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Abstract 

This paper models high and low frequency dynamic components of FX 
excess return correlations and examines their relationship with economic 
fundamentals. A factor currency pricing model is used to characterize the 
correlation structure of FX excess returns. I provide evidence on high levels 
of comovement in FX markets during the post-crisis (or recovery) period 
following the 2008 financial turmoil. I find that while the low frequency 
component of systematic volatility shows an increasing trend during this 
recent period, the low frequency component of idiosyncratic volatilities 
presents declining patterns. These two effects explain the increase in 
average long-term correlations. In terms of idiosyncratic effects, my results 
suggest that country-specific inflation levels and real output growth 
significantly affect the time-series and cross-sectional variation of long-term 
FX idiosyncratic volatilities. 
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1. Introduction 

 

The variation over time of FX comovements plays a key role in the assessment and 

management of currency risk. For example, its analysis helps to evaluate the global 

exposure of a currency portfolio, hedge investment positions, diversify the portfolio, 

and price currency derivatives. In this regard, the term structure of such comovements 

can provide a broader view to distinguish between short and long-term risk exposure in 

FX markets. Despite the practical importance of this distinction, no empirical studies 

have analyzed jointly the dynamic features of term FX comovements and their 

economic determinants. 

 

This paper fills this gap and examines the term dynamic behavior of the comovement of 

FX excess returns and its relation with economic fundamentals, including global 

components of the stochastic discount factor and country-specific (idiosyncratic) 

macroeconomic variables. FX excess returns are measured from the point of view of a 

US investor that manages a portfolio of foreign currencies.1 The data show that, in 

addition to correlation clustering and short-term dynamics driven by the arrival of high 

frequency return information, there is striking evidence of long-term variation (trends) 

in the return correlation structure. This makes unappealing the application of dynamic 

correlation models that mean-revert to constant levels. Instead, I apply the recent 

approach of Rangel and Engle (2009) that captures high and low frequency fluctuations 

of asset comovements and relaxes the restriction of mean reversion to a constant 

unconditional correlation matrix. Under this framework, the high frequency correlation 

mean-reverts to a slow-moving low frequency correlation component. The model of 

Rangel and Engle (2009) assumes a factor asset pricing structure to characterize asset 

returns. In the present case, I consider the factor specification of Lustig, Roussanov, and 

Verdelhan (2009). This framework assumes that the stochastic discount factor is linear 

in the pricing factors.2 They suggest a currency pricing model with two factors: 1) a 

carry-trade risk factor based on a zero-cost strategy that goes long in a portfolio of 

                                                 
1 FX excess returns are defined as the return on buying a foreign currency in the forward market and then 
selling it in the spot market after one month. 
2 This asset pricing approach incorporates, as a particular case, the seminal model of Backus, Foresi, and 
Telmer (2001). The main critical difference is that this earlier model does not allow the loadings of the 
common component to differ across currencies. 
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currencies of high interest rates countries and short in a portfolio of low interest rates 

countries, and 2) an FX market factor that measures the average excess return of all 

foreign currency portfolios.3 In addition, I incorporate the effect of a third factor 

associated with equity market risk. The resulting three factor model is used to 

characterize the systematic component of FX excess returns and isolate their 

idiosyncratic risk. 

 

This decomposition not only facilitates the interpretation of changes in the correlation 

structure, but also allows to link economic fundamentals with the different components 

of currency risk. In particular, the factor structure implies a correlation specification that 

depends on systematic and idiosyncratic variances, factor loadings (betas), and 

covariances across both systematic and idiosyncratic terms. Under this framework, 

while the level of comovement between two assets (or markets) increases as the 

systematic volatility -or the level of the factor loadings (betas)- raises, it also declines as 

the idiosyncratic volatility of one (or both) assets increases.  

 

The Factor-Spline-GARCH model of Rangel and Engle (2009) produces a slow moving 

correlation component that depends on the low frequency systematic and idiosyncratic 

volatilities. Also, the model includes a high frequency correlation component that is 

driven by high frequency components of these volatilities and by conditional covariance 

terms that capture temporal variation in the betas and the effects of latent omitted 

factors. The two term correlation components appear to be consistent with the empirical 

patterns observed in the studied dataset, which includes 29 currencies during the period 

1999-2010.4 These currencies are measured with respect to the U.S. dollar and 

correspond to floating exchange regimes. The data frequency is weekly in order to avoid 

asynchronous trading biases.5 The starting date was selected to match the introduction 

of the Euro as a common currency in the European zone. An exploratory analysis based 

                                                 
3 The carry-trade factor has been examined in recent studies, which suggest that this factor conveys a 
premium that has become more important in recent years (see Brunnermeier, Nagel, and Pedersen (2009), 
Lustig and Verdelhan (2007) and Lustig, Roussanov, and Verdelhan (2009)). Menkhoff, Sarno, 
Schmeling, and Schrimpf (2009) use the second factor to analyze global FX volatility. 
4 The pricing factors are constructed from an extended sample that includes 52 countries. It incorporates 
the cases analyzed in Menkhoff, Sarno, Schmeling and Schrimpf (2009), and four additional countries: 
Chile, Colombia, Peru, and Turkey. 
5 The approach used in this paper can be modified to incorporate higher frequency data. For example, 
Engle and Rangel (2009) synchronize daily returns and estimate the Factor-Spline-GARCH model to 
characterize correlations dynamics in international equity markets. 
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on model-free rolling correlations motivates the importance of introducing different 

types of dynamics into these components to explain the variation in the comovement of 

currency returns over time.  

 

The present paper documents historical high levels of comovements in FX markets 

during the most recent years. Although it is natural to expect high levels of asset 

comovements during global crisis periods (see, for example, Ang and Bekaert (2002)), 

the levels of correlations in FX markets have remained high for about two years. My 

evidence suggests that this behavior is explained by increasing patterns in the long-term 

volatility components of the risk factors, as well as by declining idiosyncratic 

volatilities since the peak reached at the end of 2008.6 

 

To complement the analysis of the correlation components, I perform time series and 

cross-sectional analyses based on linear projections of low frequency FX idiosyncratic 

volatilities on country-specific fundamental macroeconomic variables, such as real 

growth, inflation, money supply growth, the volatilities of these variables, as well as the 

volatility of short-term interest rates.7 I follow the approach of Engle and Rangel (2008) 

by using seemingly unrelated regressions (SUR) and dynamic panel models. My results 

suggest that long-term FX idiosyncratic volatilities are significantly affected by 

inflation and growth. In particular, low growth and high inflation are associated with 

higher levels of FX idiosyncratic volatilities. Also, higher volatility of inflation is 

positively related to FX idiosyncratic volatility. These results are statistically significant 

and robust to controlling for transaction costs in FX markets. Nevertheless, the 

explanatory power of these macroeconomic variables appears to be modest. In addition, 

my evidence indicates that long-term FX idiosyncratic volatility may be influenced by a 

common time varying component that shows high correlation with stock market 

volatility.  

