# Discussant comments on Bank capital buffers, lending growth and economic cycle: empirical evidence for Brazil

Benjamin Miranda Tabak, Ana Clara Noronha, and Daniel Cajueiro
Prepared for the 2<sup>nd</sup> BIS CCA Conference on
"Monetary policy, financial stability and the business cycle"
Ottawa, 12–13 May 2011

Discussant\*: Gerald Dwyer

Affiliation: Federal Reserve Bank of Atlanta

Email: Gerald.P.Dwyer@atl.frb.org

These comments reflect the views of the author and not necessarily those of the BIS or of central banks participating in the meeting.

# Comments by Gerald P. Dwyer on Bank Capital Buffers, Lending Growth and Economic Cycle

By Benjamin M. Tabak, Ana Clara, B.T.F. Noronha and Daniel O. Cajueiro

May 2011

### **Bank Capital**

- Many calls for more bank capital
  - Greenspan (2010)
  - Flannery (2010) contingent convertible bonds
- What are the effects likely to be?
- Is Basel II pro-cyclical and does it affect loan growth?

#### Bank capital

$$\Delta Buf_{i,t} = \alpha_C + \beta_1 ROE_{i,t-1} + \beta_2 Npl_{i,t-1} + \beta_3 Size_{i,t-1} + \beta_4 Gap_{t-1} + \varepsilon_{i,t}$$

$$\Delta Loans_{i,t} = \alpha_L + \gamma_1 Gap_{t-1} + \gamma_2 Npl_{i,t-1} + \gamma_3 \Delta Selic_{t-1} + \gamma_4 \Delta Buf_{i,t-1} + \eta_{i,t}$$

#### Bank capital

$$\Delta Buf_{i,t} = \alpha_C + \beta_1 ROE_{i,t-1} + \beta_2 Npl_{i,t-1} + \beta_3 Size_{i,t-1} + \beta_4 Gap_{t-1} + \varepsilon_{i,t}$$

$$\beta_1 < 0, \beta_2 < 0, \beta_3 ? 0, \beta_4 < 0$$

$$\Delta Loans_{i,t} = \alpha_L + \gamma_1 Gap_{t-1} + \gamma_2 Npl_{i,t-1} + \gamma_3 \Delta Selic_{t-1} + \gamma_4 \Delta Buf_{i,t-1} + \eta_{i,t}$$

#### Bank capital

$$\Delta Buf_{i,t} = \alpha_C + \beta_1 ROE_{i,t-1} + \beta_2 Npl_{i,t-1} + \beta_3 Size_{i,t-1} + \beta_4 Gap_{t-1} + \varepsilon_{i,t}$$
$$\beta_1 < 0, \beta_2 < 0, \beta_3 ? 0, \beta_4 < 0$$

$$\begin{split} \Delta Loans_{i,t} &= \alpha_L + \gamma_1 Gap_{t-1} + \gamma_2 Npl_{i,t-1} + \gamma_3 \Delta Selic_{t-1} + \gamma_4 \Delta Buf_{i,t-1} + \eta_{i,t} \\ & \gamma_1 < 0, \gamma_2 ? 0, \gamma_3 < 0, \gamma_4 \leq 0 \end{split}$$

#### Bank capital

$$\Delta Buf_{i,t} = \alpha_C + \beta_1 ROE_{i,t-1} + \beta_2 Npl_{i,t-1} + \beta_3 Size_{i,t-1} + \beta_4 Gap_{t-1} + \varepsilon_{i,t}$$

#### Results (FGLS):

$$\beta_1 > 0, \ \beta_2 > 0, \ \beta_3 > 0, \ \beta_4 < 0$$

#### Lending

$$\Delta Loans_{i,t} = \alpha_L + \gamma_1 Gap_{t-1} + \gamma_2 Npl_{i,t-1} + \gamma_3 \Delta Selic_{t-1} + \gamma_4 \Delta Buf_{i,t-1} + \eta_{i,t}$$

#### Results (FGLS):

$$\gamma_1 < 0, \ \gamma_2 > 0, \ \gamma_3 > 0, \ \gamma_4 < 0$$

### Addition to Model of Bank Capital

Bank capital

$$\Delta Buf_{i,t} = \alpha_C + \beta_1 ROE_{i,t-1} + \beta_2 Npl_{i,t-1} + \beta_3 Size_{i,t-1} + \beta_4 Gap_{t-1} + \varepsilon_{i,t}$$

