Risk and Liquidity in a System Context

Hyun Song Shin

September 2005

Pricing claims in a system context

Some assets (e.g. loans) are claims against other parties

Value of my claim against A depends on value of A's claims against B,C, etc.

But B or C may have claim against me.

Balance sheet strength, spreads, asset prices fluctuate together

Equity value of financial system as a whole is value of "fundamental assets"

Marking to market

"While many believe that irresponsible borrowing is creating a bubble in housing, this is not necessarily true. At the end of 2004, U.S. households owned \$17.2 trillion in housing assets, an increase of 18.1% (or \$2.6 trillion) from the third quarter of 2003. Over the same five quarters, mortgage debt (including home equity lines) rose \$1.1 trillion to \$7.5 trillion. The result: a \$1.5 trillion increase in net housing equity over the past 15 months."

Value of fundamental assets is tide that lifts all boats

Housing \Rightarrow mortgages \Rightarrow CDOs \Rightarrow claims against CDO holders . . .

Balance Sheet Approach

Financial system is a network of interlinked balance sheets

Everything is marked to market

Risk-neutrality in pricing

- no role for risk aversion, but spreads fluctuate due to fluctuations in fundamental asset price
- fluctuations in *risk appetite* arising from solvency constraints

Spreads can fall when debt rises ("reaching for yield").

Spreads can rise when debt falls (financial crises).

Related literature

- Balance sheet propagation
 - Borrower balance sheet: Bernanke and Gertler (1989), Kiyotaki and Moore (1998, 2001),
 - Lender balance sheet: Bernanke and Blinder (1988), Van den Heuvel
 (2002)
- Liquidity and asset prices: Gennotte and Leland (1990), Geanakoplos (2003), Morris and Shin (2004), Brunnermeier and Pedersen (2005a, 2005b), Acharya and Pedersen (2005)
- Lattice theory applications: Topkis (1978), Milgrom and Roberts (1990, 1994), Eisenberg and Noe (2001)

Framework

- *n* entities in financial system
- risky endowments realized at date T with means $\{w_i\}$
- ullet single fundamental asset, price v
- ullet zero coupon debt of i with face value $ar{x}_i$ payable at T
- risk-free interest rate is zero

Balance Sheets

 x_i is market value of i's debt

 a_i is market value of i's assets

 e_i is market value of i's equity

$$a_i = e_i + x_i$$

If i holds proportion π_{ji} of j's debt,

$$a_i = w_i + vy_i + \sum_j \pi_{ji} x_j$$

Merton (1974)

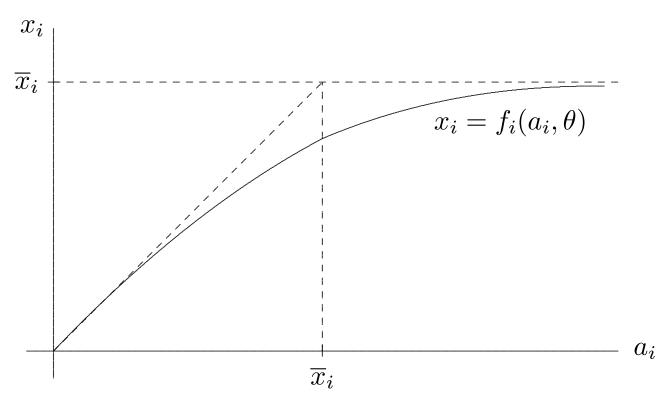


Figure 1: Market value of total debt x_i of investor i

Lemma 1. There exist functions $\{f_i\}$ such that

$$x_i = f_i\left(a_i, \theta\right) \tag{1}$$

where each f_i is non-decreasing in a_i , and is bounded above by \bar{x}_i and

$$\theta = (v, w, \bar{x})$$

Lemma 2. The market value of equity is non-decreasing in a_i . That is, the function e_i defined as

$$e_i \equiv a_i - \sum_j f_i(a_i, \theta) \tag{2}$$

is non-decreasing in a_i .

