∗t + γσ2
(
$∗t +$∗,cbt

)
(4.7)

In the first stage we find the rational expectations solution of the system in (4.6) using the

perturbation method, taking as exogenous ∆st.
14 That is, we find the policy functions:

Yt = M1Xt−1 (4.8)

Xt = M2Xt−1 +M3∆st +M4εt (4.9)

In the second stage we use the previous solution to find the policy function of ∆st using

the Townsend (1983) method. More precisely, we conjecture a solution for ∆st as a function of

infinite lag polynomials of the shocks in the model:

∆st = A(L)εi
∗
t+1 + B(L)ε$

∗
t +D(L)ζt (4.10)

where εi
∗
t+1 is an innovation to the future foreign interest rate (i∗t+1), the fundamentals over which

agents receive a signal, and ε$
∗

t is the shock to the unobservable capital flow ($∗t ), which can be

inferred with a lag. A(L) and B(L) are infinite lag polynomials, while D(L) is a vector of infinite

lag polynomials operating ζt, the vector of remaining shocks. 15

In the second stage we solve for the signal extraction problem of the dealers for the unobserved

innovations
(
ε$

∗
t , εi

∗
t+1

)
, using both the depreciation rate and their signal

(
∆st, v

d
t

)
, which serves

to calculate the average expectation of the future depreciation rate and its conditional variance

in equation (4.7) as functions of shocks.16

What follows is equating the coefficients of (4.7) as a function of shocks with those of the con-

jectured solution (4.10), generating a system of non-linear equations on the unknown coefficients

in A(L), B(L) and D(L). Following Bacchetta and van Wincoop (2006), we exploit the recursive

13Since information heterogeneity only enters the model through the exchange rate, the unobservable shocks are
excluded from the first step.

14We use Dynare to solve for the rational expectations of the first block. For more information see: Villemont
(2011) and Adjemian et al (2011).

15Note that εt and ζt are not exactly the same, since the latter can also include FX intervention shocks.
16In turn, given the solution of the first block, we can express the endogenous variables in (4.7) as function of

shocks as well.
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pattern of this infinite order set of equations and truncate the order of the polynomial after

guaranteeing the stability of the solution. See appendix C for more details on the computational

strategy.

4.2 The effects of heterogeneous information

Bacchetta and van Wincoop (2006) proved that by adding heterogeneous information in an ex-

change rate determination model it is possible to account for the short-run disconnection between

the exchange rate and observed fundamentals. This way, the exchange rate becomes closely as-

sociated with order flow, which is associated with the private information component of total

market orders. The mechanism at work is a magnification effect of unobserved fundamentals,

such as capital flows in our model, on the exchange rate. They showed that, under heterogeneous

information, there is rational confusion when the exchange rate changes: dealers do not know

whether this is driven by unobserved fundamentals (eg capital flows) or by information of other

dealers about future macroeconomic fundamentals (eg foreign interest rates).

This rational confusion magnifies the impact of the unobserved capital flows on the exchange

rate, since dealers confuse them with changes in average private signals about future foreign

interest rates/fundamentals. This magnification effect depends on the precision of the public

signal (the exchange rate) relative to that of the private signal (vdt ). It will be larger when the

public signal is more precise relative to the private signal, for instance when the exchange rate is

less volatile.

In the context of heterogeneous information, FX intervention can affect the magnification

effect and the connection of the exchange rate with observed fundamentals. We show in figure 6

the response on impact of the exchange rate change to future foreign interest rate shocks (i∗t+1)

and unobserved capital flow shocks ($∗t ) , that is coefficients a1 and b1 respectively. We show

in the first column the responses in a model with common knowledge, defined as one in which

all dealers have access to the same information, and in the second column the responses in a

model with heterogeneous information.17 In the last column we present the differences between

the responses in the heterogeneous information and common knowledge models. These responses

are plotted for different values of the standard deviation of unobserved capital flow shocks
(
σ$∗

t

)
,

for three degrees of FX intervention intensity under rule 1 (no intervention, φ∆s = 0.25, and

φ∆s = 0.25).

17Therefore, in a common knowledge model capital flows become an observable variable and all dealers observe
signal shock (ευdt )
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Figure 7: Regression of ∆st on unobservable and fundamental shocks.

