Market freeze and recovery: trading dynamics under optimal intervention by a Market-Maker-of-Last-Resort

A presentation prepared for the 2nd BIS CCA Conference on “Monetary policy, financial stability and the business cycle”

Ottawa, 12–13 May 2011

Authors*: Jonathan Chiu and Thorsten Koeppl
Affiliation: Bank of Canada and Queen's University, respectively.
Email: jchiu@bankofcanada.ca.

* This presentation reflects the views of the authors and not necessarily those of the BIS or of central banks participating in the meeting.
Market Freeze and Recovery: Market-Making-of-Last-Resort

Jonathan Chiu1 Thorsten Koeppl2

1Bank of Canada
2Queen’s University

May, 2011

Disclaimer: The views expressed are those of the authors and do not necessarily reflect the views of the Bank of Canada.
Motivation

- Current crisis: freezes in markets with
 - subject to trading frictions (e.g. OTC)
 - where assets and/or counterparties were opaque

- Public intervention to ensure the continuous functioning of markets or trading platforms that are deemed crucial
Questions

1. How do freezes arise in markets subject to trading frictions and opaqueness?

2. How does a frozen market react to an intervention (e.g., direct asset purchase)?

3. When and how should a large player intervene when a liquidity crisis is dynamically unfolding?
What we do

1. Develop a model of market freezes building on search frictions (λ) and adverse selection (π)
 - search frictions exacerbates adverse selection problem through strategic complementarity

2. Study the market reaction to an intervention of asset purchases
 - Characterize equilibrium trading and price dynamics as a function of policy → announcement effect

3. Analyze optimal policies to resurrect the market
 - tradeoff between social cost of illiquid market and financial cost of intervention
Model
Continuous Time Framework

Fixed number of assets:
- “good” assets: fraction π yields flow $\delta_H > 0$
- “lemons”: fraction $1 - \pi$ yields flow $\delta_L = 0$
- asset type is private information of the holder

Continuum of risk-neutral investors:
- preference shock: switching from high valuation (buyers) to low valuation (sellers) at rate κ
- benefits from reallocating assets from sellers to buyers

Frictional Asset Trading:
- Finding a counterparty takes time: matching rate λ
- bilateral trades: buyers offer price $p(t)$ to seller
Flows

BUYERS
(no asset
high valuation)

SEARCH &
buy good asset

OWNERS
(good asset
high valuation)

Preference
shock

SELLERS OF
GOOD ASSETS

SELLERS OF
BAD ASSETS

SEARCH &
buy bad asset
Lemons Problem

Pooling equilibrium: offer the same price to get an average asset
Average quality of assets: $\tilde{\pi}(t) = \frac{\mu_s(t)}{\mu_s(t) + \mu_\ell(t)}$
Decision to Buy an Asset

- $\Gamma(t) = \text{Expected trade surplus for a buyer:}$

$$\frac{\tilde{\pi}(t)}{1 - \tilde{\pi}(t)} \left(\frac{v_o}{v_s} - 1 \right) + \left(\frac{v_\ell(t)}{v_s} - 1 \right)$$

Strat. Compl.

- Buyer is willing to trade iff expected trade surplus $\Gamma(t) \geq 0$
Dynamic Strategic Complementarity

No trade in future \Rightarrow unable to resell assets in future \Rightarrow low incentive to buy now
Dynamic Strategic Complementarity

Now

![Diagram showing the interaction between S and B assets]

Future

No trade in future \Rightarrow unable to resell assets in future \Rightarrow low incentive to buy now

(Note: lower λ \rightarrow weaker strat. compl.)
Steady State Equilibrium

Trade

(adverse selection)

1

γ

1

0

1 − π

- trade

- multiple equilibria

- no trade
Steady State Equilibrium

The diagram illustrates the steady state equilibrium in a trade context, where the trade variable is denoted along the horizontal axis and the parameter γ along the vertical axis. The equilibrium points are categorized into:

- **Trade**: Indicates a scenario where trade is present.
- **Multiple Equilibria**: Represents situations with more than one equilibrium point.
- **No Trade**: Denotes cases where trade is absent.

The graph shows the transition points and their implications for trade and γ values.
Comparative Statics: Adverse selection $\uparrow (\pi \downarrow)$
Comparative Statics: Trading frictions \uparrow ($\lambda \downarrow$)

Trade

Trade / Mixing / No trade

No Trade

matching prob.

