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     1 Here and throughout, we use the generic term “volatilities” in reference both to variances (or standard deviations)
and covariances (or correlations).  When important, the precise meaning will be clear from context.

1.  INTRODUCTION

The joint distributional characteristics of asset returns are pivotal for many issues in financial economics. 

They are the key ingredients for the pricing of financial instruments, and they speak directly to the risk-

return tradeoff critical for portfolio allocation, performance evaluation, and managerial decisions. 

Moreover, they are intimately related to the conditional portfolio return fractiles, which govern the

likelihood of extreme shifts in portfolio value and therefore central to financial risk management,

figuring prominently in both regulatory and private-sector initiatives.

The most critical feature of the conditional return distribution is arguably its second moment

structure, which is empirically the dominant time-varying characteristic of the distribution.  This fact has

spurred an enormous literature on the modeling and forecasting of return volatility. 1  Over time, the

availability of data for increasingly shorter return horizons has allowed the focus to shift from modeling

at quarterly and monthly frequencies to the weekly and daily horizons.  Along with the incorporation of

more data has come definite improvements in performance, not only because the models now may

produce forecasts at the higher frequencies, but also because they typically provide superior forecasts for

the longer monthly and quarterly horizons than do the models exploiting only monthly data.  

Progress in volatility modeling has, however, in some respects slowed over the last decade. 

First, the availability of truly high-frequency intraday data has made scant impact on the modeling of,

say, daily return volatility.  It has become apparent that standard volatility models used for forecasting at

the daily level cannot readily accommodate the information in intraday data, and models specified

directly for the intraday data generally fail to capture the longer interdaily volatility movements

sufficiently well.  As a result, standard practice is still to produce forecasts of daily volatility from daily

return observations, even when higher-frequency data are available.  Second, the focus of volatility

modeling continues to be decidedly low-dimensional, if not universally univariate.  Many multivariate

ARCH and stochastic volatility models for time-varying return volatilities and conditional distributions

have, of course, been proposed; see, Bollerslev, Engle and Nelson (1994), Ghysels, Harvey and Renault

(1996), and Kroner and Ng (1998), but those models generally suffer from a curse-of-dimensionality

problem that severely constrains their practical application.  Consequently, it is rare to see practical

applications of such procedures dealing with more than a few assets simultaneously.

In view of such difficulties, finance practitioners have largely eschewed formal volatility

modeling and forecasting in the higher-dimensional situations of practical relevance, relying instead on



     2 Earlier empirical work exploiting related univariate approaches from a heuristic perspective includes French, Schwert and
Stambaugh (1987) and Schwert (1989), who rely on daily returns to estimate models for monthly realized U.S. equity volatility,
and Hsieh (1991), who fits an AR(5) model to a time series of daily realized logarithmic volatilities constructed from 15-minute
S&P500 returns.
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simple exponential smoothing methods for construction of volatility forecasts, coupled with an

assumption of conditionally normally distributed returns.  This approach is exemplified by J.P. Morgan’s

highly influential RiskMetrics, see J.P. Morgan (1997).  Although such methods exploit outright

counterfactual assumptions and almost certainly are suboptimal, such defects must be weighed against

considerations of feasibility, simplicity and speed of implementation in high-dimensional environments.

Set against this background, we seek improvement along two important dimensions.  First, we

propose a new rigorous procedure for volatility forecasting and return fractile, value-at-risk (VaR),

calculation that efficiently exploits the information in intraday return observations.  In the process, we

document significant improvements in predictive performance relative to the standard procedures that

rely on daily data alone.  Second, our methods achieve a simplicity and ease of implementation that

allows for ready accommodation of higher-dimensional return systems.  We achieve these dual

objectives by focusing on an empirical measure of daily return variability termed realized volatility,

which is easily computed from high-frequency intra-period returns.  The theory of quadratic variation

reveals that, under suitable conditions, realized volatility is not only an unbiased ex-post estimator of

daily return volatility, but also asymptotically free of measurement error, as discussed in Andersen,

Bollerslev, Diebold and Labys (2001a) (henceforth ABDL) as well as concurrent work by Barndorff-

Nielsen and Shephard (2000, 2001).  Building on the notion of continuous-time arbitrage-free price

processes, we progress in several directions, including more rigorous theoretical foundations,

multivariate emphasis, and links to modern risk management.

Empirically, by treating the volatility as observed rather than latent, our approach greatly

facilitates modeling and forecasting using simple methods based directly on observable variables.2 

Although the basic ideas apply quite generally, we focus on the highly liquid U.S. dollar ($),

Deutschemark (DM), and Japanese yen (¥) spot exchange rate markets in order to illustrate and evaluate

our methods succinctly under conditions that allow for construction of good realized volatility measures. 

Our full sample consists of nearly thirteen years of continuously recorded spot quotations from 1986

through 1999.  During this period, the dollar, Deutschemark and yen constituted the main axes of the

international financial system, and thus spanned the majority of the systematic currency risk faced by

most large institutional investors and international corporations.