The following things are important to note: i) Under common knowledge and heterogeneous

information, FX intervention dampens the impact of both unobserved capital flow shocks and

future foreign interest rate shocks. ii) The standard deviation of unobserved capital flow shocks(
σ$∗

t

)
affects the responses under heterogeneous information, but not under common knowledge.

This is because the response of the exchange rate depends on the precision of the signals only

in the former model. iii) There is evidence of a magnification effect. That is, the response

to unobservable capital shocks is much stronger in the heterogeneous information than in the

common knowledge model. The opposite is true for the response to future foreign interest rate

shocks. iv) The magnification effect is larger, the stronger the intensity of FX intervention. The

main mechanism for this result is that, when FX intervention reduces the exchange rate volatility,

it also increases the precision of the public signal, which amplifies the magnification effect1819.

These results illustrate an additional effect that intervention can have in the FX market, that

is, the magnified response of the exchange rate to unobservable shocks, such as capital flows.

However, the magnification effect is not strong enough to increase the disconnection between the

exchange rate and observed fundamentals. Figure 7 reports the R2 of a regression of ∆st on

18On the other hand, as shown in figure 6, the magnification effect is larger when the unobservable capital flows
are more volatile, because that increases the exchange rate volatility.

19However, this result could change if intervention can bring additional information about future fundamentals
to the FX market, as analysed by Vitale (2011).
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unobserved capital flow shocks ($∗t ) and future interest rates (i∗t+1 ). As shown, FX intervention

reduces the contribution of unobserved capital flow shocks to exchange rate changes, and as a

counterpart increases the connection between observed fundamentals and the exchange rate.

5 Conclusions

In this paper we present a model to analyse the interaction between monetary policy and FX

intervention by central banks which also includes microstructure fundamentals in the determi-

nation of the exchange rate. We introduce a portfolio decision of risk-averse dealers, which

adds an endogenous risk premium to the traditional uncovered interest rate condition. In this

model, FX intervention affects the exchange rate through both a portfolio balance and an ex-

pectations/signalling channel. Also, an extension of the model with heterogeneous information

in the FX market generates the disconnection observed in the data between exchange rates

and macroeconomic fundamentals. On the technical side, we also propose an extension of the

Townsend (1983) method to solve DSGE models with heterogeneous information.

Our results illustrate that FX intervention has strong interactions with monetary policy.

Intervening to smooth real exchange rate misalignments can mute the monetary transmission

mechanism through exchange rates, reducing the impact on aggregate demand and prices, while

intervening to smooth nominal exchange rate fluctuations can amplify the impact. Also, FX

intervention rules can be more powerful in stabilising the economy as they exploit the expectations

channel. When we analyse the response to foreign shocks, we show that FX intervention rules have

some advantages as a stabilisation tool, because they anchor expectations about future exchange

rates. Therefore, the amount of FX intervention needed to stabilise the exchange rate under rules

is much smaller than under discretion. We also show that there are some trade-offs in the use

of FX intervention. On the one hand, it can help isolate the economy from external financial

shocks, but on the other it prevents some necessary adjustments of the exchange rate in response

to nominal and real external shocks. Moreover, in our extension of the model with heterogeneous

information, we also show that FX intervention can magnify the response of exchange rates to

unobservable capital flow shocks, but in the aggregate intervention can help restore the connection

with observed fundamentals.
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(c) Int. Rule 1 (ϕ∆s = 0.50)
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Figure A.1: Existence of equilibria under FX intervention Rules and heterogeneous information
(HI)
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B The log-linear version of the model

B.1 Aggregate demand

Aggregate demand (yt)

yt = φC(ct) + φX(xt)− φM (mt) + gt (B.1)

GDP deflator
(
tdeft

)
tdeft = φX(rert + tXt )− φM tMt (B.2)

Real exchange rate (rert)

rert = rert−1 + ∆st + π∗t − πt (B.3)

Euler equation (λt)

λt = ı̂t + Et(λt+1 − πt+1)− ψbbt (B.4)

Marginal utility (λt)

λt = −γuct (B.5)

Exports (xt)

xt = −εx(tXt ) + y∗t ; (B.6)

Relative price of exports
(
tXt
)

tXt = tXt−1 + πXt − π∗t ; (B.7)