 

Comovements in FX markets have been empirically explored in Kroner and Sultan 

(1993), Tong (1996), Sheedy (1998), Gagnon, Lypny and McCurdy (1998), and Chang 

                                                 
6 Other causes may be temporal or permanent increases in the factor loadings. Although the Factor-
Spline-GARCH framework can capture temporal variation in the betas, it has limitations because the 
betas are assumed to be stationary and mean-reverting to their unconditional versions. So, the model only 
captures temporal deviations of the factor loadings from such constant unconditional terms.  
7 Engel and West (2005) use similar measures of fundamentals and relate them to various theoretical 
exchange rate models.  
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and Kim (2001). Their results suggest time variation and clustering in currency 

correlations. However, these studies focus on stationary frameworks and none of them 

capture long-term trends in FX correlations along with high frequency changes. The 

present study not only provides further evidence of significant time variation and 

clustering in FX excess returns comovements, but also discusses trend behavior in the 

recent years. Moreover, it links such a pattern to the evolution of global risk 

components, countries’ sensitivities to each of them, and country-specific 

macroeconomic factors. The present paper also contributes to explain patterns in FX 

comovements during the most recent post-crisis period. 

 

The paper has the following structure. Section 2 provides a summary of the correlation 

structure implicit in factor asset pricing models. It also presents the factor specification 

estimated for FX markets and a summary of the Factor-Spline-GARCH econometric 

approach. Section 3 describes the data to compute FX excess returns and the proxies for 

the global risk factors. It also illustrates stylized facts in the recent comovement of FX 

excess returns using model-free measures. Section 4 presents the model estimation 

results and examines the dynamic behavior of the correlation determinants. In Section 5, 

I perform time series and cross-section regression analyses of FX idiosyncratic 

volatilities. Section 6 provides concluding remarks. 

 

2. Factor Asset Pricing Models and Correlation Structure 

 

2.1 Standard factor models and correlations  

 

To explain the recent evolution of the comovement (correlation) across currency 

markets, I use standard factor asset pricing models. The typical example of such models 

is the popular APT (Arbitrage Pricing Theory) model of Ross (1976). Under this 

framework, the return of an asset (ri,t) can be written as a linear combination of K 

systematic risk factors (f1,t, f2,t,…, fK,t) that capture the common variation in individual 

asset returns, and an idiosyncratic return (εi,t) that is uncorrelated with respect to the 

factors. 

 , ,1 1, ,2 2, , , ,...i t i i t i t i K K t i tr f f f           (1) 
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Some examples of risk factors are market risk, macroeconomic risk, and liquidity risk. 

The idiosyncratic return captures asset-specific (or country-specific) diversifiable risk. 

Under standard assumptions in (static) factor models, the idiosyncratic terms as well as 

the factors are considered as mutually and unconditionally uncorrelated.8 The factor 

loadings (betas) indicate the sensitivity of an asset return to each of the risk factors. 

Factor models are convenient because they provide a particular structure for the 

correlation process. For instance, if we have two asset returns described by Equation (1) 

that satisfy the mentioned assumptions, then their correlation is as follows: 
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where: 

σ(fk,t) denotes the systematic volatility associated with factor k, for k=1,2,…,K. 

σ(εi,t) is the idiosyncratic volatility of asset i. 

βi,k (beta) is the factor k loading or the sensitivity of asset i to factor k, for k=1,…,K. 

 

Thus, if the factor model is correctly specified, the level of comovement between two 

assets is a function of the systematic volatilities, the idiosyncratic volatilities, and the 

factor loadings (betas). The direction of the effects can be explored using a simple 

comparative statics exercise. Assuming for simplicity a single factor model (K=1), the 

partial derivatives of the correlation expression in (2) are the following: 
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These expressions suggest that, ceteris paribus, an increase in systematic volatility leads 

to an increase in the level of correlation. In contrast, increases in idiosyncratic 

                                                 
8 Regarding the factors, this is not a restrictive assumption. Indeed, factors can be orthogonalized by using 
the orthogonal projection (residuals from a linear regression) of each factor on the others. The assumption 
of unconditionally uncorrelated idiosyncratic terms is useful in this subsection to facilitate the exposition, 
but it will be relaxed in the empirical part of this paper. 
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volatilities are associated with declines in the level of correlation. Moreover, if the betas 

become larger in absolute value, the level of correlation increases. However, the 

empirical examination of these effects requires further considerations about the 

underlying assumptions in (1) and (2). Indeed, changes in correlations can be due to 

other effects that are not captured in specification (2), for example, omitted factors and 

the conditional interactions across both factors and idiosyncratic terms (see Rangel and 

Engle (2009)). These effects are incorporated in the specification of the conditional high 

frequency correlation component, described later in this section. 

 

2.2 A factor specification for currency excess returns 

 

Currency excess returns can be defined in terms of spot and forward exchange rates. In 

particular, the excess return on a currency is the return on buying the foreign currency in 

the forward market and then selling it in the spot market one month later. Following the 

notation of Lustig et al. (2009) and Menkhoff et al. (2009), the log excess return can be 

written as: 

 1 1,t t trx f s    (6) 

where f is the log of the forward exchange rate and s denotes the log of the spot 

exchange rate. 

 

Lustig et al. (2009) form currency portfolios based on the level of foreign interest rates 

and find that two factors explain more than 80% of the return variation on these 

portfolios.9 After performing a principal components analysis, they find that the first 

principal component is indistinguishable from the average portfolio return. They 

interpret this first factor as a level factor. The second principal component is basically 

the difference between the return on the last portfolio and that on the first portfolio. This 

factor is interpreted as a slope factor and basically captures the excess return on a carry-

trade zero-cost strategy that goes long on the portfolio of the highest interest rate 

currencies and short on that of the lowest interest rate currencies. 

 

                                                 
9 They allocate all the currencies in their sample to six portfolios ranked from low to high interest rates, 
which are measured at the end of the period. Thus, the portfolios are rebalanced at the end of every 
month. 
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Their model can be written in terms of a stochastic discount factor that is linear in the 

pricing factors. In particular, the Euler pricing equation leads to the following moment 

condition: 

 1 1( ) 0,k
t t tE M Rx    (7) 

where 1
k
tRx   is the excess return on portfolio k and Mt+1 is the stochastic discount factor 

that is assumed to be linear in the pricing factors as follows: 

 1 11 ( ).t tM b F      (8) 

In this expression Ft+1 is a vector of factors, b is a vector of factor loadings, and μ is a 

vector of factor means. Under this setup, expected excess returns can be written in terms 

of the vector of prices of risk λ as: 

 ( )k kE Rx  


 (9) 

where k


is a vector of betas (regression coefficients) associated with the linear 

projection of portfolio k excess returns on the factors. In the currency context, the 

following specification that separates systematic and idiosyncratic components is 

consistent with the described framework:10 

 1 1 1 1( )k k k k
t t t t trx E rx F u   

  


 (10) 

The idiosyncratic component ( 1
k
tu  ) does not bear factor systematic risk. The empirical 

implementation of this framework requires a selection of proxies for the factors and 

some assumptions about the error term. Following the results of Lustig et al. (2009), I 

consider an equally weighted portfolio of currency excess returns (denoted by RX) and 

the carry-trade portfolio (HMLFX) suggested by these authors.11 In addition, and 

different from the specification of Lustig et al. (2009), I consider a third factor that 

incorporates equity global market risk (Rm). This factor can be motivated either 

theoretically, by the fact that the stochastic discount factor should be effective to price 

equities and other asset classes as well; or empirically, by the highly significant betas 

obtained from the estimation of the model (see Table 2 in Section 4).  

