FX co-movements: disentangling the role of global market factors, carry-trades and idiosyncratic components

A presentation prepared for the 2nd BIS CCA Conference on “Monetary policy, financial stability and the business cycle”

Ottawa, 12–13 May 2011

Authors*: José Gonzalo Rangel
Affiliation: Bank of Mexico
Email: jgrangel@banxico.org.mx

* This presentation reflects the views of the author and not necessarily those of the BIS or of central banks participating in the meeting.
FX Comovements: Disentangling the Role of Market Factors, Carry-Trades and Idiosyncratic Components

Jose Gonzalo Rangel
Bank of Mexico

2nd BIS CCA Conference
Bank of Canada, May 13, 2011
Disclaimer

The views expressed in this paper/presentation are solely those of the author and do not necessarily reflect the views of the Central Bank of Mexico.
Comovements in FX Markets

One-month Implied Volatilities

Average FX Correlations

One-year moving average correlation based on weekly FX excess returns of 29 currencies (Jan:1999-April:2010). All of them are with respect to the US dollar.
Literature and contribution

- None of these papers separate term components of FX correlations and volatilities.
- Examines linkages between long-term trends in comovements and FX fundamentals. In particular, this paper studies time series and cross-sectional determinants of FX idiosyncratic volatilities.
Other related literature

- Non-stationary models for asset volatilities and correlations that can capture long-term dynamic behavior.
 - Univariate: Engle and Rangel (2008), Engle, Ghysels and Sohn (2009)

- Find convenient to use a factor correlation model that is able to separate heterogeneous systematic and idiosyncratic components of FX volatilities and correlations
 - Rangel and Engle (2009)
Approach

- Characterize high and low frequency correlation dynamics in FX markets.
 - Use Factor-Spline-GARCH model of Rangel and Engle (2009)
- Need a factor currency pricing model:
 - Follow Lustig, Roussanov and Verdelhan (2010)
- Link low frequency correlation components with economic fundamentals
 - Apply panel and SUR models to analyze time series and cross sectional variation of FX idiosyncratic volatilities
Factor currency pricing model

Excess returns (local currency per US dollar)
\[r_{x_{t+1}} = f_t - s_{t+1} \approx i^*_t - i_t - \Delta s_{t+1} \]
where \(f \)=log forward price, \(s \)=log spot price, \(i^* \)=foreign nominal interest rate, \(i \)=domestic nominal interest rate

Following Backus, Foresi and Telmer (2001):
\[(1 + \Delta s_{t+1}) \approx \frac{S_{t+1}}{S_t} = \frac{M_{t+1}}{M^*_{t+1}}, \text{ where} \]
\[M_{t+1}=\text{US stochastic discount factor, } M^*_{t+1}=\text{foreign stochastic discount factor.} \]

Assume that (log) SDFs are linear in pricing factors
Factor currency pricing model

Lustig et al. (2010) suggest two factors:

1. RX=Average currency excess return (equally weighted portfolio of currencies)
2. HML_FX=Return on a zero-cost strategy that goes long in the highest interest rate currencies and short in the lowest interest rate currencies (carry-trade)

In addition, include an equity market factor
3. Rm=Global equity market portfolio

Intuition:
RX is a “dollar risk factor” that mainly account for variation in m_{t+1} (US stochastic discount factor), HML_FX and Rm are common global components of m^{*}_{t+1} (country i stochastic discount factor).
Factor-Spline-GARCH (FSG-DCC) approach (Rangel and Engle 2009)

- Factor model: $r_{x_t} | F_t, \Phi_{t-1} \sim N(BF_t, \Sigma_{u,t})$, $F_t | \Phi_{t-1} \sim N(\eta, \Sigma_{F,t})$

- Following Engle and Rangel (2008), factors are described by asymmetric spline-GARCH processes:

\[
\begin{align*}
 f_{k,t} - E_{t-1}(f_{k,t}) = \sqrt{\tau_{f,k,t}} g_{f,j,t} \varepsilon_{f,j,t}, & \quad \varepsilon_{f,j,t} \sim N(0,1) \\
 g_{f,j,t} \sim \text{Asymmetric GARCH}, & \quad \tau_{f,j,t} \sim \text{Exponential Quadratic Spline}
\end{align*}
\]

- Also, idiosyncratic terms show asymmetric spline-GARCH dynamics:

\[
\begin{align*}
 u_{i,t} = \sqrt{\tau_{i,d}} g_{i,t} \varepsilon_{i,t}, & \quad \varepsilon_{i,t} \sim N(0,1) \\
 g_{i,t} \sim \text{Asymmetric GARCH}, & \quad \tau_{i,t} \sim \text{Exponential Quadratic Spline}
\end{align*}
\]

- Add effects of time-varying betas and latent unobserved factors:

\[
\varepsilon_t = (\varepsilon_{1,t}, \varepsilon_{2,t}, \ldots, \varepsilon_{N,t}, \varepsilon_{f,1,t}, \varepsilon_{f,2,t}, \varepsilon_{f,3,t})' \sim \text{DCC Model of Engle (2002)}
\]
Low frequency covariance