System

$$x_{1} = f_{1}(a_{1}(x), \theta)$$

$$x_{2} = f_{2}(a_{2}(x), \theta)$$

$$\vdots$$

$$x_{n} = f_{n}(a_{n}(x), \theta)$$

where $x = (x_1, x_2, \dots, x_n)$.

Solve for fixed point x in:

$$x = F(x, \theta)$$

Iterative approach

$$x^{1} = F(0,\theta)$$

$$x^{t+1} = F(x^{t},\theta)$$

"Pessimistic" case

"Optimistic" case

$$0 \leqq x^1 \leqq x^2 \leqq x^3 \leqq \cdots$$

$$x^1 = F(\bar{x}, \theta)$$

$$\bar{x} \geq x^1 \geq x^2 \geq x^3 \geq \cdots$$

Are the limits the same?

Unique solution

Theorem 3. There is a unique profile of debt prices $x(\theta)$ that solves $x = F(x, \theta)$.

Theorem 4. $x(\theta)$ is increasing in θ .

Result follows from

- (i) Tarski's fixed point theorem
- (ii) fact that $\{f_i\}$ are contraction mappings

A complete lattice is partially ordered set (X, \leq) such that each subset $S \subseteq X$ has both a greatest lower bound $\inf(S)$ and a least upper bound $\sup(S)$ in the set X.

In our context, complete lattice with the set X given by

$$X \equiv [0, \bar{x}_1] \times [0, \bar{x}_2] \times \cdots \times [0, \bar{x}_n]$$

and ordering \leq given by the usual component-wise order.

Lemma 5. (Tarski's Fixed Point Theorem) Let (X, \leq) be a complete lattice and F be a non-decreasing function on X. Then there are x^* and x_* such that $F(x^*) = x^*$, $F(x_*) = x_*$, and for any fixed point x, we have $x_* \leq x \leq x^*$.

Proof. Define the set S as

$$S = \{x | x \le F(x)\} \tag{3}$$

and define x^* as $x^* \equiv \sup S$. For any $x \in S$, $x \leq x^*$. Since F is non-decreasing, $x \leq F(x) \leq F(x^*)$. Thus, $F(x^*)$ is also an upper bound for S. But x^* is defined as the *least* upper bound of S. Thus

$$x^* \le F\left(x^*\right) \tag{4}$$

Applying F to both sides of (4), we have $F(x^*) \leq F(F(x^*))$. But this implies that $F(x^*) \in S$, so that $F(x^*)$ is bounded by x^* . That is, $F(x^*) \leq x^*$. Taken together with (4), this means that $F(x^*) = x^*$. Any other fixed point of F must belong to S, and so x^* is the largest fixed point. The smallest fixed point x_* is defined as $\inf\{x|x\geq F(x)\}$, and the argument is exactly analogous.

Argument for Uniqueness

Suppose there are distinct solutions x, x'.

By Tarski, $x \leq x'$ and $x_i < x_i'$ for some i

Equity value of the system under x is strictly lower than under x'

Equity value of the system is value of fundamental assets

Contradiction.

