

What we do in this paper ...

A: Study main arbitrageurs

- In-depth study of CIP Arb strategies
 - ► Risk-less round-trip strategies (vs. *LOOP*)
 - Careful treatment of arbitrageurs' funding costs

B: Study challenges of FX swap market makers

- Balance FX swap Order Flow
- Challenge of segmentation in money markets (post-GFC)

Main results in a nutshell

- Proper funding cost => No Arb profits (for most)
- Risk-less Arb for banks with best funding and ability to place at CB deposit rate
 - Equilibrium as market maker balance (finite) flows
 - Funding Liquidity Premia
 - Segmented USD money markets
 - ⇒ Dispersion of USD rates across banks
 - Excess liquidity (QE) in non-USD markets
 - ⇒ Compression of rates towards CB deposit
- First to study FX Swap Order Flow (into USD) CIP dislocations / Price impact /

Funding constraints in USD markets limits Arb

CIP: excess liquidity & liquidity premia

$$\frac{F}{S} = \frac{1 + r_{\$}^f + \tilde{c}r_{\$} + \tilde{l}p_{\$}}{\underbrace{1 + r_{\$}}_{1 + r_{\star}^f + \tilde{c}r_{\star} + \tilde{l}p_{\star}}}$$

"Normal" times:

$$\left. \begin{array}{l} \widetilde{l}\widetilde{p}_{\$} = \widetilde{l}\widetilde{p}_{\star} \\ \widetilde{c}r_{\$} = \widetilde{c}r_{\star} \end{array} \right\} \Rightarrow \mathit{CIP} \; \mathsf{holds}$$

CIP: excess liquidity & liquidity premia

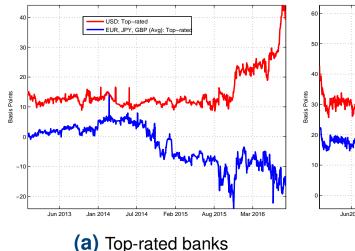
$$\frac{F}{S} = \frac{1 + r_{\$}^f + \widetilde{c}r_{\$} + \widetilde{l}p_{\$}}{1 + r_{\star}^f + \widetilde{c}r_{\star} + \widetilde{l}p_{\star}}$$

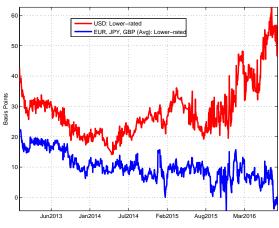
Post-GFC environment:

QE + Heterogeneity in banks' funding costs:

- Cross-currency differences in **Funding** Liquidity Premia: $\widetilde{lp}_{\$} > 0$, $\widetilde{lp}_{\star} \searrow 0$
- Full allotment of liquidity: as if $lp_{\star} + \tilde{c}r_{\star} \searrow 0$

⇒ LOOP can't hold for all rates simultaneously





Funding cost heterogeneity

Commercial Paper (CP) rates - OIS rates:

USD vs Other Major Currencies

(b) Lower-rated banks

► More

Data requirements for CIP arbitrage

Funding side: Post-GFC environment

- ⇒ Critical to use actual marginal funding rates
 - OIS, GC Repo or IBOR
 - → Turn to wholesale non-bank funding sources:
 Commercial Paper (CP) & Certificates of Deposit (CD)

Investment side: CIP: absence of *risk-free* Arb

- ⇒ Need to place funds risk-free
- ⇒ Safe investment (zero R.W.) no capital costs
 - CB deposits (restricted access) insensitive to Liquidity Premiums
 - T-bills (widely accessible) responsive to excess liquidity and Liquidity Premium compression

BI NORWEGIAN BUSINESS SCHOOL

Data

Hi-Freq data from Reuters:

- 2005-Dec.2015
- Tenors 1w-3m
- AUD, CAD, CHF, EUR, GBP, JPY vs. USD
- Market conventions & bid-ask-spreads

► More

Further data:

- FX Swap Order Flow (Reuters Dealing)
- CP-rates (TradeWeb)

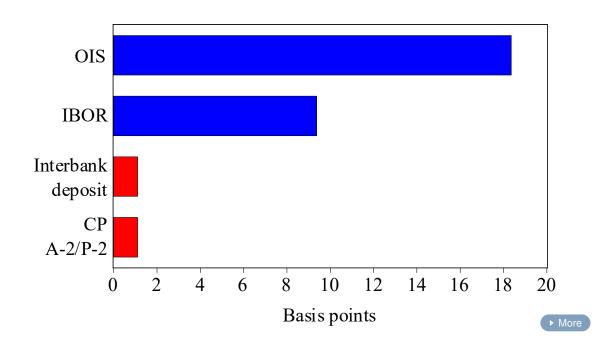
Best-rated: A-1+/P-1

► Top-rated: A-1/P-1

Lower: A-2/P-2

- CD rates and issuance
- Bank of Japan deposit holdings

► More



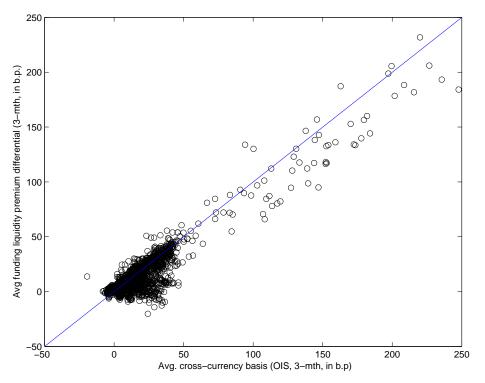
LOOP deviation for different rates

Average across EUR, GBP, JPY.