 

                                                 
10 Alternatively, following Backus et al. (2001), the depreciation rate can be seen as the log difference of 
the local and foreign stochastic discount factors (SDFs). Assuming that each (log) SDF is linear in a 
subset of the considered risk factors, and given that rx interest rate differential – depreciation rate (see 
Equation (24)), this type of beta representation for excess returns can be formulated as a reasonable 
approximation. 
11 The RX portfolio is also analyzed in Menkhoff et al. (2009). I use a sample closer to theirs because it is 
broader than the sample of Lustig et al. (2009). 
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Other important differences of my approach with respect to that of Lustig et al. (2009) 

are related to the data frequency and the analyzed dynamic features. In particular, while 

these authors focus on the cross-sectional variation of quarterly aggregated currency 

returns on a few portfolios, I use higher frequency (weekly) data on excess returns of 

individual currencies and focus on the time series variation of higher order moments. In 

particular, based on the specification in (10), I characterize the dynamics of second 

moments of currency excess returns and relate them to macroeconomic variables. 

 

2.3 An econometric model for FX comovements 

 

In this section, I describe the econometric model applied to characterize different 

features of the dynamics of FX comovements. The use of the Factor-Spline-GARCH 

framework of Rangel and Engle (2009) is motivated by the factor asset pricing structure 

in (10) and the goal of capturing short-term patterns and non-stationary long-term trends 

in the second moments of FX returns. Following this approach and assuming 

conditional normality, I parameterize the empirical pricing relation in (10) as: 

 1 , 1 ,| , ~ ( , ), | ~ (0, ),t t t u t t t F tx F N BF H F N Htr     (11) 

where 

, , , , , , , , , , ,u t u t rx rx t u t F t F t f f t F tH R and H R       

, , , , ,rx rx t f f tR and R are correlation matrices  

 , , ~ -u t F tand Diagonal Spline GARCH   (12) 

 

Here, 2
, ,u t u t tD    and 2

, ,F t F t tG   , where , ,{ },u t i tdiag  
1

2
,{ }t i tD diag g , for 

i=1,2,…,N, , , ,{ },F t f j tdiag   and 
1

2
, ,{ }t f j tG diag g , for j=1,2,…,K. Based on the 

discussion in the previous subsection, Ft=(f1,t=RXt, f2,t=HMLFX,t, f3,t=Rmt)’. As in Engle 

and Rangel (2008), the , 'i t s  are specified as exponential quadratic splines and the gi,t’s 

are unit asymmetric GARCH processes. Element by element, we have: 

 
, , 1 , , , ,

, , , , , , ,

( ) ' , 1,..., ,

, 1,..., ,

i t i t t i t i t i t i t i t

j t f j t f j t f j t
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f g j K

  

 

    

 
 (13) 

where the high and low frequency variance components of the idiosyncratic terms are 

defined as: 
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and the variance components of the three factors are: 
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The model is completed by adding dynamics to the covariation across factor and 

idiosyncratic innovations using the dynamic conditional correlation (DCC) specification 

of Engle (2002) for the vector t 1, 2, , ,1, , ,( , ,..., , ,..., ) 't t N t f t f K tε      . Hence, its 

correlation structure can be expressed as a partitioned correlation matrix: 

 , , , ,

1 t
, , , ,

(ε ) ,rx rx t rx f t

t
f rx t f f t

R R
V

R R

 
  
 

 (16) 

where Rrx,rx,t describes the correlations across idiosyncratic innovations,  Rrx,f,t 

characterizes the correlations across idiosyncratic and factor innovations, and Rf,f,t 

describes the correlations across factor innovations. As a result, the whole model 

parameterizes the conditional covariance matrix of returns in equation (10) as: 

 1/2 1/2 1/2 1/2 1/2 1/2

1 t t , , , , , , , , , ,cov ( , ') ,t f t t f f t t f t f rx t t t t t rx f t t t rx rx t t tx x B G R G B BR D D R B D R Dr r
           (17) 

and the following expression defines the low frequency covariance: 

 1/2 1/2
1 , ,' ,t f t t rx rx tB B R      (18) 

where ,rx rxR  is the unconditional correlation of idiosyncratic innovations. Analogous 

expression for the high and low frequency correlation matrices are: 

 1/2 1/2
1 t t 1 t( , ') {cov( , ')} cov ( , ') {cov( , ')} ,t t t t t t tcorr x x diag x x x x diag x xr r r r r r r r 
   (19) 

 
 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

, , , , , ,{ ' } ( ' ) { ' }
t f t t rx rx t f t t rx rx t f t t rx rx tLFR diag B B R B B R diag B B R              (20) 

 

The main property of this model is that the high frequency correlation component in 

(19) mean-reverts toward the time-varying low frequency correlation matrix in (20) that 

can capture long-term trend behavior in the comovement of FX excess returns. 
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3. Data and stylized facts 

 

The sample used in my empirical analysis includes daily returns that are aggregated up 

to a weekly frequency to avoid major concerns of biases from non-synchronous trading 

activity. I examine the comovement across the 29 currencies described in Table 1. 

Nevertheless, I use an extended sample of currencies to construct the RX and HMLFX 

factors.  In particular, I consider a sample of 52 countries that includes the 48 currencies 

considered in Menkhoff et al. (2009) plus the cases of Chile, Colombia, Peru, and 

Turkey. Using an extended sample for the computation of the factor portfolios is useful 

for obtaining more precise measures of the common components and avoiding the 

concern of simultaneity problems. I use the MSCI World Index as a proxy for the equity 

market factor. Daily returns on this index are aggregated up to a weekly frequency. The 

series on forward and spot exchange rates were obtained from Bloomberg. The sample 

period goes from January 1999 to August 2010. The initial date was selected to match 

the introduction of the Euro as a common currency in most of the European region. The 

factor portfolios are constructed following Lustig et al. (2009) and Menkhoff et al. 

(2009). As in these studies, I also examine the sensitivity of the results to the effect of 

transaction costs.  

 

Another goal of this study is to examine the cross-sectional determinants of FX 

idiosyncratic volatility that, as shown in Section 4, plays an important role in explaining 

FX comovements. For this analysis, I consider various measures of FX fundamentals 

following Engel and West (2005). In particular, I use quarterly data on GDP, inflation 

(measured through Consumer Price Indices), money supply (defined as M2), and short-

term interest rates for the 29 countries described in Table 1.  The International Financial 

Statistics (IFS) database from the International Monetary Fund (IMF) is the source of 

macroeconomic information. 