- Given $\mathbf{r}_t=(r_{x_1 t},\ldots, r_{x_N t})'$ satisfying the FSG-DCC model, then

$$V_{t-1}(\mathbf{r}_t) \equiv H_t = B \Sigma_{F,t} B' + B \text{cov}_{t-1}(F_t, \mathbf{u}_t') + \text{cov}_{t-1}(\mathbf{u}_t, F_t')B' + \Sigma_{u,t}$$

mean reverts toward the low frequency covariance:

$$\Upsilon_t = B \Gamma_{F,t} B' + \Gamma_t^{1/2} \bar{R}_{r,r} \Gamma_t^{1/2},$$

$$\Gamma_{F,t} = \text{diag}\{\tau_{f,j,t}\}, \quad \Gamma_{u,t} = \text{diag}\{\tau_{i,t}\},$$

$$\bar{R}_{r,r} = \text{sample correlation of } (\varepsilon_{1,t},\ldots,\varepsilon_{N,t})'$$
Data

- 29 exchange rates (forward and spot prices). They correspond to countries with no fixed exchange rates (include developed and emerging markets).
- The sample goes from January 1999 (entry date of the Euro) to August 2010. Data is also at a weekly frequency.
- The carry-trade and the FX market portfolio are constructed using an extended sample of 52 countries. It includes the 48 currencies considered in Menkhoff et al. (2009) plus the cases of Chile, Colombia, Peru, and Turkey.
- The MSCI World Index is used as a proxy for the equity market factor.
- Quarterly data on GDP, inflation (measured through consumer price indices), money supply (defined as M2), and short-term interest rates (source: IFS database).
Estimation Results: Correlation dynamics (examples)

Correlations: Euro and Singapore Dollar

Correlations: Danish Krone and Yen
Estimation Results: Carry-trade betas

- South Africa
- Australia
- New Zealand
- Brazil
- Mexico
- Colombia
- Poland
- Chile
- Canada
- Turkey
- Indonesia
- Taiwan
- Korea
- Israel
- Philippines
- Hungary
- Singapore
- UK
- India
- Peru
- Thailand
- Norway
- Sweden
- Czech Republic
- Slovak Republic
- Denmark
- Japan
- Switzerland
- Euro Area
Estimation Results: Equity market betas
Estimation Results: FX market betas

Country

- Hungary
- Poland
- Slovak Rep.
- Czech Rep.
- Euro Area
- Sweden
- Denmark
- Swiss
- Norway
- UK
- South Africa
- New Zealand
- Australia
- Turkey
- Japan
- Indonesia
- Brazil
- Korea
- Singapore
- Canada
- Chile
- Mexico
- Thailand
- Taiwan
- Colombia
- Israel
- Philippines
- Peru
- India

Value

-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
Estimation Results: Average FX correlations and low frequency idiosyncratic volatility

Average FX Correlations

Average Low Frequency FX Idiosyncratic Volatility (Annualized)
Estimation Results: low frequency idiosyncratic volatilities

Australia, Brazil, Canada, Japan
Measures of long-term FX idiosyncratic volatility

For year t and currency i:

$Lvol_{i,t} = \left(\frac{1}{52} \sum_{d=1}^{52} \tau_{i,t,d} \right)^{1/2}$,

$Rvol_{i,t} = \left(\sum_{d=1}^{52} u_{i,t,d}^2 \right)^{1/2}$,

Estimate two systems:

$Lvol_{i,t} = x'_{i,t} \beta_t + \mu_{i,t}, \ t = 1, 2, ..., T, \ i = 1, 2, ..., N_t$,

$Rvol_{i,t} = x'_{i,t} \beta_t + \nu_{i,t}, \ t = 1, 2, ..., T, \ i = 1, 2, ..., N_t$

- Two econometric strategies: SUR and panel models with time fixed effects and AR(1) innovations.
Explanatory variables

Following Engle and Rangel (2008), the volatility of macroeconomic variable y is estimated from:

$$\Delta \log(y_t) = c + u_t, \quad u_t = \rho u_{t-1} + e_t,$$

$$\sigma^2_{y,t} = \frac{1}{4} \sum_{j=t-2}^{t+1} |e_j|.$$
FX Idiosyncratic Volatility Regressions