     3 Strikingly similar qualitative findings have been obtained from a separate sample consisting of individual U.S. stock
returns in Andersen, Bollerslev, Diebold and Ebens (2001). 
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We break the sample into a ten year "in-sample" estimation period, and a subsequent two and a

half year "out-of-sample" forecasting period.  The basic distributional and dynamic characteristics of the

foreign exchange returns and realized volatilities during the in-sample period have been analyzed in

detail by ABDL (2001a, 2001b).3  Three pieces of their results form the foundation on which the

empirical analysis of this paper is built.  First, although raw returns are clearly leptokurtic, returns

standardized by realized volatilities are approximately Gaussian.  Second, although the distributions of

realized volatilities are clearly right-skewed, the distributions of the logarithms of realized volatilities are

approximately Gaussian.  Finally, the long-run dynamics of realized logarithmic volatilities are well

approximated by a fractionally-integrated long-memory process.

Motivated by the three ABDL empirical regularities, we proceed to estimate and evaluate a

multivariate fractionally-integrated Gaussian vector autoregression (VAR) for the logarithmic realized

volatilities.  Comparing the resulting volatility forecasts to those obtained from daily ARCH and related

models, we find our simple Gaussian VAR forecasts to be strikingly superior.  Furthermore, we show

that, given the theoretically motivated and empirically plausible assumption of normally distributed

returns conditional on the realized volatilities, the resulting lognormal-normal mixture forecast

distribution gives rise to well-calibrated density forecasts of returns, from which highly accurate

estimates of return quantiles may be derived.

The rest of the paper is organized as follows.  Section 2 develops the theory behind the notion of

realized volatility.  Section 3 focuses on measurement of realized volatilities using high-frequency

foreign exchange returns.  Next, Section 4 summarizes the salient distributional features of the returns

and volatilities, which motivate the long-memory trivariate Gaussian VAR introduced in Section 5. 

Section 6 compares the resulting volatility forecasts to those obtained from traditional GARCH and

related models, and Section 7 evaluates the success of density forecasts and corresponding VaR

estimates generated from our long-memory Gaussian VAR in conjunction with a lognormal-normal

mixture distribution.  Section 8 concludes with suggestions for future research and discussion of issues

related to the practical implementation of our approach for other financial instruments and markets.

2.  QUADRATIC RETURN VARIATION AND REALIZED VOLATILITY

We consider a price process defined on a complete probability space, ( ,Û, P), evolving in continuous



     4 See, for example, Protter (1992), chapter 3.
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time over the interval [0,T], where T denotes a positive integer.  We further consider an information

filtration, i.e., an increasing family of -fields, (Ût )t0[0,T]  f  Û , which satisfies the usual conditions of P-

completeness and right continuity.  Finally, we assume that the asset prices through time t, including the

relevant state variables, are known at time t and therefore included in the information set Ût .

Under the standard assumptions that the return process does not allow for arbitrage and has a

finite instantaneous mean, the asset price process, as well as smooth transformations thereof, belongs to

the class of special semi-martingales, as detailed by Back (1991).  A fundamental result of modern

stochastic integration theory states that such processes permit a unique canonical decomposition. 4  In

particular, we  have the following characterization of the logarithmic asset price vector process, p =

(p(t))t0[0,T].

PROPOSITION 1:  For any n-dimensional arbitrage-free vector price process with finite mean, the

associated logarithmic vector price process, p, may be written uniquely as the sum of a finite variation

and predictable component, A, and a local martingale, M = (M1 , ... , Mn ).  The latter may be further

decomposed into a continuous sample path local martingale, M c, and a compensated jump martingale,

)M, with the initial conditions  M(0) = A(0) = 0,  so that

p(t)   =    p(0)  +   A(t)  +   M(t)    =     p(0)   +   A(t)   +   M c(t)  +  )M(t) . (1)

Proposition 1 provides a general qualitative characterization of the asset return process.  We denote the

(continuously compounded) return over [t-h,t]  by r(t,h)  =  p(t) -  p(t-h).  The cumulative return process

from t=0  onwards,  r = (r(t))t0[0,T] , is then given as  r(t) /  r(t,t) =  p(t) -  p(0) = A(t) + M(t).   Clearly,

r(t) inherits all the main properties of p(t), and it may likewise be decomposed uniquely into the

predictable and integrable mean component, A, and the local martingale, M.

Because the return process is a semi-martingale it has an associated quadratic variation process. 

This notion plays a critical role in our theoretical developments.  The following proposition enumerates

some essential properties of the quadratic return variation process. 5

PROPOSITION 2:  For any n-dimensional arbitrage-free price process with finite mean, the quadratic
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variation nxn matrix process of the associated return process, [r,r] = { [r,r]t }t0[0,T] , is well defined.  The

i’th diagonal element is called the quadratic variation process of the i’th asset return while the ij’th off-

diagonal element, [ri , rj ], is termed the quadratic covariation process between asset returns i and j. 