 

In order to explore some patterns of international comovement in FX markets, I 

construct a time series that measures the average correlation at each point in time. This 

average is taken from the individual correlations across the excess returns on the 29 

currencies described in Table 1. Specifically, the time t correlation between the 

depreciation rates of two currencies is estimated from the sample correlation based on a 
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rolling sample of 52 weeks (1 year). Then, at every week, the cross-sectional average of 

all the pairwise correlations is considered. Thus, the average global correlation is 

defined as follows: 

 , ,
1

1 1

( 1)

N

t i j t
i j iN N

 
 


   (21) 

where ρi,j,t is the correlation between the excess returns on currencies i and j at week t. 

Figure 1 shows the dynamic behavior of the average FX comovement. It illustrates a 

pattern consistent with a positive trend.12 Also, an upward jump is observed after the 

crisis and its level has remained high since the end of 2008. In fact, in terms of the 

(almost) 12 years included in the sample, this level of comovement has reached 

historical maximums during the last two years. These patterns suggest that standard 

correlation models that mean-revert to constant levels may be restrictive to describe the 

features of the data. Thus, considering the presence of either long-term trends or 

regimes appears to be important for modeling FX comovements. This motivates the 

advantages of using a framework such as the one described in Section 2, which 

incorporates long-term trend behavior in the correlation structure of asset returns.  

 

4. Estimation results  

 

The factors and excess returns are constructed following Lustig et al. (2009). Based on 

specification (10), I estimate a Factor-Spline-GARCH model using equations (11)-(20)

and the definition of excess returns in (6).13 The results of the estimation are shown in 

Table 2. In most cases, there is evidence of highly significant volatility persistence 

(volatility clustering). Regarding the unconditional betas, with exception of India, at 

least one of the factors showed a significant effect on each currency excess return. The 

FX market beta is significant in 28 out of 29 cases, the stock market beta shows 

statistical significance in 17 cases, and the carry-trade beta does it in 23 cases. The signs 

are also consistent with the economic intuition. For example, the betas of the FX 

(equally weighted) market portfolio are in general positive and their average is close to 

one. The carry-trade betas are consistent with the findings of Lustig et al. (2009), but in 

this case focusing on individual currencies instead of aggregated portfolios. Indeed, the 

                                                 
12 In results not reported in this paper, I find that a regression of this series on a linear trend (over the 
sample period) suggests a trend coefficient that is positive and statistically significant at the 1% level. 
13 The estimation strategy follows the two-step GMM approach described in Rangel and Engle (2009). 
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carry-trade betas tend to be negative and large in magnitude for low interest rate 

countries, such as Denmark, the Czech Republic, the Euro Area, Japan, Norway, the 

Slovak Republic, Sweden, Switzerland, and Thailand. In contrast, they tend to be 

positive and large for higher interest rate countries such as Australia, Brazil, South 

Africa, New Zealand, and Mexico. In terms of the stock market beta, it is positive for 

most of the cases, but Denmark, the Euro Area, Japan, the Slovak Republic, 

Switzerland, Thailand, and the UK. 

 

The volatility estimates presented in the last four columns of Table 2 also tend to show 

the usual patterns. The average ARCH effect is around 0.18 and the average GARCH 

effect is 0.70. However, the leverage effect only showed some statistical significance in 

27% of the cases. For this parameter, it is difficult to find a sign pattern. The average 

number of knots of the low-frequency volatility splines is 2.7, which indicates the 

presence of about three main inflection points in the average long-term trend of FX 

idiosyncratic volatilities, within the 12-year sample period examined in this paper. 

Figure 2 illustrates the patterns in this low frequency average FX idiosyncratic volatility 

during the sample period. The top rows of Table 2 show the estimates for the systematic 

factors. Here the ARCH effects are relatively small (even insignificant for the stock 

market factor) and the volatility persistence GARCH effects are large. Consistent with 

the literature, the leverage effect is highly significant for the stock market factor.14 For 

the carry-trade factor the results suggest a puzzling negative and significant sign pattern. 

A possible explanation may be that, when the carry-trade strategy yields losses, there is 

a decline in the carry-trade activity and therefore in the volatility of the corresponding 

excess returns. For the FX market factor, the ARCH and GARCH effects are highly 

significant and lie near the expected order of magnitudes; however, the leverage effect 

is insignificant. Figure 3 illustrates the patterns in these systematic volatilities. 

 

The bottom rows of Table 2 present the second step DCC estimates. The standard 

second step likelihood of Engle (2002) is applied. Hence, only countries that have 

complete data available from the beginning to the end of the sample period are included. 

This leaves out from the second step estimation the cases of Brazil, Chile, Colombia, 

                                                 
14 See, for example, Black (1976), Christie (1982), Campbell and Hentschel (1992), and Bekaert and Wu 
(2000). 
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Israel, Korea, Peru, and Slovak Republic.15 The DCC estimates are also as expected and 

suggest high persistence in the correlation structure and a significant response to the 

cross-product innovations.  

 

The results are illustrated at an aggregate level in Figure 4. Based on the expressions in 

equations (19) and (20), this figure shows the average high and low frequency 

correlations. Consistent with the stylized facts presented in Section 3, both components 

show increasing patterns during the sample from correlation magnitudes around 0.30-

0.35 to magnitudes close to 0.50. This is an increase of around 50% within this 12-year 

period that may capture the shifts from low to higher correlation regimes. Models that 

do not account for these effects may show important drawbacks for capturing the long-

term evolution of FX return comovements. In this regard, perhaps the most remarkable 

and appealing property of this model with respect to stationary DCC specifications is 

that the high frequency component mean-reverts to the low frequency one, which shows 

an increasing long-term trend that appears more consistent with the patterns observed in 

the data. Moreover, it suggests advantages for forecasting at medium and long horizons. 

In fact, this component suggests that FX excess returns correlations will mean-revert to 

levels around 0.45 instead of 0.35, which is the average sample correlation. 

Nevertheless, it is important to have an economic notion of what variables may affect 

the long-term level of correlations. The following section provides some insightful 

results. 

 

5. Economic determinants of long-term FX idiosyncratic volatilities  

 

5.1 Long-term volatility measures and explanatory variables 

 

The link between economic variables and FX idiosyncratic volatilities is relevant not 

only for examining possible economic drivers of the low frequency component of FX 

correlations, but also for utilizing this relationship to construct out-of-sample forecasts. 

