Dealer Pricing Distortions and the Leverage Ratio Rule

Darrell Duffie
GSB Stanford

Based on research with Leif Andersen and Yang Song

CIP Symposium
Bank for International Settlements
May, 2017
Dealer banks intermediate CIP arbitrage

Duffie
Dealer Pricing Distortions and the Leverage Ratio Rule
Example: The USD-JPY CIP basis

Source: Du, Tepper, and Verdelhan (2016).
Dealer-bank balance sheet

[Diagram showing a balance sheet with assets on the left, debt in the middle, and equity on the bottom.]
When equity funds more assets
Legacy shareholders have subsidized creditors

Higher capitalization implies a value transfer from legacy shareholders to creditors.
Debt overhang impedes arbitrage

For shareholders to break even, the new assets must be purchased at a profit that exceeds the value transfer to creditors.
Bank funds synthetic dollars with dollar debt

- **assets**
- **debt**
- **equity**

EUR → USD

old assets
old debt
equity

USD debt
Funding cost to legacy shareholders

- EUR → USD
- old assets
- USD debt
- old debt
- equity
- funding value adjustment (FVA)
Model

- Trade assets and swaps at time zero that pay off at time 1.
Model

- Trade assets and swaps at time zero that pay off at time 1.

- The risk-free discount is δ, for a risk-free gross return of $R = 1/\delta$.
Model

- Trade assets and swaps at time zero that pay off at time 1.
- The risk-free discount is \(\delta \), for a risk-free gross return of \(R = 1/\delta \).
- At time 1, the bank’s assets pay \(A \), and it’s liabilities are \(L \).
Model

- Trade assets and swaps at time zero that pay off at time 1.
- The risk-free discount is δ, for a risk-free gross return of $R = 1/\delta$.
- At time 1, the bank’s assets pay A, and it’s liabilities are L.
- The bank may enter a new trade with time-1 per-unit payoff Y.

Duffie
Dealer Pricing Distortions and the Leverage Ratio Rule
Model

- Trade assets and swaps at time zero that pay off at time 1.

- The risk-free discount is δ, for a risk-free gross return of $R = 1 / \delta$.

- At time 1, the bank’s assets pay A, and its liabilities are L.

- The bank may enter a new trade with time-1 per-unit payoff Y.

- The required funding $U(q)$ may depend on the quantity q of the trade.
Model

- Trade assets and swaps at time zero that pay off at time 1.
- The risk-free discount is δ, for a risk-free gross return of $R = 1/\delta$.
- At time 1, the bank’s assets pay A, and it’s liabilities are L.
- The bank may enter a new trade with time-1 per-unit payoff Y.
- The required funding $U(q)$ may depend on the quantity q of the trade.
- The per-unit marginal funding required is $u = \lim_{q \to 0} U(q)/q$.
Model

- Trade assets and swaps at time zero that pay off at time 1.
- The risk-free discount is δ, for a risk-free gross return of $R = 1/\delta$.
- At time 1, the bank’s assets pay A, and it’s liabilities are L.
- The bank may enter a new trade with time-1 per-unit payoff Y.
- The required funding $U(q)$ may depend on the quantity q of the trade.
- The per-unit marginal funding required is $u = \lim_{q \to 0} U(q)/q$.
- Base case: The bank funds the trade with new unsecured debt.
Technical assumptions

1. There is a finite number of states.

OR

2. Under the risk-neutral measure P^*
 - A, L, and Y have finite expectations.
 - A and L have a continuous joint probability density.
Impact of trade on balance sheet

If the bank finances a position of size q by issuing new debt, then its total asset payoff is

$$A(q) = A + qY$$

and total liabilities due are

$$L(q) = L + U(q)(R + s(q)),$$

where $s(q)$ is the dealer’s credit spread to finance the position.

The limit spread $\lim_{q \downarrow 0} s(q)$ is

$$S = \frac{E^*(\phi)R}{1 - E^*(\phi)},$$

for fractional loss in the default event $D = \{A < L\}$ of

$$\phi = \frac{L - A}{L} 1_D.$$
Marginal impact on shareholder value

The marginal increase in the value of the bank’s equity, per unit investment, is

\[G = \left. \frac{\partial E^*}{\partial q} \left[\delta \left(A + qY - L - U(q) (R + s(q)) \right)^+ \right] \right|_{q=0}. \]
The Funding Value Adjustment

Proposition

The marginal equity value G is well defined and given by

\[G = p^* \pi - \delta \operatorname{cov}^*(1_D, Y) - \Phi, \]

where

- p^* is the risk-neutral survival probability of the bank.
- $\pi = \delta E^*(Y) - u$ is the marginal profit on the trade.
- $\Phi = p^* \delta u S$ is known as the funding value adjustment (FVA).
Funding value adjustments of swap dealers