π

λ

0
Unanticipated Shock to Quality π Freezes the Market

Proposition

Suppose $\pi(0) < \frac{r \pi}{r + \lambda(1 - \pi)}$. The unique equilibrium has no trade at any t.
Intervention
Intervention \((Q, P, T)\)

MMLR: private/public agents who

- still subject to asymmetric information
- can **commit** to buy \(Q\) units of assets at a price \(P\) at time \(T\)
- have **deep pockets** (e.g. enforce taxation)
Intervention (Q, P, T)

To restore trade in the long-run (SS):

- **Size of Purchase**
 - Need to absorb sufficient bad assets:

 $Q \geq S \frac{\bar{\pi} - \pi(0)}{\bar{\pi}}$

- **Terms of Purchase**
 - Price set to induce (only) bad sellers to sell:

 $v_s - v_b(T) > P \geq v_{\ell}(T) - v_b(T) > 0$

- **Commit to intervene (and not to resell)**
Trade Dynamics

Proposition

Continuous full trade after a minimum intervention \((P_{\text{min}}, Q_{\text{min}})\) is an equilibrium.

A minimum intervention ensures continuous trade in \([T, \infty)\).
Announcement Effect

Proposition

_All equilibria before T can be characterized by two breaking points τ_1 and τ_2."

Partial and full recovery before intervention in $[0, T)$.\]
Optimal Intervention
Social Welfare

Suppose MMLR finances asset purchase by taxation:

\[W = \int (\mu_o(t)\delta - \mu_s(t)(\delta - x))e^{-rt} dt - \theta \cdot P \cdot Q \cdot e^{-rT} \]

with \(\theta \geq 0 \) capturing the cost of tax distortion

Need to balance the trade-off between

- social cost of illiquid market
- financial loss of intervention
Optimal Policy \((T, P, Q)\)

\(\theta \) low: intervene immediately with minimum \(P\) and \(Q\)

\(\theta \) high: postpone \(T\) and increase \(P\) to generate announcement effects
Role of Trading Friction

In a market with higher trading frictions ($\lambda \downarrow$), strategic complementarity weak

1. market freeze: more likely

2. policy announcement effects: smaller

3. optimal policy: more aggressive
Conclusion

We develop a framework to think about how to react to a market freeze. We find:

1. Informational and trading frictions are key for the emergence of a market freeze.

2. Asset purchases can resurrect the market, with announcement effects being important.

3. Optimal intervention trades-off the social costs of illiquid markets and financial loss.

4. Successful intervention relies on MMLR’s ability to commit and to enforce loss sharing.
Appendix
Market Freeze

- During the sub-prime crisis, the market for asset-backed commercial paper (ABCP) experienced a sudden freeze in August, 2007. (Acharya, Gale and Yorulmazer, 2009)

- “[T]he complete evaporation of liquidity in certain market segments of the US securitization market has made it impossible to value certain assets fairly regardless of their quality or credit rating. . . Asset-backed securities, mortgage loans, especially sub-prime loans don’t have any buyers. . .Traders are reluctant to bid on securities backed by risky mortgages because they are difficult to sell on.” (Bloomberg, 9 August 2008)
Temporary Shocks

Quality shock is temporary

- MMLR can make profits by reselling assets (optimally design exit strategy)
- MMLR performs actual market-making by alleviating selling pressure when the market shuts down
- To ensure continuous market, not necessarily optimal to intervene immediately
Pooling Equilibrium

Buyers make same offers to both types:

- Trading only with good asset sellers is not feasible because bad asset sellers can always imitate

- Trading only with bad asset sellers is not profitable because there is no trade surplus

- Making separating offers requires trading with bad sellers with a high probability and a higher price, which dominated by a pooling offer
Value Functions

\[rv_o(t) = \delta + \kappa(v_s(t) - v_o(t)) + \dot{v}_o(t) \]

\[rv_s(t) = \delta - x + \gamma(t)\lambda \mu_b(t) \max\{p(t) + v_b(t) - v_s(t), 0\} + \dot{v}_s(t) \]

\[rv_\ell(t) = \lambda \mu_b \gamma(t) \max\{p(t) + v_b(t) - v_\ell(t), 0\} + \dot{v}_\ell(t) \]

\[rv_b(t) = \lambda (\mu_s(t) + \mu_\ell(t)) \max\{\max_p \tilde{\pi}(p)v_o + (1 - \tilde{\pi}(p))v_\ell(t) - p - v_b(t), 0\} + \dot{v}_b(t). \]
Quality Effect

