MONETARY POLICY, RELATIVE PRICES AND INFLATION CONTROL
BY BORIO, DISYATAT, XIA, ZAKRAJSEK

Ricardo Reis
LSE

24th of March 2022
Banco Central de Reserva del Perú
Centenary conference with BIS
**Fall in the permanent component of inflation**

**Figure 2.4** Persistence of trend inflation

\[
\pi_t = \tau_t + \eta_t
\]

\[
\tau_t = \tau_{t-1} + \varepsilon_t
\]

\[
\theta = 1 - \frac{\sigma_\varepsilon}{\sigma_a}
\]

Rise in black line, fall in weight of permanent shocks to inflation

Notes: The grey lines plot the coefficients of a simple autoregressive model (estimated with quarterly data and a 12-year window for the US, UK and Japan, and a six-year window for the Eurozone) and black lines plot the values of \(\theta\) obtained with the Stock and Watson model.

Source: Miles et al (2017)
Fall in the common component of inflation

Time-varying fraction of total price-change variance due to the common component

**Per cent**

- **0**
- **20**
- **40**
- **60**
- **80**

**1980** | **1990** | **2000** | **2010** | **2020**
---|---|---|---|---
All sectors | Services | Durable goods | Non-durable goods

Variance decomposition of 12-month headline PCE inflation

**π_t = ΛF_t + u_t**

Dynamic factor model representation

Is the common the persistent?

---

**Source:** Borio et al (2017)
**Fall in the aggregate relative component**

**Figure 2.2** Decomposition of inflation into pure inflation, relative price component and idiosyncratic shocks

A: United States

```
\Lambda F_t = \lambda a_t + \Gamma R_t
```

The aggregate relative price component is the covariance term.

Notes: The solid thick black lines plot ‘pure’ inflation, the thin black line plots inflation, the solid grey lines plot the aggregate relative prices component of inflation and the grey dotted lines the idiosyncratic component differs across goods. For the US, we introduce a floor at -9 for all series.

Source: Miles et al (2017)
In a model: the **transmission** of $M$ policy

(23) \[ \nu_t = \Delta \omega_t + \left( \frac{\kappa \eta}{\alpha} \right) \Delta \tau_t, \]

(24) \[ \Theta_t \rho_t = \Delta \mu_{t-1} + \left( \frac{\alpha \phi_i}{1 - (1 - \alpha)\bar{\phi}} \right) \Delta^2 \mu_t \]

\[ + (\bar{\omega} - \bar{\theta}) \Delta \xi_{t-1} - \phi_i \left( \frac{\alpha(\bar{\theta} - \bar{\omega}) + \bar{\phi}(1 - \alpha)(1 - \bar{\theta})(\alpha - \kappa)}{1 - (1 - \alpha)\bar{\phi}} \right) \Delta^2 \xi_t \]

\[ - \kappa(\theta_i - \bar{\theta})[\phi_i \Delta \xi_t + (1 - \phi_i)\Delta \xi_{t-1}], \]

(25) \[ u_{it} = -\kappa(\phi_i \chi_{it} + (1 - \phi_i)\Delta \chi_{it-1}), \]

- Unexpected changes in monetary policy, which change relative prices, and therefore lead to changes in production across firms with nominal rigidities
- Also productivity changes though…
Monetary policy shocks and inflation

The impact of monetary policy on prices varies across sectors

In per cent

Graph 3

Response of prices to a monetary policy shock across narrowly defined PCE sectors

Proportion of statistically significant price responses to monetary policy shocks

Proportion of statistically significant price responses to positive and negative monetary policy shocks

1 Weighted percentiles of the response of prices across 131 narrowly defined personal consumption expenditure (PCE) sectors to a monetary policy shock of 25 basis points. The weights are equal to the sector-specific average expenditure shares. 2 Significant at 10% level. 3 In this specification, positive (ie contractionary) and negative (ie expansionary) monetary policy shocks of 25 basis points are allowed to have differential effects on prices.

Sources: Board of Governors of the Federal Reserve System; US Bureau of Economic Analysis; authors’ calculations.

Separating the monetary policy shocks, they indeed play a role

Work mostly through a few prices being more flexible

Consistent with great degree of rigidity, flat Phillips curve, capital of inattention earned in 2000-20
What about the present and near future?

- **Conjecture**: increase in variance, increase in impact of policy?
  - 2020 bottlenecks and 2021 energy shocks: supply shocks are back
  - They are the aggregate relative price components that had been subdued
  - Volatility of last 12 months has eroded the capital of inattention

- The challenges for central banks have **changed radically** in last 12 months
  - relative prices
  - drifting expectations anchor
  - trade-offs between inflation and output
  - pivots in policy, regain credibility following a narrow path

- Authors speak of flexibility. Reality calls for it to be (aggressively) used