Imports (mt)

mt = −ε(tMt ) + ct; (B.8)

Relative price of imports
(
tMt
)

tMt = tMt−1 + πMt − πt; (B.9)

Home-produced goods demand
(
yHt
)

yHt = −ε(tHt ) + ct; (B.10)

Relative price of home-produced goods
(
tHt
)

tHt = −
(

1− ψ
ψ

)
tMt (B.11)
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B.2 Aggregate supply

Total CPI (πt):

πt = ψπHt + (1− ψ)πMt + µt (B.12)

Phillips curve for home-produced goods (πHt ):

πHt = κH
(
mct − tHt

)
+ βEtπ

H
t+1 (B.13)

Real marginal costs (mct)

mct = wpt − at; (B.14)

Phillips curve for imported goods (πMt ):

πMt = κMmc
M
t + βEtπ

M
t+1 (B.15)

Marginal costs for imports
(
mcMt

)
mcMt = rert − tMt (B.16)

Phillips curve for exports (πXt )

πXt = κXmc
X
t + βEtπ

X
t+1 (B.17)

Marginal costs for exports
(
mcXt

)
mcXt = mct − rert − tXt (B.18)

B.3 Labour market

Labour demand (lt)

lt = yt − at; (B.19)

Labour supply (wpt)

wpt = γuct + χlt (B.20)

B.4 FX markets and current account

Risk-premium adjusted UIP (∆st)

Et∆st+1 = ı̂t − ı̂∗t + γσ2
(
$∗t +$∗,cbt

)
(B.21)
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Current account (bt)

φ$
(
bt − β−1bt−1

)
= tdeft + yt − φCct +

φ$
β

(it−1 − πt) (B.22)

B.5 Monetary policy

Interest rate (̂ıt)

ı̂t = ϕπ(πt) + εintt (B.23)

FX intervention
(
$∗,cbt

)
$∗,cbt = ϕ∆s∆st + ϕrerrert + εcbt (B.24)

B.6 Foreign economy

Foreign output (y∗t ):

y∗t = ρy∗y
∗
t−1 + εy

∗

t (B.25)

Foreign inflation (π∗t ):

π∗t = ρπ∗π∗t−1 + επ
∗
t (B.26)

Foreign interest rates (i∗t ):

i∗t = ρi∗i
∗
t−1 + εi

∗
t (B.27)

Capital inflows-order flows ($∗t )

$∗t = ρ$∗$∗t−1 + ε$
∗

t (B.28)

B.7 Domestic shocks

Productivity shocks (at):

at = ρaat−1 + εat (B.29)

Demand shocks (gt):

gt = ρggt−1 + εgt (B.30)

Mark up shocks (µt):

µt = ρµµt−1 + εµt (B.31)

Thus we have in total 31 equations, 24 from the original model and seven auxiliary equations.

We have included two exogenous shock processes - demand (gt) and mark-up/inflation (µt) shocks

- to perform additional analysis. The variables in the model are: at, yt, ct, xt, mt, y
∗
t , y

H
t , lt, λt,
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$∗t , mct, mc
X
t , mcMt , tdeft , tXt , tMt , tHt , πt, π

H
t , πXt , πMt , π∗t , rert, ∆st, it, i

∗
t , wpt, bt, $

∗,cb
t , gt, µt.

The minimum state variable (MSV) set is composed of 12 variables: at, y
∗
t , bt, $

∗
t , t

X
t , tMt , π∗t ,

rert, it, i
∗
t , gt, µt.

The nine shocks comprise four foreign economy shocks (εy
∗

t , ε
π∗
t , ε

ı∗
t , ε

$∗
t ), three domestic

economy shocks (εat , ε
g
t , ε

µ
t ) and two policy shocks

(
εintt , εcbt

)
.

C Details of the computational strategy

The log-linearised system of equations of the model can be written as:

A0

[
Xt

EtYt+1

]
= A1

[
Xt−1

Yt

]
+A2∆st +B0εt (C.1)

and

Et∆st+1 = it − i∗t + γσ2
(
$∗t +$∗,cbt

)
(C.2)

where A2 = [1, 0..0]′ is a (n1 + n2)×1 matrix and the definitions of the other matrices and vectors

are as in Section 3. This is the state space form of the model.