To select the variables that may be related to long-term idiosyncratic volatilities, I 

                                                 
15 However, these countries are considered for the time series and cross-sectional analyses of the 
determinants of FX idiosyncratic volatility presented in Section 5, where an unbalanced panel of 
idiosyncratic volatilities is constructed. An alternative approach to incorporate all the cases in the second 
step DCC estimation may be the Composite Likelihood Method of Engle, Shephard and Sheppard (2009). 
In results not reported, I find that the estimates obtained from this method are very close to those 
presented in Table 2. 
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appeal to economic theory and consider an asset market approach to exchange rates (see 

Obstfeld and Rogoff (1996) and Engel and West (2005)). In particular, based on the 

decomposition of Engel and West (2005), in which they represent the exchange rate as a 

present value relationship in terms of observable and unobservable current and expected 

future values of fundamentals, the nominal exchange rate can be defined as the log of 

the home currency price of foreign currency (US dollar) and expressed as: 

 
0 0

( ) ( ) ,j j
t t t j t t j t t

j j

s b E f b E z F U
 

 
 

      (22) 

where ft denote a measure of observed fundamentals in the home country relative to 

abroad (the US), and zt denote not observable economic fundamentals (or measurement 

errors). A stationary version of (22) can be written as: 16 

 t t ts F U      (23) 

From this relationship, it is natural to relate | |ts  to a group of explanatory variables 

determined by | |tF  and tF . In particular, among the possible observable 

fundamentals (Ft), Engel and West (2005) consider the log of home money supply (mt), 

the log of the home price level (pt), the level of the home short-term interest rate (it), 

and the log of output (yt). Furthermore, they find that a number of theoretical FX models 

can fit into the framework given in (22).17 It is possible to associate these fundamentals 

to the FX excess return equation given in (6) since this expression can be rewritten as:  

 *
1 1 1.t t t t t t trx f s s i i s         (24) 

 

Considering these results, the next step is to define an empirical specification for FX 

idiosyncratic volatilities that incorporates the time series and cross-sectional variations 

of the series estimated in Section 4 from the Factor-Spline-GARCH model. In this 

regard, I follow the approach of Engle and Rangel (2008) and define annual measures of 

long-term FX idiosyncratic volatility, for year t and currency i, based on the low 

frequency idiosyncratic volatility of each currency and the corresponding realized 

measure: 

                                                 
16 The evidence of Engel and West (2005) suggests that  st~I(1) and, based on the set of fundamentals 

considered in their analysis, (0)~
t

f I . Moreover, they do not find evidence of cointegration between st 

and ft, thus they conclude that Ut~I(1). 
17 For example, the framework can be consistent with monetary models such as Frenkel (1976, 1979), and 
Mussa (1976), and open economy macroeconomic models such as Obstfeld and Rogoff (2002). 
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where , ,i t d  is the weekly low frequency volatility in (14), observed in country i at week 

d of year t, and ui,t,d is the estimated idiosyncratic innovation in (10).  

 

5.2 Linear specifications and results 

 

To explain the variation of these proxies, I set the following two systems of linear 

equations for annual low frequency and realized volatilities, respectively: 

 , , ,' ,  1, 2,..., ,  1,2,..., ,i t i t t i t tLvol x t T i N      (27) 

 , , ,' ,  1, 2,..., ,  1,2,...,i t i t t i t tRvol x t T i N      (28) 

where ,i tx  is a vector of explanatory variables at the annual frequency. Based on the 

discussion in the previous paragraphs of this section, economic variables linked to 

fundamentals are included in this vector. In particular, I consider real GDP growth, the 

level of inflation, the growth rate of money supply, the volatilities of these three 

variables, and the volatility of short-term interest rates.18 These variables are 

summarized in Table 3. The volatilities of the mentioned macroeconomic variables are 

estimated from quarterly data and the residuals from autoregressive processes of order 

one that are used to fit each of the macroeconomic time series. In particular, for each of 

these series (y), the absolute values of the residuals from an AR(1) model are obtained, 

and the corresponding volatility is measured as their yearly average, as follows:19 
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As argued by Engle and Rangel (2008), it is likely that the high persistence of the 

dependent variables will lead to important serial correlation in the error terms of (27) 

and (28). To address this issue, I follow their approach and estimate the systems using 

two methodologies: the SUR method of Zellner (1962) and a linear fixed-effects panel 

                                                 
18 For each country, the levels of real GDP, inflation, and money supply were adjusted for seasonal 
effects using standard ARIMA methods. 
19 This approach was used in Engle and Rangel (2008). 
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model with serially correlated innovations described by an AR(1) dynamic process. For 

the former, the systems incorporate different intercepts to capture time fixed effects. For 

the panel specification, time fixed effects and country-specific random effects are 

considered. Thus, the error terms in (27) is modeled as follows: 

 , , ,i t t i i t       (30) 

where 

       , , 1 ,

,

,

time fixed effect

~ (0, )

~ (0, )

t

i

i t i t i t

i t

i t i

iid

iid






 

  

 

 





 



 

A similar structure is considered for the error term in (28). Also, it is important to note 

that the examined panel is unbalanced and it includes a larger number of countries than 

the DCC estimation (see footnote 14). 

 

The estimation results are presented in Table 4. The first panel shows the SUR estimates 

for each of the long-term idiosyncratic volatility proxies. The second one presents the 

linear panel estimates.20 The first column shows the results for low frequency FX 

idiosyncratic volatilities. In this case, while the effect of real GDP growth is negative 

and significant, those of inflation and volatility of money supply are positive and 

significant. The estimated coefficients of other explanatory variables did not show 

statistical significance and, with exception of GDP volatility, their signs were positive. 

The results for the annual realized FX idiosyncratic volatilities are similar regarding the 

significant effects of real GDP growth, inflation and money supply volatility. In this 

case, however, the volatilities of inflation and short-term interest rates showed statistical 

significance and evidence of positive effects on realized FX idiosyncratic volatilities. 

The results from the panel models, with error structure given in (30), indicate again that, 

for low frequency idiosyncratic volatilities, the coefficient of GDP growth is negative 

and significant, and the one of inflation is positive and significant. Nevertheless, 

although with a positive sign, money supply volatility is no longer significant. As in the 

SUR case, the other explanatory variables do not show statistical significance. 

Regarding the realized idiosyncratic volatility measure, the only variable that is 

                                                 
20 An indicator for emerging markets was also introduced as a control variable in the SUR systems. It was 
not significant and did not affect other estimation results. 
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statistically significant is the level of inflation and it presents a positive sign, as 

expected.  

 

Overall, a comparison of the results from the two estimation approaches indicates that, 

for low frequency volatilities, the significant effects of real growth and inflation are 

robust to different assumptions about the correlation structure in the error terms of the 

linear specifications. For the annual realized measures, the level of inflation appeared as 

the only robust significant variable. It is also important to mention that the explanatory 

power of these regressions was modest, on average.21 This suggests that the variation in 

FX volatilities may largely come from the systematic risk factors, and that the 

idiosyncratic component shows only a mild response to country-specific fundamentals. 

 

5.3 Robustness: adding transaction costs 

 

Transaction costs play an important role in the construction of excess returns and risk 

factors proxies. Hence, it is important to verify their effect on the estimation results. In 

this regard, I compute the realized excess return net of transaction costs following 

Lustig et al. (2009). They define the net log currency excess return for an investor that 

goes long in the foreign currency as: 

 1 1,
l b a
t t trx f s    (31) 

where b
tf  is the bid price at which the investor sells dollars forward and 1

a
ts   is the ask 

price at which he buys dollars in the spot market. An analogous expression can be 

obtained for an investor that goes short in the foreign currency. 