Post-crisis

Measure Funding Liquidity Premia

$$r_{i,\$} = r_{\$}^f + cr_i + \widetilde{lp_{\$}}$$


- Panel-data on 3-mth interbank deposit rates (r_i) across currencies
- Proxy r^f by OIS-rate; Assume cr_i is bank-specific
- ⇒ Extract Funding Liquidity Premium differential

$$\widetilde{lp}_{\$} - \widetilde{lp}_{\star} = \frac{1}{J_t} \sum_{i=1}^{J_t} \left[\left(r_{i;\$} - r_{\$}^{OIS} \right) - \left(r_{i;\star} - r_{\star}^{OIS} \right) \right]$$

OIS basis and Liquidity Premia diff

True CIP Arb

(Post-crisis)

Funded via USD CP and investing in T-bills

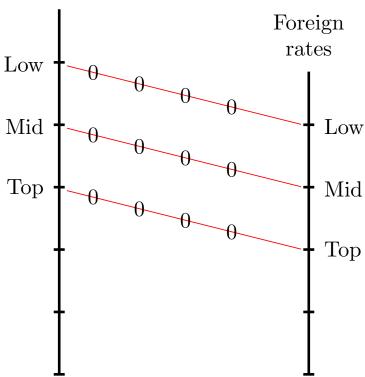
(basis points)

	A-2/F	A-2/P-2		P-1	A-1+/P-1		
	Median	(%D)	Median	(%D)	Median	(%D)	
		1					
AUD	-38.9	0 %	-25.9	0 %	-21.0	18 %	
CAD	-28.6	0 %	-15.5	1 %	-9.3	5 %	
CHF	-13.6	9 %	-0.2	49 %	6.0	78 %	
EUR	-23.2	1 %	-9.3	6 %	-3.4	32 %	
GBP	-25.3	0 %	-12.5	7 %	-6.5	21 %	
JPY	-4.8	30 %	6.3	95 %	12.5	100 %	

(Post-crisis)

Funded via USD CP and placing funds with foreign CB

(basis points)

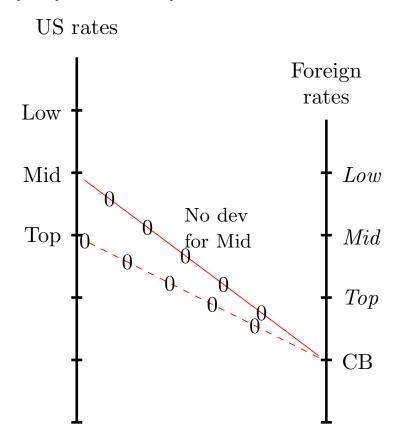

	A-2/F	P-2	A-1/	P-1	A-1+/P-1		
	Median	(%D)	Median	(%D)	Median	(%D)	
						1	
AUD	-53.5	0 %	-42.6	0 %	-35.9	0 %	
CAD	-20.1	0 %	-7.5	14 %	-1.5	35 %	
CHF	0.5	53 %	13.1	100 %	18.7	100 %	
EUR	-22.9	7 %	-9.7	29 %	-3.6	44 %	
GBP	-12.9	1 %	0.6	59 %	7.4	98 %	
JPY	4.0	65 %	13.3	100 %	18.8	100 %	

► More

FX Swap Market

(a) "Normal" situation: Equilibrium, No Arb, No Flow imbalance

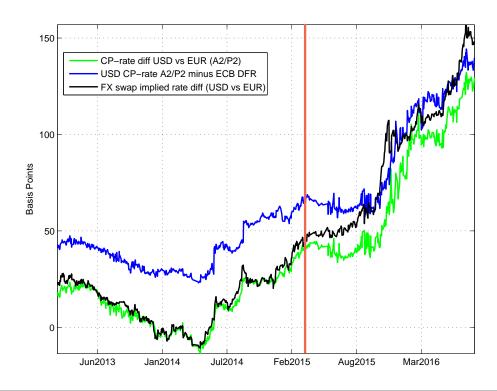
US rates


FX Swap Market

(b) Example of no equilibrium with excess liquidity

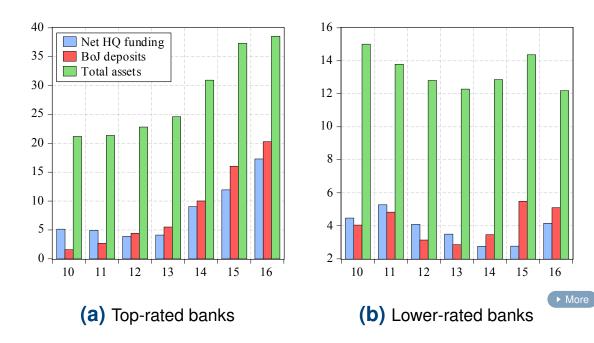
FX Swap Market

(c) Excess liquidity: Equilibrium swap rate


FX Swap Market

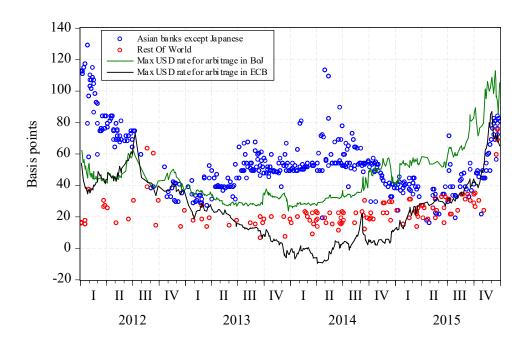
(d) Excess liquidity: Equilibrium flows

US rates Foreign rates Low LOOP gain LowMid Low Top MidLOOPTop Top CB Top's CIP CIP profit