C.1 Solving the first block

As an illustration, we will solve the system in (C.1) under some simplifying assumptions. For a

more general solution, see Villemot (2011). The system in (C.1) can be written as:20[
Xt

EtYt+1

]
= A−1

0 A1

[
Xt−1

Yt

]
+A−1

0 A2∆st +A−1
0 B0εt

or [
Xt

EtYt+1

]
= A

[
Xt−1

Yt

]
+

[
a11∆st

0(n1+n2−1)×1

]
+Bεt

after making A = A−1
0 A1, B = A−1

0 B0 and a11 the (1, 1) element of A−1
0 . Using the Jordan

decomposition of A = PΛP−1, it becomes:

P−1

[
Xt

EtYt+1

]
= ΛP−1A

[
Xt−1

Yt

]
+

[
p11a11∆st

0(n1+n2−1)×1

]
P−1B∆st + P−1Cεt

Making R = P−1B,Λ =

[
Λ1 0
0 Λ2

]
, P−1 =

[
P11 P12

P21 P22

]
, R =

[
R1

R2

]
and p11 the (1, 1)

20Assuming A0 is invertible, otherwise we can generalise this for the case of a non-invertible matrix.
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element of P−1. Λ1 (Λ2) is the diagonal matrix of stable (unstable) eigenvalues of size n1 (n2).

The system of equations become:

[
P11 P12

P21 P22

] [
Xt

EtYt+1

]
=

[
Λ1 0
0 Λ2

] [
P11 P12

P21 P22

] [
Xt−1

Yt

]
+

[
p11a11∆st

0(n1+n2−1)×1

]
+

[
R1

R2

]
εt.

Making X̃t−1 = P11Xt−1 + P12Yt, Ỹt = P21Xt−1 + P22Yt, the system becomes:[
X̃t

EtỸt+1

]
=

[
Λ1 0
0 Λ2

][
X̃t−1

Ỹt

]
+

[
p11a11∆st

0(n1+n2−1)×1

]
+

[
R1

R2

]
εt

According to Blanchard & Kahn, given that Λ2 is the diagonal of unstable eigenvalues, the

only stable solution is given by: Ỹt = 0 = P21Xt−1 + P22Yt.

Then, the solution for the forward looking variables is:

Yt = (P22)−1 P21Xt−1. (C.3)

The solution for the system of stable (backward looking) equations is:

X̃t = Λ1X̃t−1 +

[
p11a11∆st
0(n1−1)×1

]
+R1εt (C.4)

C.2 Solving the second block

C.2.1 The MA(∞) representation of the first block

Now we change the classification of endogenous variables in block 1 to focus on those which are

part of the minimum state variables (MSV) set. We call these variables Zt, while the remaining

endogenous variables are referred to as Z−t . In our case the Zt is formed by 12 variables as

defined in appendix B.

The transition and policy functions can be written as:[
Zt
Z−t

]
=

[
W
W−

]
Zt−1 +

[
V
V −

]
ε∗t (C.5)

where ε∗′t = [ε′t,∆st] appends the depreciation rate in the vector of shocks. Evaluating the

transition function in t− 1 and replacing it in (C.5), we have:
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[
Zt
Z−t

]
=

[
W
W−

] (
WZt−2 + V ε∗t−1

)
+

[
V
V −

]
ε∗t

Repeating this process many times, we get:

[
Zt
Z−t

]
=

[
W
W−

] [
(W )n Zt−n−1 + (W )n−1 V ε∗t−n + ...+WV ε∗t−2 + V ε∗t−1

]
+

[
V
V −

]
ε∗t

which allows us to write the solution as a MA(∞):[
Zt
Z−t

]
=

[
W
W−

] ∞∑
i=1

(W )i−1 V ε∗t−i +

[
V
V −

]
ε∗t (C.6)

Given the form of matrix W , the impact of shocks diminishes over time, allowing us to approxi-

mate the solution using a fixed number of lags. We focus on the solution for it in this step and

replace it back into (C.2) In our setup i∗t follows an exogenous process which is easy to express as

a function of shocks. Finally, the last term γσ2
(
$∗t +$∗,cbt

)
is a combination of the conditional

volatility term σ2, the first order autoregressive process of $∗t and other endogenous variables in

the policy rule for $∗,cbt , which can also be expressed as a function of shocks.