- Government, foreign and private banks
  - No statistically significant differences in levels
  - Government banks have  $\beta_4$ <0
  - Private banks have  $\beta_4>0$
  - Foreign banks have  $\beta_4=0$

### Addition to Model of Bank Capital

Bank capital

$$\Delta Buf_{i,t} = \alpha_C + \beta_1 ROE_{i,t-1} + \beta_2 Npl_{i,t-1} + \beta_3 Size_{i,t-1} + \beta_4 Gap_{t-1} + \varepsilon_{i,t}$$

- ΔSelic change in overnight interest rate
  - Higher ΔSelic associated with higher ΔBuf
  - No statistically significant differences between government banks, private banks and foreign banks



### Addition to Model of Bank Lending

$$\Delta Loans_{i,t} = \alpha_L + \gamma_1 Gap_{t-1} + \gamma_2 Npl_{i,t-1} + \gamma_3 \Delta Selic_{t-1} + \gamma_4 \Delta Buf_{i,t-1} + \eta_{i,t}$$

- Gap times ΔBuf
  - Positive coefficient
  - Have negative coefficients on Gap and ΔBuf

### **Combined Coefficients**

#### Illustration of issue

$$\begin{split} \Delta Loans_{i,t} &= \alpha_L + \gamma_1 Gap_{t-1} + ... + \gamma_4 \Delta Buf_{i,t-1} + \gamma_5 Gap_{t-1} \Delta Buf_{i,t-1} + \eta_{i,t} \\ \gamma_1 &= -0.710, \gamma_4 = -0.285, \gamma_5 = 3.964 \\ \frac{\partial Loans_{i,t}}{\partial Gap_{t-1}} &= \gamma_1 + \gamma_5 \Delta Buf_{i,t-1} = -0.710 + 3.964 \Delta Buf_{i,t-1} \\ \frac{\partial Loans_{i,t}}{\partial \Delta Buf_{i,t-1}} &= \gamma_4 + \gamma_5 Gap_{t-1} = -0.285 + 3.964 Gap_{t-1} \end{split}$$



### Addition to Model of Bank Lending

$$\Delta Loans_{i,t} = \alpha_L + \gamma_1 Gap_{t-1} + \gamma_2 Npl_{i,t-1} + \gamma_3 \Delta Selic_{t-1} + \gamma_4 \Delta Buf_{i,t-1} + \eta_{i,t}$$

- ΔSelic times ΔBuf
  - Positive coefficient on ΔSelic times ΔBuf
    - Positive coefficient on ΔSelic
    - Negative coefficient on ΔBuf

### **Combined Coefficients**

#### Illustration of issue

$$\begin{split} \Delta Loans_{i,t} &= \alpha_{L} + ... + \gamma_{3} \Delta Selic_{t-1} + \gamma_{4} \Delta Buf_{i,t-1} + \gamma_{5} \Delta Selic_{t-1} \Delta Buf_{i,t-1} + \eta_{i,t} \\ \gamma_{3} &= 0.004, \gamma_{4} = -0.246, \gamma_{5} = 1.805 \\ \frac{\partial Loans_{i,t}}{\partial \Delta Selic_{t-1}} &= \gamma_{3} + \gamma_{5} \Delta Buf_{i,t-1} = 0.004 + 1.805 \Delta Buf_{i,t-1} \\ \frac{\partial Loans_{i,t}}{\partial \Delta Buf_{i,t-1}} &= \gamma_{4} + \gamma_{5} \Delta Selic_{t-1} = -0.246 + 1.805 \Delta Selic_{t-1} \end{split}$$



### Addition to Model of Bank Lending

$$\Delta Loans_{i,t} = \alpha_L + \gamma_1 Gap_{t-1} + \gamma_2 Npl_{i,t-1} + \gamma_3 \Delta Selic_{t-1} + \gamma_4 \Delta Buf_{i,t-1} + \eta_{i,t}$$

- Government, foreign and private banks
  - No differences in level
  - Some evidence that private banks respond more to buffer values
    - i.e.  $\gamma_4$  is more negative for private banks than for government banks

#### **General Comments**

- I would explore some aspects of results further
- Might be better to set up equations as reduced form equations