 

I use this definition of net FX excess returns (based on a long position) and compute the 

corresponding new time series for each country, as well as the dollar and carry-trade 

factors. Then, I re-estimate the FSG-DCC model described in Section 4 and obtain 

measures of net FX idiosyncratic volatilities for each of the currencies in Table 1. These 

series are used to compute net long-term idiosyncratic volatility proxies based on 

equations (25) and (26). Finally, the resulting variables are projected on the 

                                                 
21 The average R2 of the SUR system was 0.l3 for the case of low frequency idiosyncratic volatility and 
0.16 for the annual realized volatility. These values are considerable smaller than those obtained in Engle 
and Rangel (2008) for equity long-term volatilities. 
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macroeconomic variables described in Table 3, using the SUR and dynamic panel 

approaches discussed earlier. 

 

Table 5 shows the estimation results for the long-term net FX idiosyncratic volatilities. 

For the net low frequency measure, they are qualitatively similar to those presented in 

Table 4. As before, the two estimated specifications suggest that, while real GDP 

growth has a negative significant effect on low frequency idiosyncratic volatility, the 

effect of inflation is positive and significant. The main difference with respect to the 

results without transaction costs is that, in this case, the volatility of inflation has a 

significant (positive) coefficient in both specifications. 

 

Regarding the annual realized idiosyncratic volatility measure, although the results are 

also qualitatively similar to those of the case without transaction costs, in the sense that 

all the effects show the same direction, they vary slightly more in terms of statistical 

significance. For example, the volatilities of money supply and inflation are now 

significant variables with positive signs in both specifications, and the volatility of real 

GDP shows a negative significant coefficient. Nonetheless, from tables 4 and 5, it is 

clear that the only variable that is significant in all of the examined specifications is 

inflation. Then, variables like real GDP growth and volatility of inflation show 

statistical significance across models and for the two long-term FX idiosyncratic 

volatility measures. Overall, controlling for the effect of transaction costs does not 

appear to change the main empirical findings of this paper regarding the significant 

effect of inflation and GDP growth on long-term FX idiosyncratic volatilities. 

 

Finally, I examine the patterns of the time fixed effects from the panel specifications 

associated with each long-term FX idiosyncratic volatility measure. These time effects 

are shown in Figure 5, along with the S&P500 Volatility Index (VIX). As it is visually 

suggested from this figure, the fixed effects associated with the two long-term 

idiosyncratic volatility measures are highly correlated with the VIX index. Indeed, 

while the sample correlation between the low frequency volatility fixed effects and this 

index is 0.77, the realized volatility fixed effects and the VIX index show a correlation 

of 0.75. These results suggest that there may be an omitted volatility risk factor in the 

model that appears as a common component in long-term FX idiosyncratic volatilities. 

Moreover, this evidence may be seen as consistent with the results of Menkhoff et al. 
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(2009), which find that an FX market volatility factor (in levels) has important 

explanatory power for the cross-section of currency excess returns.      

 

6. Concluding remarks 

 

This paper examines different types of dynamics in the comovements of currency 

returns. In particular, it documents that, in addition to the well known clustering and 

time variation in conditional correlations at short horizons, there may be long-term 

trends in the comovements of FX returns. These trends require alternative dynamic 

correlations methods with the ability to capture this type of non-stationarity in the data. 

I present a strategy that combines the Factor-Spline-GARCH model of Rangel and 

Engle (2009) with the linear factor currency pricing model of Lustig et al. (2009). The 

resulting framework allows not only the possibility of capturing the apparent trend 

comovement patterns shown by FX excess returns data, but also a further examination 

of the economic variables that may drive such a trend behavior. 

 

The specification for FX excess returns considers the dollar and the carry-trade factors 

introduced by Lustig et al. (2009). In addition, I incorporate a global equity market 

factor to characterize the systematic component of excess returns. The resulting three 

factor specification leads to a particular form of the FX correlation structure. The 

dynamic correlation model of Rangel and Engle (2009) describes high and low 

frequency dynamic patterns in each of the components of this correlation structure, 

distinguishing the role of systematic and idiosyncratic terms. The model suggests a non- 

monotonic increasing behavior in the comovement of FX excess returns during the 

period 1999-2010. The average correlation increased in about 50% from the beginning 

to the end of this period, based on a sample of 29 currencies. This effect appears 

stronger during the last three years of the sample, which include the years surrounding 

the financial crisis of 2008. These findings are consistent with the patterns observed 

from model free measures. The model captures these effects by the combination of an 

increasing systematic volatility and mixed idiosyncratic volatility effects that, on 

average, appear to be declining since early 2009. 

 

While it is reasonable to think that equity and FX market volatilities have remained high 

due to low prospects of global growth and high macroeconomic uncertainty, less is 
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known about the economic determinants of FX idiosyncratic volatility. This paper 

addresses this question and performs a time series and cross-sectional analysis of the 

economic determinants of long-term FX idiosyncratic volatilities. The explanatory 

variables were selected following the economic theory about FX fundamentals. From 

different model specifications and long-term volatility measures, my results suggest that 

the most robust variables that explain the variation in such volatilities are inflation and 

real GDP growth. In particular, the evidence of this paper indicates that the higher the 

level of inflation (and its volatility), the higher the level of FX idiosyncratic volatility; 

also, the lower the level of real output growth, the higher as well the level of FX 

idiosyncratic volatility. Moreover, my results indicate that long-term FX idiosyncratic 

volatilities may be affected by a common factor associated with market volatility risk. 

 

These findings are important, not only because they are helpful to understand part of the 

dynamic behavior of global FX comovements, but also because they may provide 

important insights for forecasting volatilities and correlations at long horizons. In 

addition, my results point out that there is still an important part of the FX idiosyncratic 

volatility variation that is not explained by the considered fundamentals. Hence, further 

research is needed in this regard to improve our understanding of the dynamics in FX 

excess returns comovements and volatilities. 
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Figures and Tables 

Figure 1 
Average Rolling FX Excess Returns Correlation 
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Notes: The average FX excess return correlation is computed from cross-
sectional averages, at each point in time, of all the pairwise 52-weeks rolling 
correlations of FX excess returns on the 29 currencies described in Table 1.  