C.2.2 Conditional moments and solution method

In order to calculate the conditional volatility of the depreciation rate, we need to make use of

the strategy proposed by Bacchetta and van Wincoop (2006), based on the Townsend method.

First we conjecture a solution for the depreciation of exchange rate of the form:

∆st = A(L)εi
∗
t+1 + B(L)ε$

∗
t +D(L)′ζt (C.7)

where A(L) and B(L) are infinite order lag polynomials, while D(L) is an infinite order lag

polynomials vector operating ζt, the vector of remaining shocks. Writing A(L) = a1 + a2L +

a3L
2 + ... (and a similar definition for B(L) and D(L)), we evaluate forward the conjecture (C.7)

to obtain the value in t+ 1.

∆st+1 = a1ε
i∗
t+2 + b1ε

$∗
t+1 + d′1ζt+1 + ϑ′ξt +A∗(L)εi

∗
t + B∗(L)ε$

∗
t−1 +D∗(L)′ζt

where ξt =
(
εi

∗
t+1, ε

$∗
t

)′
contains the unobservable innovations, ϑ′ = (a2, b2) stands for the pa-

rameters associated with these shocks, A∗(L) = a3 + a4L+ ... (similar definition for B∗(L)) and

D∗(L) = d2 + d3L + ... . A∗(L)εi
∗
t + B∗(L)εω

∗
t−1 + D∗(L)′ζt represents the term of all observable
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and past known shocks. Taking expectations for dealer d over the previous equations yields:

Edt (∆st+1) = ϑ′Edt (ξt) +A∗(L)εi
∗
t + B∗(L)ε$

∗
t−1 +D∗(L)ζt (C.8)

while the conditional variance as a function of unobservable innovations is:

vart(∆st+1) = a2
1vart(ε

i∗
t+2) + b21vart(ε

$∗
t+1) + (d1)′vart(ζt+1)d1 + ϑ′vart(ξt)ϑ. (C.9)

Here σ2 ≡ vart(∆st+1) is constant given that vart(ξt) is also constant. In order to obtain the

conditional moments we need to obtain the conditional expectation and variance of the unob-

servable component ξt.The computation of the conditional moments is then obtained following

Townsend (1983).

FX traders extract information from the observed depreciation exchange rate ∆st and the

signal vdt . To focus on the informational content of observable variables, we subtract the known

components from these observables and define these new variables as ∆s∗t and vd∗t . We follow the

authors’ notation, hence in this case the observation equation of this part of the problem is given

by:

Y d
t = H ′ξt + wdt (C.10)

where Y d
t =

(
∆s∗t , v

d∗
t

)′
, wdt = (0, εvdt )′ , and

H ′ =

[
a1 b1
1 0

]
The unconditional means of ξt and wdt are zero, while we define their unconditional variances as

P̃ and R respectively. Hence we can write:

Edt (ξt) = MY d
t (C.11)

where:

M = P̃H
(
H ′P̃H +R

)−1
.

For the conditional variance of the unobservable component we have P ≡ vart(ξt), where

P = P̃ −MH ′P̃ . (C.12)

Substituting (C.10) and (C.11) in (C.8) and averaging over dealers gives the average condi-
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tional expectation of the depreciation rate in terms of the shocks:

Et∆st+1 = ϑ′MH ′ξt +A∗(L)εi
∗
t + B∗(L)ε$

∗
t−1 +D∗(L)ζt. (C.13)

Moreover, replacing in equation (C.2 ) the FX intervention policy rule (B.24), the MA (∞)

representation of the endogenous variables (C.6) and the definition of σ2 from (C.9), we obtain:

Et∆st+1 = ı̂t − ı̂∗t + γσ2
(
$∗t + ϕ∆s∆st + ϕrerrert + εcbt

)
(C.14)

Et∆st+1 = Fi(L)ε∗t − G(L)εi
∗
t + ...