Excess liquidity and the new LOOP

Some evidence from the ECB's Asset Purchase Program

Cash deposits of foreign' banks with Bank of Japan



CD issuance in US Dollars

Dispersion in USD funding costs - top-rated banks

▶ More

CIP arb and Swap Order Flow

$$\Delta CIP_{i,t}^{dev} = \alpha_i + \gamma \cdot CIP_{i,t-1}^{dev} + D_{i,t} \cdot \beta_{swapOF}OF_{i,t}^{swap} / \text{sd}(OF_{i,t}^{swap}) + Controls + \varepsilon_{i,t}$$

- Panel regression (CrossX FE, CrossX clustering)
- Lagged dependent variable: "error-correction"
- 2 regimes, deviation-dummy: $\beta_i = [\beta_i^{Dev}, \beta_i^{NoDev}]$
- OF_{swap}: measures demand pressure to raise
 USD through swaps (standardized)

▶ More

Order flow regressions

	A-2/P-2	A-1/P-1	A-1/P-1
	(1)	(2)	(3)
Deviation, level lagged	-0.04	-0.07	-0.07
	(-2.31)	(-4.62)	(-6.69)
Swap OF, both dev			2.75 (2.70)
Swap OF, dev	3.26	0.75	0.65
	(3.09)	(2.45)	(4.42)
Swap OF, no dev	0.91	0.49	0.26
	(2.87)	(2.41)	(1.97)

Additional controls . . . (see Appendix)

Conclusions

Main forces for recent FX swap market "dislocations"

- Segmentation + tiering in international money markets
- Funding Liquidity Premia evolution differ across currency areas
- → Substantial heterogeneity in banks' funding costs across (and within) major currency areas ...
- → Narrow set of banks enjoys risk-free CIP Arb
- \rightarrow But, not easy to scale the arbitrage ...
- ⇒ **Equilibrium outcome** in post-GFC environment with segmented markets and excess liquidity

Part II

Additional material

Literature

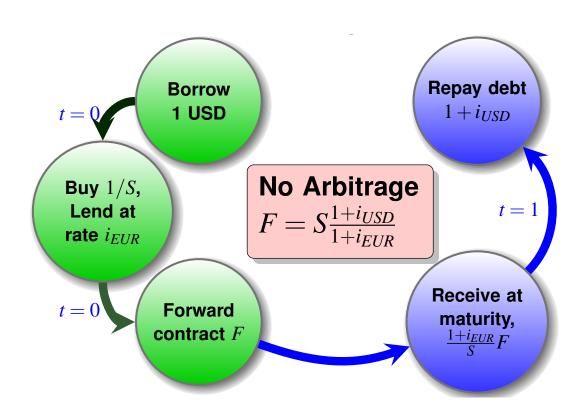
Classics and pre-crisis evidence

Branson (1969), Frenkel and Levich (1975, 1977): large deviations Taylor (1987), Akram, Rime, and Sarno (2008): tiny dev (when data are sampled correctly)

CIP and the global financial crisis

e.g. Baba, Packer, and Nagano (2008); Baba and Packer (2009); Coffey, Hrung, Nguyen, and Sarkar (2009); Goldberg, Kennedy, and Miu (2011); Griffoli and Ranaldo (2009); McGuire and von Peter (2012); Bottazzi, Luque, Pascoa, and Sundaresan (2012); Syrstad (2014)

The CIP puzzle in the post-GFC period


e.g. Du, Tepper, and Verdelhan (2016); Sushko, Borio, McCauley, and McGuire (2016); Avdjiev, Du, Koch, and Shin (2016); lida, Kimura, and Sudo (2016)

⇒ Large & persistent deviations, yet no turmoil!

CIP (LOOP) with bid-ask spreads

CIP arbitrage is *not* profitable . . .

$$(1+r_d^a) \geqslant \frac{F^b}{S^a}(1+r_f^b)$$
 (1)

$$(1+r_f^a) \geqslant \frac{S^b}{F^a}(1+r_d^b)$$
 (2)

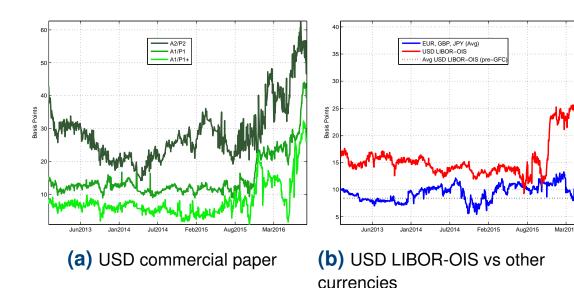
- Borrowing rate (ask) in domestic currency has to be equal or higher than implied lending rate (bid) measured in domestic currency
- LOOP: same price for both interest rates (weaker)

▶ Back

Market conventions and the cross-currency basis

$$Dev_{CIP}^{b} = -i_{d}^{a} + \left[\frac{S^{a} + \overline{F^{b} - S^{a}}/10^{4}}{S^{a}} \left(100 + i_{f}^{b} \frac{D}{360} \right) - 100 \right] \frac{360}{D},$$

$$Dev_{CIP}^{a} = -i_{f}^{a} - \left[\frac{S^{b}}{S^{b} + \overline{F^{a} - S^{b}}/10^{4}} \left(100 + i_{d}^{b} \frac{D}{360} \right) - 100 \right] \frac{360}{D}.$$