Solvency Constraints

Value of all assets and liabilities determined by

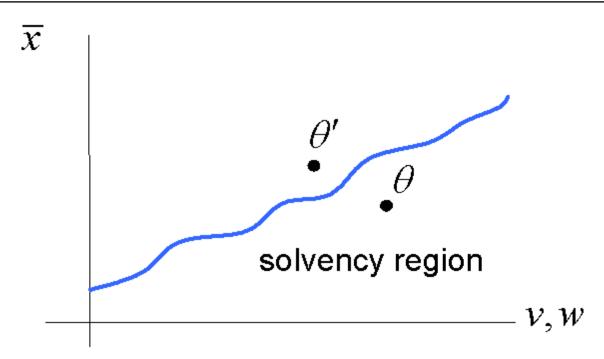
$$\theta = (v, w, \bar{x})$$

Constraints on equity/debt ratio

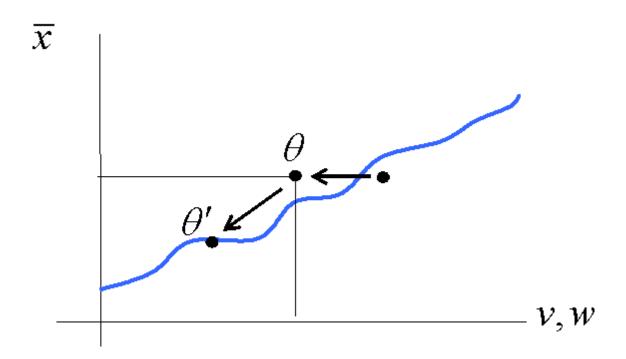
$$\frac{a_i - x_i}{x_i} \ge r^*$$

Spreads

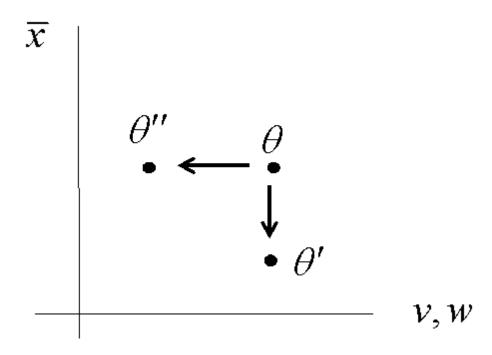
$$1 - \frac{x_i}{\bar{x}_i}$$



Restoring Solvency



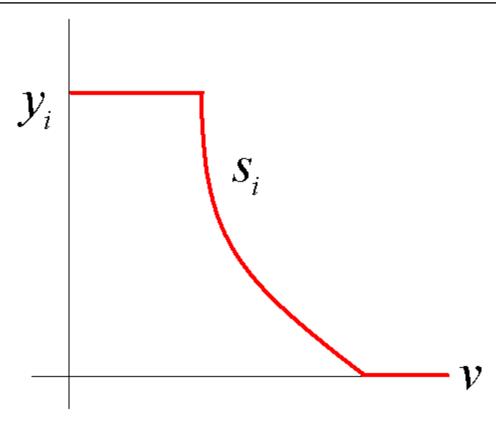
Two Scenarios for Spreads

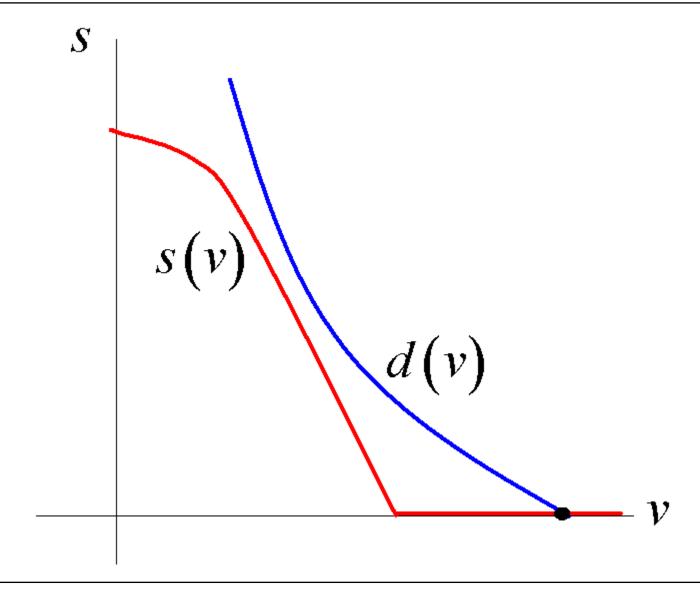


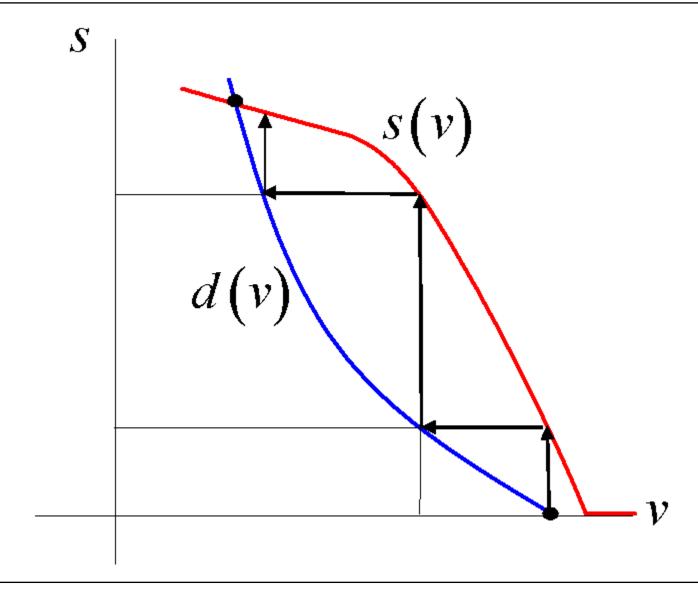
Sale s_i to restore solvency

$$\frac{w_i + v(y_i - s_i) + b_i - (x_i^0 - vs_i)}{x_i^0 - vs_i} \ge r^* \tag{5}$$

