Dealer Pricing Distortions and the Leverage Ratio Rule

Darrell Duffie GSB Stanford

Based on research with Leif Andersen and Yang Song

CIP Symposium Bank for International Settlements May, 2017

Dealer banks intermediate CIP arbitrage

Example: The USD-JPY CIP basis

Source: Du, Tepper, and Verdelhan (2016).

Duffie

Dealer Pricing Distortions and the Leverage Ratio Rule

Dealer-bank balance sheet

When equity funds more assets

Legacy shareholders have subsidized creditors

Higher capitalization implies a value transfer from legacy shareholders to creditors.

Debt overhang impedes arbitrage

For shareholders to break even, the new assets must be purchased at a profit that exceeds the value transfer to creditors.

Bank funds synthetic dollars with dollar debt

Funding cost to legacy shareholders

• Trade assets and swaps at time zero that pay off at time 1.

- Trade assets and swaps at time zero that pay off at time 1.
- The risk-free discount is δ , for a risk-free gross return of $R = 1/\delta$.

- Trade assets and swaps at time zero that pay off at time 1.
- The risk-free discount is δ , for a risk-free gross return of $R = 1/\delta$.
- At time 1, the bank's assets pay A, and it's liabilities are L.

- Trade assets and swaps at time zero that pay off at time 1.
- The risk-free discount is δ , for a risk-free gross return of $R = 1/\delta$.
- At time 1, the bank's assets pay A, and it's liabilities are L.
- ► The bank may enter a new trade with time-1 per-unit payoff Y.

- Trade assets and swaps at time zero that pay off at time 1.
- The risk-free discount is δ , for a risk-free gross return of $R = 1/\delta$.
- At time 1, the bank's assets pay A, and it's liabilities are L.
- ▶ The bank may enter a new trade with time-1 per-unit payoff Y.
- The required funding U(q) may depend on the quantity q of the trade.

- Trade assets and swaps at time zero that pay off at time 1.
- The risk-free discount is δ , for a risk-free gross return of $R = 1/\delta$.
- At time 1, the bank's assets pay A, and it's liabilities are L.
- ▶ The bank may enter a new trade with time-1 per-unit payoff Y.
- The required funding U(q) may depend on the quantity q of the trade.
- The per-unit marginal funding required is $u = \lim_{q \to 0} U(q)/q$.

- Trade assets and swaps at time zero that pay off at time 1.
- The risk-free discount is δ , for a risk-free gross return of $R = 1/\delta$.
- At time 1, the bank's assets pay A, and it's liabilities are L.
- ▶ The bank may enter a new trade with time-1 per-unit payoff Y.
- The required funding U(q) may depend on the quantity q of the trade.
- The per-unit marginal funding required is $u = \lim_{q \to 0} U(q)/q$.
- Base case: The bank funds the trade with new unsecured debt.

Technical assumptions

There is a finite number of states.

OR

- **2** Under the risk-neutral measure P^*
 - A, L, and Y have finite expectations.
 - A and L have a continuous joint probability density.

Impact of trade on balance sheet

If the bank finances a position of size q by issuing new debt, then its total asset payoff is

$$\mathcal{A}(q) = A + qY$$

and total liabilities due are

$$\mathcal{L}(q) = L + U(q)(R + s(q)),$$

where s(q) is the dealer's credit spread to finance the position.

The limit spread $\lim_{q\downarrow 0} s(q)$ is

$$S = \frac{E^*(\phi)R}{1 - E^*(\phi)},$$

for fractional loss in the default event $D = \{A < L\}$ of

$$\phi = \frac{L - A}{L} \mathbf{1}_D.$$

Marginal impact on shareholder value

The marginal increase in the value of the bank's equity, per unit investment, is

$$G = \left. \frac{\partial E^*[\delta(A + qY - L - U(q)(R + s(q)))^+]}{\partial q} \right|_{q=0}.$$

The Funding Value Adjustment

Proposition

The marginal equity value G is well defined and given by

$$G = p^* \pi - \delta \operatorname{cov}^*(1_D, Y) - \Phi,$$

where

- p* is the risk-neutral survival probability of the bank.
- $\pi = \delta E^*(Y) u$ is the marginal profit on the trade.
- $\Phi = p^* \delta uS$ is known as the funding value adjustment (FVA).

Funding value adjustments of swap dealers

	Amount (millions)	Date Disclosed
Bank of America Merrill Lynch	\$497	Q4 2014
Morgan Stanley	\$468	Q4 2014
Citi	\$474	Q4 2014
HSBC	\$263	Q4 2014
Royal Bank of Canada	C\$105	Q4 2014
UBS	Fr267	Q3 2014
Crédit Suisse	Fr279	Q3 2014
BNP Paribas	€166	Q2 2014
Crédit Agricole	€167	Q2 2014
J.P. Morgan Chase	\$1,000	Q4 2013
Deutsche Bank	€364	Q4 2012
Royal Bank of Scotland	\$475	Q4 2012
Barclays	£101	Q4 2012
Lloyds Banking Group	€143	Q4 2012
Goldman Sachs	Unknown	Q4 2011

Sources: Supplementary notes of quarterly or annual financial disclosures.

Suppose the one-year USD risk-free rate is zero.

- Suppose the one-year USD risk-free rate is zero.
- Our bank has a one-year risk-neutral default probability of 70 basis points and a loss given default of 50%.

- Suppose the one-year USD risk-free rate is zero.
- Our bank has a one-year risk-neutral default probability of 70 basis points and a loss given default of 50%.
- Our bank's one-year credit spread is thus 35 basis points.