The average quality of assets in the market:

$$\tilde{\pi}(t) = \frac{\mu_s(t)}{\mu_s(t) + \mu_\ell(t)}$$

evolves according to

$$\dot{\mu}_s(t) = \kappa \mu_o(t) - \gamma(t) \lambda \mu_b(t) \mu_s(t)$$

Quality Effect depends on past trading decisions:

No trade $\gamma(t) = 0$

$\Rightarrow \mu_s \uparrow$ over time

\Rightarrow quality $\tilde{\pi}(t) \uparrow$ over time

\Rightarrow buyers’ trade surplus \uparrow
Steady State Equilibrium: $\lambda \downarrow$
Steady State Equilibrium

Proposition

- For any given $\pi \in (0, 1)$, a steady state equilibrium exists.
- If $\pi \geq \bar{\pi}$, there is a full-trade equilibrium (i.e. $\gamma = 1$).
- If $\pi \leq \pi$, there is a no-trade equilibrium (i.e. $\gamma = 0$).
- If $\kappa < r$, the steady state equilibrium is unique, with the equilibrium for $\pi \in (\pi, \bar{\pi})$ being in mixed strategies.
- If $\kappa > r$, for $\pi \in (\bar{\pi}, \pi)$, there are three steady state equilibria including a mixed strategy one.

where $\xi = \frac{\delta}{\delta-x}$, $\bar{\pi} = \frac{\kappa(r+\kappa) + \lambda \mu_b(r+\kappa)}{\kappa(\xi r + \kappa + \lambda \mu_b(\xi - 1)) + \lambda \mu_b(r+\kappa)}$ and $\pi = \frac{r+\kappa}{\xi r + \kappa}$
Proposition

A market freeze in steady state when

- lemons problem is severe (π small)
- trading friction is high (λ small)
- trade surplus is small (x small)
- number of buyers is small (μ_b small)

The market is frozen forever (with zero price, no trade).

Welfare cost: unable reallocate good assets from sellers to buyers.
Definition of Equilibrium

An equilibrium is given by measurable functions $\gamma(t) : \mathbb{R} \to [0, 1]$ and $\tilde{\pi}(t) : \mathbb{R} \to [0, 1]$ such that

1. for all t, the strategy $\gamma(t)$ is optimal taking as given $\gamma(\tau)$ for all $\tau > t$

2. $\tilde{\pi}(t)$ is generated by $\gamma(t)$ and the law of motion for μ_s and μ_ℓ.

Back
Why a CB/Gov’t can do better than the market?

- Unlike private agents, a large player
 - Care about social welfare
 - willing to internalize trading externalities
 - Able to commit to intervene
 - Able to finance intervention (deep pocket)
- Private agents not willing/able to intervene
Private Sector Involvement

- Successful intervention relies on
 (a) ability to finance intervention
 (b) willingness to intervene
- private market maker will not intervene optimally
- Liquidity provision can solve (a) but not (b) due to trading externalities
Incomplete information

- CB uncertain about the nature and severity of crisis
 - Future research on price discovery process
 - Uncertain about cause of crisis (e.g. self-fulfilling or fundamental)
 - combination standing facilities and asset purchases?
 - uncertain about fundamentals (e.g. fundamental price of an asset)
 - make use of market forces (e.g. reverse auction)?
Choice Between Different Types of Instruments

- **Type of Intervention:**
 - lowering of collateral standards
 - long(er)-term lending
 - direct asset purchases

- Should have multiple instruments

- To handle different market failures in different situations

- Maintain flexibilities to reduce moral hazard

- Lending facility provides liquidity to market participants, but may not always induce them to take the right actions to internalize externalities
Moral Hazard

Ex-post intervention to handle a market freeze:

- If moral hazard is a big concern, MMLR should commit not to intervene in response to market freeze caused by endogenous quality problem.

Ex-ante policy/regulation to avoid a market freeze:

- Increase π: Regulations that support the creation of more transparent, standardized and well designed financial instruments.

- Increase λ: Policies that strengthen the market infrastructure.

- Private commitment and enforcement: improve clearing and settlement processes to facilitate loss-sharing (e.g. CCP).