$$s_{i} = \min \left\{ y_{i}, \max \left\{ 0, \frac{(1+r^{*}) x_{i}^{0} - w_{i} - v y_{i} - b_{i}}{r^{*} v} \right\} \right\}$$
 (6)



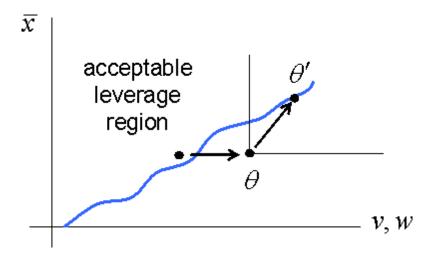




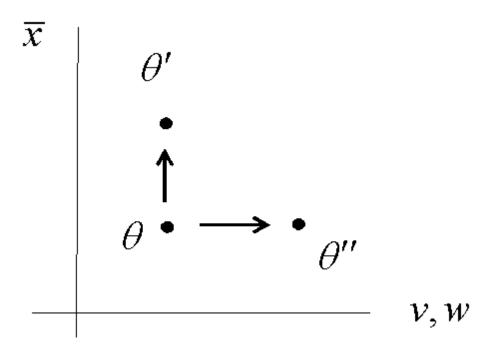
Minimum Leverage Constraint

Constraints on equity/debt ratio

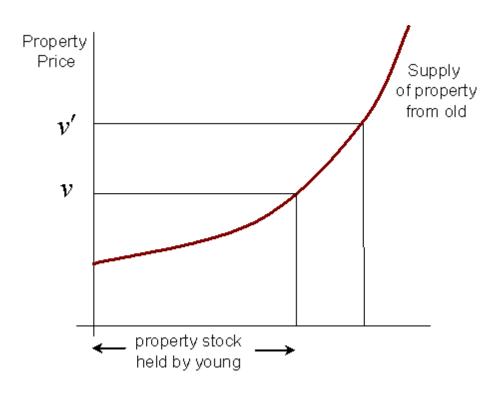
$$\frac{a_i - x_i}{x_i} \le r^{**}$$



Scenarios for Spreads and Reaching for Yield



Example of Housing



Applications and Extensions

- Value at risk
- Financial stability
- Correlations in downturns
- "Risk appetite"
- Seniority structure
- Pricing of credit derivatives