- Suppose the one-year USD risk-free rate is zero.
- Our bank has a one-year risk-neutral default probability of 70 basis points and a loss given default of 50%.
- Our bank's one-year credit spread is thus 35 basis points.
- ▶ We borrow \$100 with one-year USD CP, promising \$100.35.

- Suppose the one-year USD risk-free rate is zero.
- Our bank has a one-year risk-neutral default probability of 70 basis points and a loss given default of 50%.
- Our bank's one-year credit spread is thus 35 basis points.
- ▶ We borrow \$100 with one-year USD CP, promising \$100.35.
- We invest \$100 in one-year EUR CP, swapped to USD, with the same all-in credit quality as that of our bank's CP, and uncorrelated.

- Suppose the one-year USD risk-free rate is zero.
- Our bank has a one-year risk-neutral default probability of 70 basis points and a loss given default of 50%.
- Our bank's one-year credit spread is thus 35 basis points.
- ▶ We borrow \$100 with one-year USD CP, promising \$100.35.
- We invest \$100 in one-year EUR CP, swapped to USD, with the same all-in credit quality as that of our bank's CP, and uncorrelated.
- ► The swapped payoff is \$100.60, for a CIP basis of -25bps.

- Suppose the one-year USD risk-free rate is zero.
- Our bank has a one-year risk-neutral default probability of 70 basis points and a loss given default of 50%.
- Our bank's one-year credit spread is thus 35 basis points.
- ▶ We borrow \$100 with one-year USD CP, promising \$100.35.
- We invest \$100 in one-year EUR CP, swapped to USD, with the same all-in credit quality as that of our bank's CP, and uncorrelated.
- ► The swapped payoff is \$100.60, for a CIP basis of -25bps.
- We have a new liability worth \$100 and a new asset worth approximately \$100.25, for a trade profit of approximately \$0.25.

- Suppose the one-year USD risk-free rate is zero.
- Our bank has a one-year risk-neutral default probability of 70 basis points and a loss given default of 50%.
- Our bank's one-year credit spread is thus 35 basis points.
- ▶ We borrow \$100 with one-year USD CP, promising \$100.35.
- We invest \$100 in one-year EUR CP, swapped to USD, with the same all-in credit quality as that of our bank's CP, and uncorrelated.
- ▶ The swapped payoff is \$100.60, for a CIP basis of −25bps.
- We have a new liability worth \$100 and a new asset worth approximately \$100.25, for a trade profit of approximately \$0.25.
- However, the marginal value of the trade to our shareholders is

$$0.993 \left(\$100.60 \left(0.993 + 0.0035\right) - \$100.35\right) \simeq -\$0.10.$$

5-year CDS Rates of Selected Major Dealers

Duffie

Dealer Pricing Distortions and the Leverage Ratio Rule

With equity financing

If the dealer finances the position by issuing new equity, then assets are A + qY and liabilities are L.

Because the new shareholders break even, the market value to the old shareholders is

$$\delta E^*[(A+qY-L)^+] - q\delta E^*(Y).$$

Proposition

The marginal value of the asset purchase to old shareholders is

$$G^{0} = p^{*}\pi - P^{*}(D)u - \delta \operatorname{cov}^{*}(1_{D}, Y) > G.$$

Under the Leverage-Ratio Rule

Under the LR rule, a bank may be required to finance α of the investment with new equity, and only $1 - \alpha$ with debt.

Proposition

If a fraction α of the funding is equity and the rest is debt, the marginal cost of the trade to shareholders, above that for all-debt financing, is

$$\alpha u[1 - p^*(1 - \delta S)].$$

In our previous example, for a U.S. GSIB with $\alpha = 6\%$, the additional cost to the shareholders is 6.3 bps, for a total funding cost to shareholders of approximately 35 + 6 = 41 bps.

At a CIP basis of -25 bps, the net value of EUR-USD CIP arbitrage to the bank's shareholders is thus about -16 bps, barring netting benefits.

Under the Leverage-Ratio Rule

Under the LR rule, a bank may be required to finance α of the investment with new equity, and only $1 - \alpha$ with debt.

Proposition

If a fraction α of the funding is equity and the rest is debt, the marginal cost of the trade to shareholders, above that for all-debt financing, is

$$\alpha u[1 - p^*(1 - \delta S)].$$

In our previous example, for a U.S. GSIB with $\alpha = 6\%$, the additional cost to the shareholders is 6.3 bps, for a total funding cost to shareholders of approximately 35 + 6 = 41 bps.

At a CIP basis of -25 bps, the net value of EUR-USD CIP arbitrage to the bank's shareholders is thus about -16 bps, barring netting benefits.

Under the Leverage-Ratio Rule

Under the LR rule, a bank may be required to finance α of the investment with new equity, and only $1-\alpha$ with debt.

Proposition

If a fraction α of the funding is equity and the rest is debt, the marginal cost of the trade to shareholders, above that for all-debt financing, is

$$\alpha u[1 - p^*(1 - \delta S)].$$

In our previous example, for a U.S. GSIB with $\alpha = 6\%$, the additional cost to the shareholders is 6.3 bps, for a total funding cost to shareholders of approximately 35 + 6 = 41 bps.

At a CIP basis of -25 bps, the net value of EUR-USD CIP arbitrage to the bank's shareholders is thus about -16 bps, barring netting benefits.

Additional Regulatory Capital for EUR-USD swap

Regulatory capital under the leverage rule must be held against the sum of

- Replacement cost.
- Potential future exposure (as tabulated by BCBS).
- Collateral supplied, in certain cases.