+ γ
[
(a2

1vart(ε
i∗
t ) + b21vart(ε

$∗
t ) + (d1)′vart(ζt)d1 + ϑ′Pϑ

]
×
[
J (L)εω

∗
t + ϕ∆s∆st + ϕrerFrer(L)ε∗t + εcbt

]
(C.15)

where Fz(L)ε∗t stands for zt = {it, rert}, G(L)εi
∗
t for i∗t , and J (L)εω

∗
t for ω∗t . This is the

”fundamental equation” MA(∞) representation.

To solve for the parameters of A(L), B(L) and D(L) we need to match the coefficients from

equations (C.13) and (C.15).

C.2.3 Solution of parameters

Now we go through the algebra. Define zy,xj ≡ dyt
dxt−j+1

as the linear impulse response in the

first step of the endogenous variable yt with respect to the exogenous variable xt−j+1. With this

auxiliary variable we identify the parameters multiplying each shock. For this, we use the method

of undetermined coefficients comparing equations (C.13) and (C.15).

Solution without rule-based FX intervention For simplicity, we solve first for the param-

eters assuming first there is no rule-based FX intervention, that is: ϕ∆s = ϕrer = 0.

We start taking derivatives to the right-hand side of equations (C.13) and (C.15) with respect

to εi
∗
t , ε

i∗
t−1, ..., ε

i∗
t−s+3, respectively:
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a3 =
dit
dεi

∗
t

+

(
dit
d∆st

d∆st
dεi

∗
t

+
dit

d∆st−1

d∆st−1

dεi
∗
t

)
− di∗t
dεi

∗
t

a4 =
dit
dεi

∗
t−1

+

(
dit
d∆st

d∆st
dεi

∗
t−1

+
dit

d∆st−1

d∆st−1

dεi
∗
t−1

+
dit

d∆st−2

d∆st−2

dεi
∗
t−1

)
− di∗t
dεi

∗
t−1

...

as =
dit

dεi
∗
t−s+3

+

s−1∑
j=1

(
dit

d∆st+1−j

d∆st+1−j

dεi
∗
t−s+3

)
− dit
dεi

∗
t−s

In this case the direct effect is zero, because i∗t only appears in the risk premium-adjusted UIP

condition, that is dit
dεi

∗
t−s+3

= 0. Then the solution for a3, a4, ...is given by:

as =

s−1∑
j=1

zi,∆ss−j aj − ρ
s−3
i∗ for s > 3 (C.16)

Similarly, taking derivatives with respect to ε$
∗

t−1, ε
$∗
t−2, ..., ε

$∗
t−s+2, respectively :

b3 =
dit
dε$

∗
t−1

+

(
dit
d∆st

d∆st
dε$

∗
t−1

+
dit

d∆st−1

d∆st−1

dε$
∗

t−1

)
+ γσ2 d$

∗
t

dε$
∗

t−1

...

bs =
dit

dεω
∗

t−s+2

+
s−1∑
j=1

(
dit

d∆st+1−j

d∆st+1−j

dεi
∗
t−s+2

)
+ γσ2 d$∗t

dεi
∗
t−s+2

Similarly to the previous case, the direct effect is zero here, that is dit
dε$

∗
t−s+2

= 0. Then the solution

for the b3, b4, ... is given by:

bs =
s−1∑
j=1

zi,∆ss−j bj + γσ2ρs−2
ω∗ for s > 3 (C.17)

Using the same approach, we take derivatives with respect to εt, εt−1, ..., εt−s for ε ∈ ζ:
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dε2 =
dit
dεt

+

(
dit
d∆st

d∆st
dεt

)
+ γσ2

(
I
ε=ε$

∗,cb
)

dε3 =
dit
dεt−1

+

(
dit
d∆st

d∆st
dεt−1

+
dit

d∆st−1

d∆st−1

dεt−1

)
+ γσ2

(
ρεIε=ε$∗,cb

)
...

dεs =
dit

dεt−s+2
+

s−1∑
j=1

(
dit

d∆st+1−j

d∆st+1−j
dεt−s+2

)
+ γσ2

(
ρs−2
ε I

ε=ε$
∗,cb
)

where I
ε=ε$

∗,cb is an indicator value of 1 when the shock ε equals εω
∗,cb

. This system is summarised

by:

dεs = zi,εs−1 +

s−1∑
j=1

zi,∆ss−j dj + γσ2
(
ρs−2
ε I

ε=ε$
∗,cb
)

(C.18)

which is valid for s > 2. Note also that dit
dεt−s+2

= 0 when ε = εω
∗,cb
.