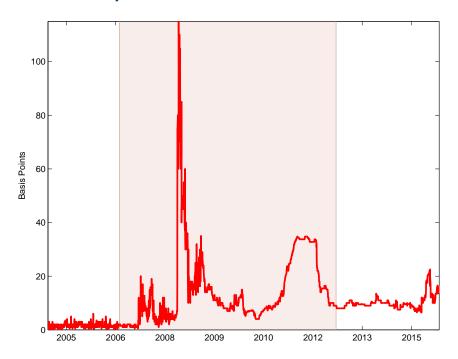

- Swap, represented by $\overline{F^b S^a}$ (here at bid), not forward
- D days to maturity and 10^4 factor scaling the swap since it is quoted in "swap points"
- CIP deviation as the cross-currency basis

Part III

Data and Funding cost heterogeneity

Funding cost heterogeneity

US money market spreads (3-mth)


▶ Back

Heterogenous funding costs

Evidence from the LIBOR panel

▶ Back

Data overview

FX

	Trade- able	Risk- free	High- freq	Tenors Tenors	Currencies
Spot (D2)	Υ	_	Υ	_	AUD, CAD, CHF,
FX Swaps	N	_	Υ	1W-3M	EUR, GBP, JPY AUD, CAD, CHF,
FX Swaps (D3)	Υ	_	Y	1W-3W	EUR, GBP, JPY AUD, CAD, CHF,
					EUR, GBP, JPY

▶ Back

Data overview

Interest rates

	Trade- able	Risk- free	High- freq	Tenors Tenors	Currencies
Secured					
OIS	Υ	Υ	Υ	1W-3M	USD, EUR, GBP*, JPY*
			Υ	1M-3M	AUD, CAD, CHF
Repo (GC)	Υ	Υ	D	1M, 3M	USD, EUR
T-bills	Υ	Υ	D	1M, 3M	USD, AUD, CAD, CHF, EUR, GBP, JPY
CB deposits	Υ	Υ	D	1M, 3M	USD, AUD, CAD, CHF, EUR, GBP, JPY
Unsecured					
Deposit	N	Ν	Υ	1W-3M	USD, AUD, CAD, CHF, EUR, GBP, JPY
IBOR	N	Ν	D	3M	USD, AUD*, CAD, CHF, EUR, GBP, JPY
CP	Υ	Ν	D	1M, 3M	USD, AUD, CAD, EUR, GBP, JPY

Descriptives

Money market spreads (over OIS)

	Deposit	Repo	IBOR
Mean	0.324	-0.105	0.291
Median	0.174	-0.095	0.145
Maximum	4.776	0.341	3.663
Minimum	-0.140	-1.464	0.025
Std. Dev.	0.478	0.136	0.391
Skewness	4.334	-2.331	3.949
Kurtosis	28.453	16.746	24.023
Observations	2801	1740	2733

Part IV

OIS, GC Repo and FTP

Roundtrip Arb based on OIS contracts

- Borrow funds overnight (O/N) in borrowing currency (e.g. USD)
- Roll over O/N loan daily over preferred maturity and hedge IR risk by paying the (fixed) OIS-rate of the same maturity
- Enter into FX swap with same maturity as OIS
- Invest lending currency O/N (e.g. JPY)
- Roll over O/N investment and hedge IR risk by receiving the OIS-rate in the lending currency
- ⇒ Rolling over short-term O/N funding allows arbitrageur to reduce funding cost
- ⇒ But, this comes at the cost of taking on additional *liquidity risk* in the borrowing currency ...

Roundtrip cross-currency basis arbitrage with OIS rates (I)

		GFC and EUR crisis							
		Deviation							
	Direction	Median	Std.	(%D)	(%W)	(%M)	Obs.		
EUR	$FCU \Rightarrow USD$	-29.8	38.2	0%	0%	0%	1566		
	$USD \Rightarrow FCU$	23.5	35.4	92%	91%	88%	1566		
GBP	$FCU \Rightarrow USD$	-13.6	34.7	3%	2%	0%	1395		
	$USD \Rightarrow FCU$	7.5	31.3	87%	79%	61%	1395		
JPY	$FCU \Rightarrow USD$	-31.1	16.6	0%	0%	0%	796		
	$USD \Rightarrow FCU$	25.7	16.7	100%	99%	97%	796		

Round-trip arb based on OIS rates and B/A adjustment in all legs of trade sequence

[&]quot;Direction" indicates if round-trip goes " $USD \Rightarrow FCU$ " or " $FCU \Rightarrow USD$ " at spot leg of swap

Roundtrip cross-currency basis arbitrage with OIS rates (II)

		Post-crisis							
		Deviation							
	Direction	Median	Std.	(%D)	(%W)	(%M)	Obs.		
EUR	$FCU \Rightarrow USD$	-18.8	16.0	0%	0%	0%	728		
	$USD \Rightarrow FCU$	12.8	9.3	94%	92%	87%	728		
GBP	$FCU \Rightarrow USD$	-8.1	3.7	0%	0%	0%	725		
	$USD \Rightarrow FCU$	3.1	3.6	99%	97%	95%	725		
JPY	$FCU \Rightarrow USD$	-23.8	14.4	0%	0%	0%	694		
	$USD \Rightarrow FCU$	19.9	14.2	100%	100%	100%	694		

