The Effect of Macroprudential Policy Announcements on Systemic Risk

Motivation

- Macropru objective: Maintain financial stability
- Evaluating macropru effectiveness comes with challenges:
- 1. anticipation effects
- 2. endogeneity concerns
- 3. non-binding constraints
- 4. regulatory arbitrage
- This paper: A solution to addressing these issues using high frequency iden techniques

Research Questions:

- Do macroprudential policy announcements affect financial markets?
- What are the effects of unanticipated macroprudential policy shocks on final the macroeconomy?

Contributions

- New daily dataset on 44 UK macroprudential policy announcements (2009-2019)
- Identification of macroprudential policy shocks using market-based high frequency techniques
- New evidence on the effects of macroprudential policy announcements on systemic risk

Identification Strategy

- No obvious financial instrument trades based on macroprudential policy announcements
- Nonetheless, if these are **unanticipated**, they could have an impact on bank equity prices (most closely related to *future* bank expected profitability)
- What constitutes a macroprudential policy shock?

$$\Delta MaP_t^{shock} = \begin{cases} 1, & \text{if } \widehat{CAAR}_t^{Banks} < 0 \text{ (significantly} \\ -1, & \text{if } \widehat{CAAR}_t^{Banks} > 0 \text{ (significantly} \\ 0, & \text{if } \widehat{CAAR}_t^{Banks} = 0. \end{cases}$$

• For each of the macropru dates in our database, we conduct an event study:

- Next, we exploit **Factiva**, a digital news archive to exclude days which are 'contaminated' by other economic signals of a non-macroprudential policy nature
- We exclude 11 'spurious' macrorprudential policy events

Alba Patozi¹

¹University of Cambridge

Eight macroprudential policy surprises

	Date	Event	CAAR[-1,1]	CAAR[-1,0]	CAAR[0,1]	CAR[0,0]
	16 Dec 2010	Basel III	-4.3326%***	-1.6927%	-2.6153%**	0.0247%
			(0.0020)	(0.1355)	(0.0215)	(0.9753)
ntification	04 Nov 2011	G-SII Buffers	-2.9975%** (0.0391)	-1.6390% (0.1654)	-1.8067% (0.1263)	-0.4482% (0.5902)
	27 Jun 2013	CRD IV	-2.7029%** (0.0319)	-2.3429%** (0.0232)	-2.8696%*** (0.0052)	-2.5096%*** (0.0006)
	27 Oct 2014	PRA PS + EBA Stress Test	-3.1828%*** (0.0003)	-1.0871% (0.1273)	-3.9078%*** (0.0000)	-1.8121%*** (0.0004)
	31 Oct 2014	Leverage ratio	1.6806%* (0.0609)	2.0174%*** (0.0061)	1.9809%*** (0.0069)	2.3177%*** (0.0000)
ancial stability and	19 Feb 2016	O-SII Methodology + SSM	-2.4653%** (0.0121)	-2.9856%*** (0.0002)	-0.3349% (0.6741)	-0.8553% (0.1286)
	29 Mar 2016	ССуВ	-2.3971%** (0.0258)	-2.3222%*** (0.0082)	-1.1828% (0.1769)	-1.1079%* (0.0728)
	25 Sep 2017	PRA Buffer	-2.0571%** (0.0440)	-1.7545%** (0.0353)	-1.6967%** (0.0415)	-1.3940%** (0.0178)

Notes: This table presents the cumulative average abnormal returns (CAAR) from a portfolio of the 6 largest LSE-listed banks, following a macroprudential policy announcement. The estimation window is chosen to be (-261, -2). p-values in parenthesis are obtained under the normality assumption. *, **, and *** indicate significance at the 10 percent, 5 percent, and 1 percent levels, respectively.

Impact of macroprudential policy announcements on systemic risk

$$\Delta_h y_t = \alpha + \beta^h \Delta M a P_t^{shock} + \sum_{l=1}^L \delta_l^h \Delta y_{t-l} + \sum_{k=1}^K \phi_k^h \Delta X_{t-k} + \epsilon_{t+h}$$

where $\Delta_h y_t = y_{t+h} - y_t$ denotes the response variable of interest (i.e. the cumulative change in systemic risk between announcement day t and day t+h over varying prediction horizons h = 1,2,..., 60)

Systemic risk measures

- Our main systemic risk measure: **Composite Index of Systemic Stress (CISS)** developed by Hollo et al. (2012)
- Other financial instability measures include the Marginal Expected Shortfall (MES), VIX^{UK} , Funding spreads for UK financial holding companies.

Kristina Bluwstein²

²Bank of England

Effect of \triangle MaP^{shock} on the Composite Index of Systemic Stress (CISS)

Unanticipated changes in MaP reduce CISS by 0.5 standard deviations

Notes: In line with local projection methods, each horizon is estimated separately. The blue solid line represents the $\{\beta^h\}_{h=1}^{60}$ estimates in standard deviation units. The dependent variable is $\Delta_h CISS^{UK}$, over the horizons considered. The independent variable is ΔMaP^{shock} . The light blue shaded areas denote the 95% and 90% confidence intervals around point estimates.

anticipated events

Effect of Δ MaP^{shock} on Equity and Bond Market Stress

Unanticipated changes in MaP reduce stress in bank and equity markets

Notes: In line with local projection methods, each horizon is estimated separately. The blue solid lines represent the $\{\beta^h\}_{h=1}^{60}$ estimates in standard deviation units. The dependent variable in panels (a), (b), (c) is the change in the CISS subindex in the bond markets, equity (financials) and equity (non-financials) respectively, over the horizons considered. The independent variable across all panels is ΔMaP^{shock} . The light blue shaded areas denote the 95% and 90% confidence intervals around point estimates constructed with robust standard errors.

- specifically in the (financial) equity and bond markets

• Our result is robust to (i) alternative financial instability measures; (ii) placebo test; (iii) scaled shocks; (iv) excluding shocks with CB info effects; and (v) considering unanticipated vis-a-vis

Conclusion

 Macroprudential policy announcements do provide new information to financial markets • Macroprudential policy announcements can reduce perceived systemic risk in the near-term,