 
Figure 2 

Average Low Frequency FX Idiosyncratic Volatility 
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Notes: This series is computed from the cross-sectional average (at each 
point in time) of the annualized low frequency idiosyncratic volatilities of all 
the currencies in Table 1.  
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Figure 3 
Risk Factors Volatility 
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Figure 4 
Average Factor-Spline-GARCH FX Excess Returns Correlations 
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Figure 5 
Year Effects from Panel Models and Average Annual VIX 
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Notes: The year effects are the estimated time fixed effects from the panel specifications for 
annual low frequency volatilities (LFV) and realized volatilities (RV), see Table 5 for details.
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Table 1 
FX Markets 

Country Classification Currency 
Australia Developed Australian Dollar 

Brazil Emergent Brazilian Real 
Canada Developed Canadian Dollar 

Chile Emergent Chilean Peso 
Colombia Emergent Colombian Peso 

Czech Republic Emergent Koruna 
Denmark Developed Danish Krone 
Euro Area Developed Euro 
Hungary Emergent Florin 

India Emergent Indian Rupee 
Indonesia Emergent Indonesian Rupiah 

Israel Emergent Shekel 
Japan Developed Yen 
Korea Emergent Won 
Mexico Emergent Mexican Peso 

New Zealand Developed New Zealand Dollar 
Norway Developed Norwegian Krone 

Peru Emergent Sol 
Philippines Emergent Philippine Peso 

Poland Emergent Złoty  
Singapore Developed Singapore Dollar 

Slovak Rep. Emergent Slovak Crown 
South Africa Emergent South African Dollar 

Sweden Developed Crown 
Swiss Developed Swiss Franc 

Taiwan Emergent Taiwan Dollar 
Thailand Emergent Baht 
Turkey Emergent Turkish Lyra 

UK Developed Pound 
Notes: For each currency, FX excess returns are considered at the 
weekly frequency. All the exchange rates are in units of local 
currency per US dollars. The sample period goes from January 1999 
to August 2010. Source: Bloomberg. 
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Table 2 
Estimation Results: FSG-DCC Based on Weekly Data 

 Conditional Mean Parameters  Variance Parameters   

Factors    beta F1  beta F2  beta F3           Knots
Eq. Market (F1) 0.0012 **       -0.0199  0.2031 ** 0.8319 ** 3 

Carry (F2) 0.013 **       0.1868 ** -0.1722 ** 0.7536 ** 1 
Dollar (F3) 0.0045 **       0.0306 ** 0.0713  0.8638 ** 1 

              
Country              
Australia -0.009 ** 0.2191 ** 0.5667 ** 1.01121 ** 0.186 ** -0.09712  0.497 ** 4 

Brazil 0.0005  0.3286 ** 0.4699 ** 0.51777 ** 0.2171 **   0.724 ** 2 
Canada -0.003 ** 0.2435 ** 0.2498 ** 0.4673 ** 0.1221 ** -0.03055  0.812 ** 1 

Chile -0.006 ** 0.3852 ** 0.2523 ** 0.36951 ** 0.0845 ** -0.02253  0.91 ** 2 
Colombia -0.003 * 0.1951 ** 0.2636 ** 0.1819 ** 0.3749 ** -0.15717 ** 0.619 ** 4 

Czech Rep. -0.003 ** -0.058  -0.2 ** 1.52477 ** 0.1182 ** -0.02667  0.839 ** 1 
Denmark -0.003 ** -0.118 ** -0.302 ** 1.37146 ** 0.1268 ** -0.07002 * 0.839 ** 5 
Euro Area -0.006 ** -0.121 ** -0.371 ** 1.48281 ** 0.117 ** 0.01806  0.841 ** 3 
Hungary -0.014 ** 0.0315  0.0329  1.70504 ** 0.1614 * 0.17158  0.568 ** 1 

India 0.0056 ** -0.002  0.0065  -0.0078  0.1662 * 0.26141 ** 0.278 ** 8 
Indonesia -0.007 ** 0.0299  0.1625 ** 0.52145 ** 0.4092 ** -0.13534  0.593 ** 1 

Israel 0.0022 ** 0.0346  0.0418 ** 0.1271 ** 0.1323 ** -0.00046  0.85 ** 2 
Japan 0.0009  -0.129 * -0.329 ** 0.63032 ** 0.1943 ** -0.10341 * 0.646 ** 3 
Korea -0.004 ** 0.2002 ** 0.0478  0.48825 ** 0.1481 ** 0.28893 ** 0.636 ** 2 
Mexico -0.002  0.1932 ** 0.3148 ** 0.3033 ** 0.1003 **   0.837 ** 6 

New Zealand -0.005 ** 0.0901  0.5094 ** 1.02138 ** 0.078 **   0.865 ** 3 
Norway -2E-04  0.0328  -0.087 ** 1.29134 ** 0.1993 ** 0.03366  0.707 ** 3 

Peru 0.0031 ** 0.0294  0.0062  0.08057 ** 0.2994  -0.16034  0.604 ** 2 
Philippines -0.013 ** 0.0213  0.0383 ** 0.09906 ** 0.2729 ** -0.10121  0.669 ** 2 

Poland -0.007 ** 0.154 ** 0.2601 ** 1.55642 ** 0.06 * 0.02659  0.834 ** 2 
Singapore -0.002 ** 0.0632 ** 0.0211  0.4804 ** 0.0929 ** 0.06235 ** 0.82 ** 2 

Slovak Rep. -0.006 ** -0.158 ** -0.25 ** 1.53557 ** 0.066  0.11233  0.549 ** 2 
South Africa -0.003 * 0.1713 * 0.6006 ** 1.03006 ** 0.1345 ** 0.12208  0.554 ** 1 

Sweden -0.006 ** 0.0057  -0.128 ** 1.43268 ** 0.0536 ** 0.10132 ** 0.847 ** 1 
Swiss -0.003 ** -0.317 ** -0.371 ** 1.35999 ** 0.1967 ** -0.08312 ** 0.647 ** 1 

Taiwan -0.002 ** 0.0133  0.0565 ** 0.21236 ** 0.3284 ** -0.07074  0.557 ** 1 
Thailand 0.0013  -0.093 ** -0.036 * 0.30266 ** 0.4299 ** -0.05377  0.334 ** 9 
Turkey 0.0021  0.0105  0.2227 ** 0.95454 ** 0.1116 * 0.02558  0.794 ** 4 

UK -0.003 ** -0.119 ** 0.0097   1.04398 ** 0.1284 ** -0.0168  0.769 ** 1 
DCC Parameters 

     a  0.0205 **        
          b   0.9229 **               
Notes: This table shows parameter estimates of the Factor-Spline-GARCH model using weekly data. 
The sample period is January 1999 to August 2010. All the exchange rates are in units of local currency per US dollars. 
Asymmetric GARCH(1,1) specifications were not considered for Brazil, Mexico and New Zealand because the estimated 
coefficients associated with these cases did not satisfy the mean-reversion condition. Instead, standard GARCH (1,1)  
models were used to obtain the corresponding volatility-adjusted returns.  is the estimated unconditional mean of each  

excess returns series. 
(**) denotes statistical significance at the 5% level and (*) denotes statistical significance at the 10% level. 
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Table 3 
Explanatory Variables 

Name Description 
grgdp Real GDP Growth Rate 
gcpi Inflation Rate 
gm2 Money supply (M2) growth 

vol_grgdp Volatility of GDP* 
vol_gcpi Volatility of Inflation* 
vol_gm2 Volatility of money supply growth* 
vol_irate Volatility of Short-Term Interest Rate* 