Round-trip Arb based on OIS rates and B/A adjustment in all legs of trade sequence

[&]quot;Direction" indicates if round-trip goes " $USD \Rightarrow FCU$ " or " $FCU \Rightarrow USD$ " at spot leg of swap

Roundtrip cross-currency basis arbitrage with OIS rates (III)

		(GFC a	nd EUR	crisis		Post-crisis					
	Direction	Median	Std.	(%D)	(%W)	(%M)	Median	Std.	(%D)	(%W)	(%M)	
AUD	$FCU \Rightarrow USD$ $USD \Rightarrow FCU$	-10.2 2.5	40.4 38.2	18% 61%	14% 52%	7% 41%	6.9 -12.3	9.6 9.5	64% 13%	61% 11%	56% 7%	
CAD	$FCU \Rightarrow USD$ $USD \Rightarrow FCU$	-13.0 6.0	37.3 31.2	1% 88%	0% 79%	0% 62%	-7.7 2.4	4.0 3.8	1% 76%	0% 67%	0% 47%	
CHF	$FCU \Rightarrow USD$ $USD \Rightarrow FCU$	-41.3 32.3	31.4 27.9	0% 100%	0% 100%	0% 98%	-31.2 23.9	28.3 24.8	0% 100%	0% 100%	0% 100%	

Round-trip Arb based on OIS rates and B/A adjustment in all legs of trade sequence


[&]quot;Direction" indicates if round-trip goes " $USD \Rightarrow FCU$ " or " $FCU \Rightarrow USD$ " at spot leg of swap

OIS is not Marginal Funding Rate

An Overnight-Index-Swap is a derivative, <u>not</u> a funding instrument

- Use for CIP calculations (implicitly) assumes a complex series of trades
- Need to roll over O/N borrowing
- Arbitrageur remains exposed to rollover and liquidity risks
- ⇒ Fluctuations of OIS FX swap basis largely reflect relative **term funding liquidity premiums** vis-a-vis USD ...
- ⇒ Can't make judgement about validity of a no-Arb condition like CIP
- ⇒ Similar arguments apply to FX swap basis constructed from GC repo rates

Funding liquidity premia

GC repo rates in CIP calculations

Like in case of OIS, there are hidden costs when relying on GC repo rates in CIP calculations ...

- Collateral used in repo is ultimately financed unsecured
- For use in arbitrage trade, collateral needs to be unencumbered
- Otherwise, requirements of self-financing Arb trade not met
- → To capture marginal funding costs for repo-based CP arbitrage, it is necessary to adjust for the (unsecured) funding cost of the collateral

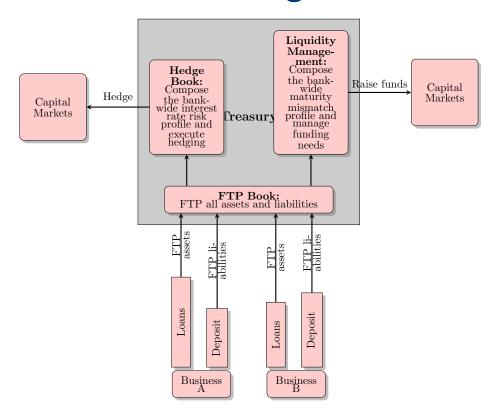
▶ Back

How do banks price funds internally?

The principle of Funds Transfer Pricing (FTP)

- Transfer IR and liquidity risk to central location (Treasury unit)
- Immunize remaining units against these risk factors
- Treasury "buys" funds from units managing the banks' liability side
- And, it "sells" funds to units investing in banking assets
- The corresponding "prices" charged by the Treasury are related to the cost of obtaining the funds

The FTP interest rate curve


- To determine FTP, the Treasury unit constructs an IR curve, incorporating the marginal cost of using funds across maturities
- Make sure business units face net interest margin from
 - Funding spread between deposit rates faced by banks' customers and internal price (liability side)
 - Spread between internal price and return on the banking assets (asset side)
- Rely on interbank deposit rates < 1y and IRS curve > 1y
- Interbank deposit rate regarded as a reasonable proxy for the marginal cost of using funds for banks

▶ Back

FTP: Implications

- Banks' internal pricing needs to be closely aligned with LOOP
- Otherwise, internal business units may exploit inconsistency
- ⇒ Choice of MM rates guided by banks' internal no-Arb condition across currencies ...
 - Interbank deposit rates as a reasonable proxy for the internal price
 - Account for term funding liquidity, credit premium and balance sheet cost of using additional funds
 - TC-adjustment feasible (unlike IBOR)
- ⇒ Expect CIP to hold to a close approximation between interbank deposit rates (after TC-adjustment) ...