<table>
<thead>
<tr>
<th>Bank</th>
<th>Amount (millions)</th>
<th>Date Disclosed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank of America Merrill Lynch</td>
<td>$497</td>
<td>Q4 2014</td>
</tr>
<tr>
<td>Morgan Stanley</td>
<td>$468</td>
<td>Q4 2014</td>
</tr>
<tr>
<td>Citi</td>
<td>$474</td>
<td>Q4 2014</td>
</tr>
<tr>
<td>HSBC</td>
<td>$263</td>
<td>Q4 2014</td>
</tr>
<tr>
<td>Royal Bank of Canada</td>
<td>C$105</td>
<td>Q4 2014</td>
</tr>
<tr>
<td>UBS</td>
<td>Fr267</td>
<td>Q3 2014</td>
</tr>
<tr>
<td>Crédit Suisse</td>
<td>Fr279</td>
<td>Q3 2014</td>
</tr>
<tr>
<td>BNP Paribas</td>
<td>€166</td>
<td>Q2 2014</td>
</tr>
<tr>
<td>Crédit Agricole</td>
<td>€167</td>
<td>Q2 2014</td>
</tr>
<tr>
<td>J.P. Morgan Chase</td>
<td>$1,000</td>
<td>Q4 2013</td>
</tr>
<tr>
<td>Deutsche Bank</td>
<td>€364</td>
<td>Q4 2012</td>
</tr>
<tr>
<td>Royal Bank of Scotland</td>
<td>$475</td>
<td>Q4 2012</td>
</tr>
<tr>
<td>Barclays</td>
<td>£101</td>
<td>Q4 2012</td>
</tr>
<tr>
<td>Lloyds Banking Group</td>
<td>€143</td>
<td>Q4 2012</td>
</tr>
<tr>
<td>Goldman Sachs</td>
<td>Unknown</td>
<td>Q4 2011</td>
</tr>
</tbody>
</table>

Sources: Supplementary notes of quarterly or annual financial disclosures.
Example: CIP arbitrage can be bad for shareholders

- Suppose the one-year USD risk-free rate is zero.
Example: CIP arbitrage can be bad for shareholders

- Suppose the one-year USD risk-free rate is zero.
- Our bank has a one-year risk-neutral default probability of 70 basis points and a loss given default of 50%.
Example: CIP arbitrage can be bad for shareholders

- Suppose the one-year USD risk-free rate is zero.
- Our bank has a one-year risk-neutral default probability of 70 basis points and a loss given default of 50%.
- Our bank’s one-year credit spread is thus 35 basis points.
Example: CIP arbitrage can be bad for shareholders

- Suppose the one-year USD risk-free rate is zero.
- Our bank has a one-year risk-neutral default probability of 70 basis points and a loss given default of 50%.
- Our bank’s one-year credit spread is thus 35 basis points.
- We borrow $100 with one-year USD CP, promising $100.35.

The swapped payoff is $100.60, for a CIP basis of $-25bps.

We have a new liability worth $100 and a new asset worth approximately $100.25, for a trade profit of approximately $0.25.

However, the marginal value of the trade to our shareholders is $0.993 ($100$ - $0.60 - $0.993 + $0.0035 - $100.35) ≃ -0.107.

Duffie Dealer Pricing Distortions and the Leverage Ratio Rule 17
Example: CIP arbitrage can be bad for shareholders

- Suppose the one-year USD risk-free rate is zero.
- Our bank has a one-year risk-neutral default probability of 70 basis points and a loss given default of 50%.
- Our bank’s one-year credit spread is thus 35 basis points.
- We borrow $100 with one-year USD CP, promising $100.35.
- We invest $100 in one-year EUR CP, swapped to USD, with the same all-in credit quality as that of our bank’s CP, and uncorrelated.
Example: CIP arbitrage can be bad for shareholders

- Suppose the one-year USD risk-free rate is zero.
- Our bank has a one-year risk-neutral default probability of 70 basis points and a loss given default of 50%.
- Our bank’s one-year credit spread is thus 35 basis points.
- We borrow $100 with one-year USD CP, promising $100.35.
- We invest $100 in one-year EUR CP, swapped to USD, with the same all-in credit quality as that of our bank’s CP, and uncorrelated.
- The swapped payoff is $100.60, for a CIP basis of \(-25\) bps.
Example: CIP arbitrage can be bad for shareholders