This set of equations (C.16), (C.17) and (C.18) allows us to express the whole system as a

function of parameters a1, a2,b1, b2 and the vector of parameters d1.

For the two unobservable
{
εi

∗
t+1, ε

$∗
t

}
shocks we get:

(ϑ′MH ′)1 = zi,∆s1 a1 (C.19)

(ϑ′MH ′)2 = zi,∆s1 b1 + γσ2 (C.20)

substituting back the values for the matrices, we obtain a non-linear system of equations on

the unknowns:

[a2 b2]M

[
a1

1

]
= zi,∆s1 a1 (C.21)

[a2 b2]M

[
b1
0

]
= zi,∆s1 b1 + γσ2 (C.22)

Note that considering (C.21) and (C.22) we have two equations and four unknowns, which

hinder us from solving for the system. Bacchetta & van Wincoop (2006), solve the system of

difference equations and impose a non-explosive solution, obtaining the two additional restric-

tions. In our case, it is not possible to obtain analytically a non-explosive solution. Hence we

decide to follow a numerical approach by limiting the number of lags and analysing the stability
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of the solution. The numerical strategy relies then on the convergence of the values of A(L),

B(L) and D(L). We set up the non-linear system of equations on the first elements of both

infinite lag polynomials and search for a numerical solution using the trust-region-dogleg method

implemented by MATLAB. The extra restrictions in our case are given by selecting a limit to the

lags and setting the parameters associated with this lag in zero. Since these are functions of the

first parameters (the unknowns), we can solve the system and obtain the solution. We change

this limit sequentially and obtain solutions in each step. The algorithm stops when a fixed point

is achieved, revealing that the inclusion of additional lags has a negligible effect on the result. We

set the convergence criteria on 1e-003 . The result will be sensitive to the initial values, since

non-linear problems will yield more than one solution. For this reason we start each step using

the previous step result as initial point.

The system of equations: We can represent the system of equations using some auxiliary

matrices.

The A system

The equations (C.21) and (C.16) can be written as:


a3

a4
...
an+1

an+2

 =


zi,∆s1 0 . . . 0 0

zi,∆s2 zi,∆s1 . . . 0 0
...

...
. . .

...
...

zi,∆sn−1 zi,∆sn−2 . . . zi,∆s1 0

zi,∆sn zi,∆sn−1 . . . zi,∆s2 zi,∆s1




a2

a3
...
an
an+1

−


1
ρi∗
...
(ρi∗)n

(ρi∗)n−1

+a1


zi,∆s2

zi,∆s3
...

zi,∆sn

zi,∆sn+1


These equations can be written in the matrix form, after assuming that the value of an+2 −→

0:

Z1A = Zi2A−Xi∗ + a1Z
i,∆s
3 (C.23)

where Z1 =

[
0(n−1)×1 In−1

0 01×(n−1)

]
, A = [a2, ..., an+1]′ is a n×1 vector, Zi2 is the lower tri-

angular matrix that pre-multipliesA, Xi∗ =
[
1, ρi∗ , ..., (ρi∗)n−1

]′
, and Zi,∆s3 =

[
zi,∆s2 , zi,∆s3 , ..., zi,∆sn+1

]′
The B system:

Similarly, equations (C.17) can be written as:

Z1B = Zi2B + γσ2ρ$∗X$∗ + b1Z
i,∆s
3 (C.24)
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where B = [b2, b2, .., bn+1]′ and X$∗ =
[
1, ρ$∗ , ..., (ρ$∗)n−1

]′
.

The D system

In the same vein, the system for Dε = [dε1, d
ε
2, .., d

ε
n]′ is the following

Z1D
ε = Zi2D

ε + Zε3 when ε 6= ε$
∗,cb

Z1D
$∗,cb

= Zi2D
$∗,cb

+ γσ2X$∗,cb otherwise

where Zi,ε3 =
[
zi,ε1 , zi,ε2 , ..., zi,εn

]′
and X$∗,cb =

[
1, ρ$∗,cb , ..., (ρ$∗,cb)n−1

]′
.

The complete system of equations.