Funds Transfer Pricing

► Back

Part V

LOOP

LOOP and IBOR

(i)
$$y^{\$} - y^{FCU \to \$}$$
Direct \$-rate Swap-implied \$-rate

(ii) $y^{FCU} - y^{\$ \to FCU}$
Direct FCU -rate Swap-implied FCU-rate

			GF	C and E	UR cris	sis				Post-	crisis		
		Deviation								1	Deviatio	n	
		Median	Std.	(%D)	(%W)	(%M)	Obs.	Median	Std.	(%D)	(%W)	(%M)	Obs.
EUR	(i)	-33.7	33.3	11%	8%	3%	1422	-13.7	9.1	1%	0%	0%	711
	(ii)	31.6	31.4	88%	85%	77%	1422	12.4	8.8	98%	97%	90%	711
GBP	(i)	-17.0	30.3	5%	1%	0%	1422	-2.1	4.1	12%	7%	1%	711
	(ii)	15.3	27.4	91%	85%	76%	1422	1.4	4.0	80%	71%	53%	711
JPY	(i)	-18.5	20.1	11%	6%	2%	1500	-15.4	12.9	0%	0%	0%	729
	(ii)	16.2	19.0	84%	77%	68%	1500	14.3	12.6	100%	100%	100%	729

LOOP and interbank deposit (i) $y^{\$}$ - $y^{FCU \rightarrow \$}$

(i)
$$y^{\$} - y^{FCU \to \$}$$
Direct \$-rate Swap-implied \$-rate

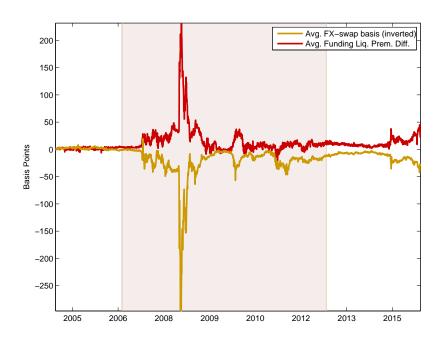
(ii) $y^{FCU} - y^{\$ \to FCU}$
Direct FCU -rate Swap-implied FCU-rate

		GFC and EUR crisis							Post-crisis				
		Deviation								I	Deviatio	n	
		Median	Std.	(%D)	(%W)	(%M)	Obs.	Median	Std.	(%D)	(%W)	(%M)	Obs.
EUR	(i)	-4.0	9.9	11%	1%	0%	1488	-0.8	2.4	13%	0%	0%	728
	(ii)	3.2	9.9	81%	62%	40%	1488	0.4	2.4	75%	44%	17%	728
GBP	(i)	-4.5	7.7	21%	8%	4%	1472	-0.8	2.9	26%	5%	0%	725
	(ii)	3.7	7.2	74%	53%	32%	1472	0.6	2.9	65%	33%	8%	725
JPY	(i)	-2.0	4.7	23%	8%	1%	1417	-2.5	3.1	10%	0%	0%	694
	(ii)	1.4	4.9	68%	43%	22%	1417	2.3	3.0	87%	65%	38%	694

▶ Back

LOOP for CP rates (A-2/P-2) $(i) \quad y^{\$} = y^{FCU \to \$}$

(i)
$$y^{\$} - y^{FCU \to \$}$$
Direct \$\\$-rate Swap-implied \$\\$-rate

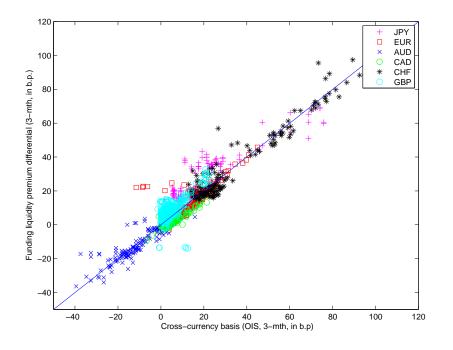

(ii) $y^{FCU} - y^{\$ \to FCU}$
Direct FCU -rate Swap-implied FCU-rate

				[Deviatio	n	
		Median	Std.	(%D)	(%W)	(%M)	Obs.
	(:)	4.0	0.0	00/	00/	00/	710
EUR	(i)	-4.2	8.6	3%	0%	0%	716
	(ii)	3.4	8.4	93%	79%	54%	716
GBP	(i)	-0.3	4.2	44%	22%	8%	716
	(ii)	-0.4	4.1	43%	21%	7%	716
JPY	(i)	-1.6	6.4	25%	4%	0%	714
	(ii)	0.3	6.1	55%	28%	8%	714

Part VI

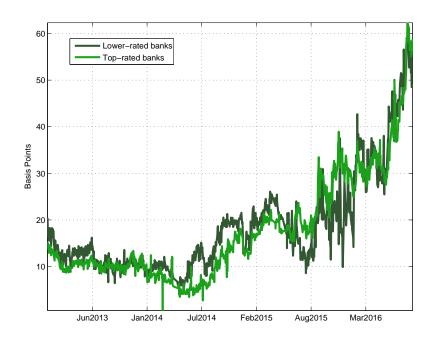
Funding Liquidity Premia

Funding liquidity premia and the basis



Funding liquidity premia and the basis

▶ Back



Funding liquidity premia and the basis

Commercial paper

▶ Back

Part VII True CIP Arbitrage

True CIP Arb

(Post-crisis)

Funded via USD CP and investing in T-Bills

Lower-rated banks (A-2/P-2)

	Median	Std.	(%D)	(%W)	(%M)	Obs.
AUD	-38.9	10.4	0%	0%	0%	167
CAD	-28.6	6.9	0%	0%	0%	691
CHF	-13.6	10.7	9%	6%	3%	679
EUR	-23.2	6.1	1%	0%	0%	713
GBP	-25.3	7.1	0%	0%	0%	688
JPY	-4.8	10.8	30%	18%	9%	497

(Post-crisis)

Funded via USD CP and investing in T-Bills

Top-rated banks (A-1/P-1)

	Median	Std.	(%D)	(%W)	(%M)	Obs.
		1				
AUD	-25.9	13.2	0%	0%	0%	167
CAD	-15.5	5.5	1%	0%	0%	691
CHF	-0.2	10.7	49%	28%	9%	679
EUR	-9.3	7.4	6%	3%	0%	713
GBP	-12.5	6.7	7%	6%	3%	688
JPY	6.3	10.6	95%	88%	80%	497