▶ Suppose the one-year USD risk-free rate is zero.
▶ Our bank has a one-year risk-neutral default probability of 70 basis points and a loss given default of 50%.
▶ Our bank’s one-year credit spread is thus 35 basis points.
▶ We borrow $100 with one-year USD CP, promising $100.35.
▶ We invest $100 in one-year EUR CP, swapped to USD, with the same all-in credit quality as that of our bank’s CP, and uncorrelated.
▶ The swapped payoff is $100.60, for a CIP basis of −25bps.
▶ We have a new liability worth $100 and a new asset worth approximately $100.25, for a trade profit of approximately $0.25.
Example: CIP arbitrage can be bad for shareholders

- Suppose the one-year USD risk-free rate is zero.
- Our bank has a one-year risk-neutral default probability of 70 basis points and a loss given default of 50%.
- Our bank’s one-year credit spread is thus 35 basis points.
- We borrow $100 with one-year USD CP, promising $100.35.
- We invest $100 in one-year EUR CP, swapped to USD, with the same all-in credit quality as that of our bank’s CP, and uncorrelated.
- The swapped payoff is $100.60, for a CIP basis of −25bps.
- We have a new liability worth $100 and a new asset worth approximately $100.25, for a trade profit of approximately $0.25.
- However, the marginal value of the trade to our shareholders is

\[
0.993 \left(100.60 \left(0.993 + 0.0035 \right) - 100.35 \right) \approx -0.10.
\]

Duffie

Dealer Pricing Distortions and the Leverage Ratio Rule
5-year CDS Rates of Selected Major Dealers

![Graph showing 5-year CDS rates for various major dealers. Each bank is represented by a different color, and the vertical axis represents CDS rates in basis points. The banks include JPM, CITI, BAML, BARC, MS, GS, CS, and DB.]
With equity financing

If the dealer finances the position by issuing new equity, then assets are $A + qY$ and liabilities are L.

Because the new shareholders break even, the market value to the old shareholders is

$$\delta E^*[(A + qY - L)^+] - q\delta E^*(Y).$$

Proposition

The marginal value of the asset purchase to old shareholders is

$$G^0 = p^*\pi - P^*(D)u - \delta \text{cov}^*(1_D, Y) > G.$$
Under the Leverage-Ratio Rule

Under the LR rule, a bank may be required to finance α of the investment with new equity, and only $1 - \alpha$ with debt.

Proposition

If a fraction α of the funding is equity and the rest is debt, the marginal cost of the trade to shareholders, above that for all-debt financing, is

$$\alpha u [1 - p^*(1 - \delta S)].$$

In our previous example, for a U.S. GSIB with $\alpha = 6\%$, the additional cost to the shareholders is 6.3 bps, for a total funding cost to shareholders of approximately $35 + 6 = 41$ bps.

At a CIP basis of -25 bps, the net value of EUR-USD CIP arbitrage to the bank’s shareholders is thus about -16 bps, barring netting benefits.
Under the Leverage-Ratio Rule

Under the LR rule, a bank may be required to finance α of the investment with new equity, and only $1 - \alpha$ with debt.

Proposition

If a fraction α of the funding is equity and the rest is debt, the marginal cost of the trade to shareholders, above that for all-debt financing, is

$$\alpha u [1 - p^*(1 - \delta S)].$$

In our previous example, for a U.S. GSIB with $\alpha = 6\%$, the additional cost to the shareholders is 6.3 bps, for a total funding cost to shareholders of approximately $35 + 6 = 41$ bps.

At a CIP basis of -25 bps, the net value of EUR-USD CIP arbitrage to the bank’s shareholders is thus about -16 bps, barring netting benefits.
Under the Leverage-Ratio Rule

Under the LR rule, a bank may be required to finance α of the investment with new equity, and only $1 - \alpha$ with debt.

Proposition

If a fraction α of the funding is equity and the rest is debt, the marginal cost of the trade to shareholders, above that for all-debt financing, is

$$\alpha u [1 - p^* (1 - \delta S)].$$

In our previous example, for a U.S. GSIB with $\alpha = 6\%$, the additional cost to the shareholders is 6.3 bps, for a total funding cost to shareholders of approximately $35 + 6 = 41$ bps.

At a CIP basis of -25 bps, the net value of EUR-USD CIP arbitrage to the bank’s shareholders is thus about -16 bps, barring netting benefits.
Additional Regulatory Capital for EUR-USD swap

Regulatory capital under the leverage rule must be held against the sum of:

- Replacement cost.
- Potential future exposure (as tabulated by BCBS).
- Collateral supplied, in certain cases.