Notes: All the variables (with exception of short-term interest rates) were adjusted for 
seasonality using standard ARIMA methods.  
*Volatilities are obtained from the residuals of AR(1) models.  
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Table 4 
FX Idiosyncratic Volatility Regressions 

  SUR model Panel model 

Exp. variable  
Low frequency 

volatility 
Realized 
volatility 

Low frequency 
volatility  

Realized 
volatility 

grgdp  -1.7435 -1.7185 -1.5822  -1.4196 
  (0.603)** (0.9395)* (0.6629)**  (1.0804) 

gcpi  2.2178 3.0819 2.0080  3.8677 
  (0.684)** (0.8991)** (0.7714)**  (1.2042)** 

gm2  0.2644 -0.2847 0.1773  -0.2571 
  (0.1756) (0.2258) (0.1918)  (0.322) 

vol_gm2  0.4994 0.6403 0.0748  0.2676 
  (0.2409)** (0.3596)* (0.292)  (0.4499) 

vol_grgdp  -0.7478 -1.1495 0.2085  -0.6321 
  (0.5072) (0.7249) (0.591)  (0.8408) 

vol_gcpi  1.0858 1.8040 0.6928  1.5785 
  (0.6979) (0.8932)** (0.8455)  (1.145) 

vol_irate  0.0046 0.0272 0.0012  0.0040 
  (0.0081) (0.0108)** (0.0087)  (0.0134) 

Time fixed-
effects       
1999  0.2358 0.1631 0.2341  0.1890 

  (0.0283)** (0.0329)** (0.0297)**  (0.0371)** 
2000  0.2432 0.1468 0.2375  0.1712 

  (0.0251)** (0.0327)** (0.0284)**  (0.0358)** 
2001  0.2399 0.1973 0.2417  0.2307 

  (0.022)** (0.0312)** (0.0269)**  (0.034)** 
2002  0.2389 0.1899 0.2498  0.2084 

  (0.0221)** (0.027)** (0.0264)**  (0.0341)** 
2003  0.2478 0.2076 0.2608  0.2267 

  (0.0214)** (0.0246)** (0.0247)**  (0.0324)** 
2004  0.2439 0.1926 0.2592  0.2032 

  (0.0254)** (0.0242)** (0.0243)**  (0.0332)** 
2005  0.2466 0.1837 0.2594  0.1947 

  (0.0252)** (0.0231)** (0.0228)**  (0.0323)** 
2006  0.2476 0.1992 0.2594  0.2110 

  (0.0244)** (0.0239)** (0.021)**  (0.0312)** 
2007  0.2660 0.1919 0.2775  0.2021 

  (0.0243)** (0.0266)** (0.0188)**  (0.0296)** 
2008  0.2806 0.3808 0.3005  0.3966 

  (0.0322)** (0.0391)** (0.0157)**  (0.0265)** 
2009  0.3200 0.3148 0.3381  0.3401 

  (0.0296)** (0.0311)** (0.0261)**  (0.0305)** 
ρ    0.7669  0.4937 

Average R2  0.11 0.14    

Notes: This table shows estimated coefficients for systems of linear equations that project long-term 
measures of FX idiosyncratic volatilities (based on low frequency and realized volatilities) on explanatory 
macroeconomic variables and time (year) fixed effects. SUR and panel models are considered. **) and *) 
denote statistical significance at the 5% and the 10% level, respectively.  The estimated ρ corresponds to 
the autoregressive coefficient of the AR(1) process embedded in the error term of the panel specification 
(see Equation (30)).  
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Table 5 
FX Idiosyncratic Volatility Regressions (Net of Transaction Costs) 

  SUR model  Panel model 

Exp. variable  
Low frequency 

volatility 
Realized 
volatility 

Low frequency 
volatility  

Realized 
volatility 

grgdp  -0.3548  -0.7039  -0.2426  -0.5343 
  (0.1488)**  (0.2331)**  (0.1359)*  (0.264)** 

gcpi  0.6690  0.7435  0.4349  0.7641 
  (0.1595)**  (0.2398)**  (0.157)**  (0.2959)** 

gm2  0.0059  -0.1548  0.0100  -0.1273 
  (0.039)  (0.0603)**  (0.0394)  (0.0782) 

vol_gm2  0.0462  0.3040  0.0445  0.1873 
  (0.0561)  (0.0927)**  (0.0594)  (0.1109)* 

vol_grgdp  -0.2754  -0.5100  -0.1583  -0.5607 
  (0.1237)**  (0.1823)**  (0.1188)  (0.2095)** 

vol_gcpi  0.7831  0.7797  0.5477  0.6027 
  (0.1475)**  (0.2275)**  (0.168)**  (0.2864)** 

vol_irate  -0.0004  0.0025  0.0009  -0.0012 
  (0.0018)  (0.0027)  (0.0018)  (0.0033) 

Time fixed-
effects         
1999  0.0751  0.0660  0.0746  0.0686 

  (0.0051)**  (0.0073)**  (0.0058)**  (0.0093)** 
2000  0.0768  0.0651  0.0764  0.0691 

  (0.0049)**  (0.0073)**  (0.0055)**  (0.009)** 
2001  0.0823  0.0776  0.0819  0.0839 

  (0.0047)**  (0.0069)**  (0.0053)**  (0.0085)** 
2002  0.0828  0.0725  0.0831  0.0765 

  (0.005)**  (0.0081)**  (0.0052)**  (0.0085)** 
2003  0.0790  0.0726  0.0802  0.0774 

  (0.0049)**  (0.0063)**  (0.0049)**  (0.0081)** 
2004  0.0736  0.0744  0.0771  0.0792 

  (0.0059)**  (0.0066)**  (0.0048)**  (0.0083)** 
2005  0.0711  0.0628  0.0741  0.0681 

  (0.0063)**  (0.0063)**  (0.0046)**  (0.008)** 
2006  0.0717  0.0669  0.0747  0.0719 

  (0.0059)**  (0.0058)**  (0.0042)**  (0.0077)** 
2007  0.0758  0.0619  0.0790  0.0671 

  (0.0059)**  (0.0063)**  (0.0038)**  (0.0073)** 
2008  0.0829  0.1018  0.0879  0.1127 

  (0.0058)**  (0.0085)**  (0.0032)**  (0.0064) 
2009  0.0958  0.1070  0.0991  0.1174 

  (0.0061)**  (0.0078)**  (0.005)**  (0.0077)** 
ρ     0.7262  0.5328 

Average R2   0.20  0.18        

Notes: This table shows estimated coefficients for systems of linear equations that project long-term 
measures of FX idiosyncratic volatilities (based on low frequency and realized volatilities) on explanatory 
macroeconomic variables and time (year) fixed effects. These measures are net of transaction costs. SUR 
and panel models are considered. **) and *) denote statistical significance at the 5% and the 10% level, 
respectively.  The estimated ρ corresponds to the autoregressive coefficient of the AR(1) process 
embedded in the error term of the panel specification (see Equation (30)). 
 