<table>
<thead>
<tr>
<th>Exp. variable</th>
<th>Low frequency volatility</th>
<th>Realized volatility</th>
<th>Low frequency volatility</th>
<th>Realized volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td>grgdp</td>
<td>-1.7435 (0.603)**</td>
<td>-1.7185 (0.9395)*</td>
<td>-1.5822 (0.6629)**</td>
<td>-1.4196 (1.0804)</td>
</tr>
<tr>
<td>gcpi</td>
<td>2.2178 (0.684)**</td>
<td>3.0819 (0.8991)**</td>
<td>2.0080 (0.7714)**</td>
<td>3.8677 (1.2042)**</td>
</tr>
<tr>
<td>gm2</td>
<td>0.2644 (0.1756)</td>
<td>-0.2847 (0.2258)</td>
<td>0.1773 (0.1918)</td>
<td>-0.2571 (0.322)</td>
</tr>
<tr>
<td>vol_gm2</td>
<td>0.4994 (0.2409)**</td>
<td>0.6403 (0.3596)*</td>
<td>0.0748 (0.292)</td>
<td>0.2676 (0.4499)</td>
</tr>
<tr>
<td>vol_grgdp</td>
<td>-0.7478 (0.5072)</td>
<td>-1.1495 (0.7249)</td>
<td>0.2085 (0.591)</td>
<td>-0.6321 (0.8408)</td>
</tr>
<tr>
<td>vol_gcpi</td>
<td>1.0858 (0.6979)</td>
<td>1.8040 (0.8932)**</td>
<td>0.6928 (0.8455)</td>
<td>1.5785 (1.145)</td>
</tr>
<tr>
<td>vol_irate</td>
<td>0.0046 (0.0081)</td>
<td>0.0272 (0.0108)**</td>
<td>0.0012 (0.0087)</td>
<td>0.0040 (0.0134)</td>
</tr>
</tbody>
</table>

Average r^2: 0.11 for SUR model, 0.14 for Panel model.
Estimation results (net of transaction costs)

\[
r_{t+1} = f_t^b - s_{t+1}^a,
\]

FX Idiosyncratic Volatility Regressions (Net of Transaction Costs)

<table>
<thead>
<tr>
<th>Exp. variable</th>
<th>Low frequency volatility</th>
<th>Realized volatility</th>
<th>Low frequency volatility</th>
<th>Realized volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SUR model</td>
<td>Panel model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grgdp</td>
<td>-0.3548</td>
<td>-0.7039</td>
<td>-0.2426</td>
<td>-0.5343</td>
</tr>
<tr>
<td></td>
<td>(0.1488)**</td>
<td>(0.2331)**</td>
<td>(0.1359)*</td>
<td>(0.264)**</td>
</tr>
<tr>
<td>gcpi</td>
<td>0.6690</td>
<td>0.7435</td>
<td>0.4349</td>
<td>0.7641</td>
</tr>
<tr>
<td></td>
<td>(0.1595)**</td>
<td>(0.2398)**</td>
<td>(0.157)**</td>
<td>(0.2959)**</td>
</tr>
<tr>
<td>gm2</td>
<td>0.0059</td>
<td>-0.1548</td>
<td>0.0100</td>
<td>-0.1273</td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.0603)**</td>
<td>(0.0394)</td>
<td>(0.0782)</td>
</tr>
<tr>
<td>vol_gm2</td>
<td>0.0462</td>
<td>0.3040</td>
<td>0.0445</td>
<td>0.1873</td>
</tr>
<tr>
<td></td>
<td>(0.0561)</td>
<td>(0.0927)**</td>
<td>(0.0594)</td>
<td>(0.1109)*</td>
</tr>
<tr>
<td>vol_grgdp</td>
<td>-0.2754</td>
<td>-0.5100</td>
<td>-0.1583</td>
<td>-0.5607</td>
</tr>
<tr>
<td></td>
<td>(0.1237)**</td>
<td>(0.1823)**</td>
<td>(0.1188)</td>
<td>(0.2095)**</td>
</tr>
<tr>
<td>vol_gcpi</td>
<td>0.7831</td>
<td>0.7797</td>
<td>0.5477</td>
<td>0.6027</td>
</tr>
<tr>
<td></td>
<td>(0.1475)**</td>
<td>(0.2275)**</td>
<td>(0.168)**</td>
<td>(0.2864)**</td>
</tr>
<tr>
<td>vol_irate</td>
<td>-0.0004</td>
<td>0.0025</td>
<td>0.0009</td>
<td>-0.0012</td>
</tr>
<tr>
<td></td>
<td>(0.0018)</td>
<td>(0.0027)</td>
<td>(0.0018)</td>
<td>(0.0033)</td>
</tr>
<tr>
<td>Average r^2</td>
<td>0.20</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Year fixed effects and VIX

![Graph showing Year effects, VIX annual average, Year effects LFV, and Year effects RV over years 1999 to 2009.](image-url)
Concluding Remarks

- This paper models term correlation patterns in FX markets.
- The framework allows us to capture empirical features of the data and provides reasonable estimation results.
- By combining a factor currency pricing model with Factor-Spline-GARCH dynamics, this paper separates systematic and idiosyncratic components that drive the variation of FX comovements, and links their long-term component to economic fundamentals.
- Inflation and real growth are robust determinants of long-term FX idiosyncratic volatilities.
- An omitted factor may be related to VIX.
- Moderate R^2s.
Equity Market Risk Factor

Carry Risk Factor

Dollar Risk Factor

Legend:
- Low frequency volatility
- High frequency volatility