▶ Back

True CIP Arb

(Post-crisis)

Funded via USD CP and investing in T-Bills

Best-rated banks (A-1+/P-1)

	Median	Std.	(%D)	(%W)	(%M)	Obs.
AUD	-21.0	13.4	18%	11%	0%	161
CAD	-9.3	5	5%	2%	0%	683
CHF	6.0	10.6	78%	65%	45%	671
EUR	-3.4	7.4	32%	23%	14%	705
GBP	-6.5	6.7	21%	13%	5%	680
JPY	12.5	10.7	100%	100%	100%	492

(Post-crisis)

Funded via USD CP and placing funds with foreign CB

Lower-rated banks (A-2/P-2)

	Median	Std.	(%D)	(%W)	(%M)	Obs.
AUD	-53.5	11	0%	0%	0%	639
CAD	-20.1	6.9	0%	0%	0%	696
CHF	0.5	16.9	53%	41%	31%	699
EUR	-22.9	11.5	7%	4%	1%	696
GBP	-12.9	5.2	1%	0%	0%	698
JPY	4.0	14.8	65%	60%	49%	699

▶ Back

True CIP Arb

(Post-crisis)

Funded via USD CP and placing funds with foreign CB

Top-rated banks (A-1/P-1)

	Median	Std.	(%D)	(%W)	(%M)	Obs.
AUD	-42.6	11.4	0%	0%	0%	639
CAD	-7.5	5.6	14%	9%	2%	696
CHF	13.1	17.9	100%	99%	97%	699
EUR	-9.7	13.1	29%	25%	19%	696
GBP	0.6	3.5	59%	46%	28%	698
JPY	13.3	14.6	100%	100%	100%	699

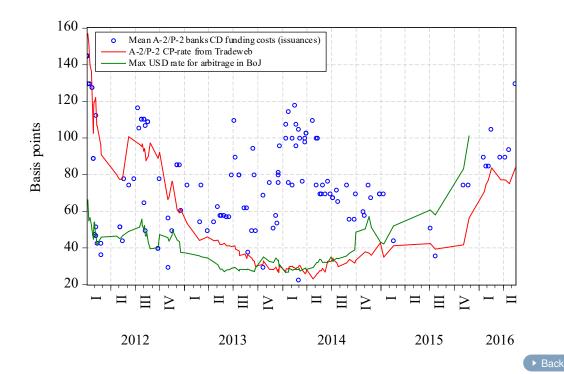
(Post-crisis)

Funded via USD CP and placing funds with foreign CB

Best-rated banks (A-1+/P-1)

	Median	Std.	(%D)	(%W)	(%M)	Obs.
AUD	-35.9	11.3	0%	0%	0%	631
CAD	-1.5	5.6	35%	24%	12%	688
CHF	18.7	18.1	100%	99%	97%	691
EUR	-3.6	12.9	44%	42%	37%	688
GBP	7.4	3.7	98%	96%	92%	690
JPY	18.8	14.8	100%	100%	100%	691

▶ Back

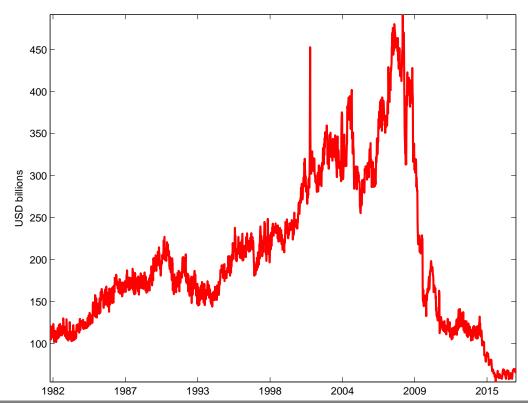

Cash deposits of foreign banks with Bank of Japan

Panel regression: (BoJCash - Funding)/TotAssets

	(1)	(2)	(3)	(4)
Rating	-0.019 (-2.44)	-0.019 (-2.41)	-0.018 (-2.32)	-0.019 (-2.33)
CIP, top rating		0.295 (1.83)		0.150 (1.00)
CIP, low rating			0.109 (3.81)	0.089 (4.47)

CD issuance in US Dollars

Dispersion in USD funding costs - low-rated banks


BI NORWEGIAN BUSINESS SCHOOL

Activity in US interbank markets

Global banks and their ratings

	Rating category					
	A-1+/P-1	A-1/P-1	A-2/P-2	Lower/No		
A: Non-As	sian banks,	including	Japanese	banks		
Average size	749	861	877	310		
Total size	8,990	35,301	14,907	19,519		
# banks	12	41	17	63		
B: Asian banks, excluding Japanese banks						
Average size	301	1,026	473	342		
Total size	1,803	11,282	3,311	6,155		
# banks	6	11	7	18 ▶ Back		

Part VIII

Swap Order Flow

Order flow regressions

Interpretation

- Rise in funding liquidity premia ("USD more scarce")
- Turn to swap-market for funding in USD (especially for low-tier)
 - → CIP-deviations widen ...
- Reflects rising pressure (on f s) as price impact of swap order flow imbalance rises

Other results:

Similar for OIS roundtrip deviations

Order flow regressions (Cont.)