Then, after making use of Z = Z1 − Zi2, the total system of non-linear equations become:

[a2 b2]M

[
a1

1

]
= zi,∆s1 a1

[a2 b2]M

[
b1
0

]
= zi,∆s1 b1 + γσ2

A = −Z−1 (Xi∗ − a1Z3)

B = Z−1
(
γσ2ρ$∗X$∗ + b1Z3

)
Dε = Z−1Zε3

D$∗,cb
=
(
γσ2

)
Z−1X$∗,cb

σ2 = a2
1vart(ε

i∗
t+2) + b21vart(ε

$∗
t+1) + (d1)′vart(ζt+1)d1 + ϑ′vart(ξt)ϑ (C.25)

Note the system has n ×# of shocks+3 equations and unknowns, which only n × 2 + 3 are

non-linear equations (those corresponding to the B and D$∗,cb
system and the equations for a1, b1

and σ2).
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Solution with FX intervention rules When we allow for FX intervention, the equations

(C.16), (C.17), (C.18), (C.21) and (C.22) are replaced by:

as =
s−1∑
j=1

zi,∆ss−j aj − ρ
s−3
i∗ + γσ2

ϕ∆sas−1 + ϕrer

s−1∑
j=1

zrer,∆ss−j aj

 (C.26a)

bs =
s−1∑
j=1

zi,∆ss−j bj + γσ2

ρs−2
ω∗ + ϕ∆sbs−1 + ϕrer

s−1∑
j=1

zrer,∆ss−j bj

 (C.26b)

dεs = zi,εs−1 +
s−1∑
j=1

zi,∆ss−j dj + γσ2

 ρs−2
$∗,cbIε=ε$∗,cb+

ϕ∆sds−1 + ϕrer

s−1∑
j=1

zrer,∆ss−j dεj

 (C.26c)

[a2 b2]M

[
a1

1

]
= zi,∆s1 a1 + γσ2

(
ϕ∆sa1 + ϕrerz

rer,∆s
1 a1

)
(C.26d)

[a2 b2]M

[
b1
0

]
= zi,∆s1 b1 + γσ2

(
1 + ϕ∆sb1 + ϕrerz

rer,∆s
1 b1

)
(C.26e)

We can also express this with linear algebra. For example, the A system can be written as:

Z1A = Zi2A+ γσ2 (ϕ∆sIn + ϕrerZ
rer
2 )A−Xi∗ + a1

(
Zi3 + γσ2ϕrerZ

rer
3

)
Then, after making use of ZFX = Z1 − Zi2 − γσ2 (ϕ∆sIn + ϕrerZ

rer
2 ) , the total system of

non-linear equations becomes:

[a2 b2]M

[
a1

1

]
= zi,∆s1 a1 + γσ2

(
ϕ∆s + ϕrerz

rer,∆s
1

)
a1

[a2 b2]M

[
b1
0

]
= zi,∆s1 b1 + γσ2

(
1 + ϕ∆sb1 + ϕrerz

rer,∆s
1 b1

)
A = −

(
ZFX

)−1 [
Xi∗ − a1

(
Zi3 + γσ2ϕrerZ

rer
3

)]
B =

(
ZFX

)−1 (
γσ2ρ$∗X$∗ + b1

(
Zi3 + γσ2ϕrerZ

rer
3

))
Dε =

(
ZFX

)−1
Zε3

D$∗,cb
=
(
γσ2

) (
ZFX

)−1
X$∗,cb

σ2 = a2
1vart(ε

i∗
t+2) + b21vart(ε

$∗
t+1) + (d1)′vart(ζt+1)d1 + ϑ′vart(ξt)ϑ (C.27)

where M = 1
(a1)2σ2

i∗σ
2
v+(b1)2σ2

ω∗(σ2
i∗+σ2

v)

[
a1σ

2
i∗σ

2
v (b1)2 σ2

ω∗σ2
i∗

b1σ
2
ω∗
(
σ2
i∗ + σ2

v

)
−a1b1σ

2
i∗σ

2
ω∗

]
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and P = vart(ξt) =
σ2
i∗σ

2
vσ

2
ω∗

(a1)2σ2
i∗σ

2
v+(b1)2σ2

ω∗(σ2
i∗+σ2

v)

[
(b1)2 −a1b1
−a1b1 (a1)2

]
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