	A2/P2 (1)	A1/P1 (2)	A1/P1 (3)
Spot return, dev	1.45	-0.60	-0.19
	(1.25)	(-1.38)	(-0.62)
Spot return, no dev	-0.54	-1.25	-0.89
	(-0.93)	(-2.15)	(-2.87)
Spot OF, dev	-0.10	-0.01	-0.04
	(-0.37)	(-0.03)	(-0.51)
Spot OF, no dev	-0.21	-0.27	-0.01
	(-1.40)	(-2.22)	(-0.11)
Liq-premia diff, dev	0.06	0.09	0.04
	(2.54)	(3.10)	(3.37)
Liq-premia diff, no dev	-0.01	-0.16	-0.07
	(-0.56)	(-2.82)	(-4.99)
Obs.	1,143	2,598	1,237
adi R2	ሀ ሀሪ	0.10	0.07

OF: Robustness

	A-2	2/P-2	A-1/P-1		
	(1)	(2)	(3)	(4)	
Swap OF, dev	1.54	1.81	0.58	0.69	
	(2.37)	(2.49)	(2.38)	(9.14)	
Swap OF, no dev	0.17	0.16	0.21	0.25	
	(3.87)	(3.62)	(2.20)	(1.91)	
Spot index, dev	1.44		0.64		
	(1.68)		(1.32)		
Spot index, no dev	0.03		-1.66		
	(0.11)		(-2.92)		
Spot, dev		1.05		0.28	
		(0.92)		(2.06)	
Spot, no dev		-0.64		-0.78	
		(-1.56)		(-3.77)	
LP diff, dev	0.13		0.16		
	(5.28)		(5.82)		
LP diff, no dev	0.06		0.01		
	(2.58)		(0.35)		

▶ Back

References I

- Q. Farooq Akram, Dagfinn Rime, and Lucio Sarno. Arbitrage in the foreign exchange market: Turning on the microscope. Journal of International Economics, 76:237–253, 2008.
- Stefan Avdjiev, Wenxin Du, Catherine Koch, and Hyun Song Shin. The dollar, bank leverage and the deviation from covered interest parity. Working Paper 592, BIS, November 2016. URL http://www.bis.org/publ/work592.htm.
- Naohiko Baba and Frank Packer. Interpreting deviations from covered interest parity during the financial market turmoil of 2007-08. *Journal of Banking and Finance*, 33(11): 1953–1962, 2009. ISSN 0378-4266.

References II

Naohiko Baba, Frank Packer, and Teppei Nagano. The spillover of money market turbulence to fx swap and cross-currency swap markets. *BIS Quarterly Review*, (1):27–42, March 2008. URL

http://ideas.repec.org/a/bis/bisqtr/1012e.html.

Jean-Marc Bottazzi, Jaime Luque, Mario Pascoa, and Suresh M. Sundaresan. Dollar shortage, central bank actions, and the cross currency basis. typescript, Columbia Business School, October 2012. URL

http://ssrn.com/abstract=2167716.

William H. Branson. The minimum covered interest differential needed for international arbitrage activity. *Journal of Political Economy*, 77(6):1028–1035, 1969.

References III

Niall Coffey, Warren Hrung, Hoai-Luu Nguyen, and Asani Sarkar. Credit risk, liquidity risk and deviations from covered interest rate parity. Staff Report 393, Federal Reserve Bank of New York, 2009. URL

https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr393.pdf.

- Wenxin Du, Alexander Tepper, and Adrien Verdelhan. Deviations from covered interest rate parity. Working paper, MIT, August 2016. URL http://ssrn.com/abstract=2768207.
- Jacob A. Frenkel and Richard M. Levich. Covered interest arbitrage: Unexploited profits. *Journal of Political Economy*, 83(2):325–338, 1975.
- Jacob A. Frenkel and Richard M. Levich. Transaction costs and interest arbitrage: Tranquil versus turbulent periods. *Journal* of Political Economy. 85(6):1209–1226. 1977.

References IV

Linda S. Goldberg, Craig Kennedy, and Jason Miu. Central bank dollar swap lines and overseas dollar funding costs. *FRBNY Economic Policy Review*, pages 3–20, May 2011. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.422.11&rep=rep1&type=pdf.

- Tommaso Mancini Griffoli and Angelo Ranaldo. Deviations from covered interest parity during the crisis; a story of funding liquidity constraints. typescript, Swiss National Bank, 2009.
- Tomoyuki lida, Takeshi Kimura, and Nao Sudo. Regulatory reforms and the dollar funding of global banks: Evidence from the impact of monetary policy divergence. Working Paper No.16-E-14, Bank of Japan, August 2016. URL

https://www.boj.or.jp/en/research/wps_rev/wps_ 2016/data/wp16e14.pdf.

References V

- Patrick McGuire and Goetz von Peter. The dollar shortage in global banking and the international policy response. *International Finance*, 15(2):155–178, jun 2012.
- Vladyslav Sushko, Claudio Borio, Robert McCauley, and Patrick McGuire. The failure of covered interest parity: FX hedging demand and costly balance sheets. Working Paper 590, BIS, 2016. URL http://www.bis.org/publ/work590.htm.
- Olav Syrstad. The impact of the Term Auction Facility on the liquidity risk premium and unsecured interbank spreads. Working Paper 7/2014, Norges Bank, 2014. URL http://www.norges-bank.no/en/Published/Papers/Working-Papers/2014/201407/.
- Mark P. Taylor. Covered interest parity: A high-frequency, high-quality data study. *Economica*, 54(216):429–438, November 1987.