Moreover, we have the following properties:

(i) For an increasing sequence of random partitions of [0,T], 0 = Jm,0 # Jm,1 # ..., such that

supj$1(Jm,j+1 - Jm,j)60 and supj$1 Jm,j6T for m64 with probability one, we have that

limm64 { Ej$1 [r(tvJm,j) - r(tvJm,j-1)] [r(t vJm,j) - r(tvJm,j-1)]’ }  6  [r,r] t , (2)

where  t v J / min(t,J), t 0 [0,T], and the convergence is uniform on [0,T] in probability.

(ii) [r i,rj] t    =   [Mi ,Mj ] t   =   [Mi
c
 ,Mj

c
 ] t   +  E0#s#t )Mi(s) )Mj(s) . (3)

The terminology of quadratic variation is justified by property (i) of Proposition 2.  The quadratic

variation process measures the realized sample-path variation of the squared return processes.  Notice

also that it suggests we may approximate the quadratic variation by cumulating cross-products of high-

frequency returns.  We refer to such measures, obtained from actual high-frequency data, as realized

volatility.  Property (ii) reflects the fact that quadratic variation of finite variation processes is zero, so

the mean component is irrelevant for the quadratic variation.  Moreover, jump components only

contribute to the quadratic covariation if there are simultaneous jumps in the price path for the i’th and

j’th asset, whereas the squared jump size contributes one-for-one to the quadratic variation.

The quadratic variation is the dominant determinant of the return covariance matrix, especially

for shorter horizons.  The reason is that the variation induced by the genuine return innovations,

represented by the martingale component, locally is an order of magnitude larger than the return

variation caused by changes in the conditional mean.  Consequently, we have the following theorem

which generalizes previous results in Andersen, Bollerslev, Diebold and Labys (2001a).

THEOREM 1: Let an n-dimensional square-integrable arbitrage-free logarithmic price process with a

unique canonical decomposition, as stated in equation (1), be given.  The conditional return covariance

matrix at time t for returns over [t, t+h], where 0 # t # t+h # T, equals

Cov(r(t+h,h)*Ût) = E([r,r ]t+h  - [r,r ]t *Ût ) + 'A (t+h,h) + 'AM (t+h,h) + 'AM’(t+h,h), (4)

where  'A (t+h,h) =  Cov(A(t+h) - A(t) * Ût )  and  'AM (t+h,h) =  E(A(t+h) [M(t+h) - M(t)]’  *Ût ).

PROOF:  From equation (1),  r(t+h,h) = [ A(t+h) - A(t) ] + [ M(t+h) - M(t) ].  The martingale property
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implies E( M(t+h) - M(t) *Ût ) = E( [M(t+h) - M(t)] A(t) *Ût ) = 0,  so, for  i,j 0 {1, ..., n},  Cov( [Ai(t+h)

- Ai(t)], [Mj(t+h) - Mj(t)] * Ût ) =  E( Ai(t+h) [Mj(t+h) - Mj(t)] * Ût ).  Exploiting these results, it follows

that  Cov(r(t+h,h) * Ût ) =  Cov( M(t+h) - M(t) * Ût ) + 'A (t+h,h) + 'AM (t+h,h) + 'AM’(t+h,h).  Hence, it

only remains to show that the conditional covariance of the martingale term equals the expected value of

the quadratic variation.  We proceed by verifying the equality for an arbitrary element of the covariance

matrix.  If this is the i’th diagonal element, we are studying a univariate square-integrable martingale and

by Protter (1992), chapter II.6, corollary 3, we have  E[Mi
2(t+h)] = E( [Mi ,Mi ]t+h),  so  Var(Mi(t+h) -

Mi(t) * Ût ) = E( [Mi ,Mi ]t+h -  [Mi ,Mi ]t  * Ût )  =  E( [ri ,ri ]t+h - [ri ,ri ]t * Ût ),  where the second equality

follows from equation (3) of Proposition 2.  This confirms the result for the diagonal elements of the

covariance matrix.  An identical argument works for the off-diagonal terms by noting that the sum of two

square-integrable martingales remains a square-integrable martingale and then applying the reasoning to

each component of the polarization identity, [Mi ,Mj ]t = ½ ( [Mi+Mj , Mi+Mj ] t  -  [Mi ,Mi ] t  -  [Mj ,Mj ] t ). 

In particular, it follows as above that  E( [M i ,Mj ] t+h  - [Mi ,Mj ] t  * Ût )  =  ½ [ Var( [Mi(t+h)+M j (t+h)] -

[(M i(t)+Mj (t)] * Ût )  -  Var( Mi(t+h) - Mi(t)*Ût ) - Var( Mj(t+h) - Mj(t)*Ût ) ]= Cov( [Mi(t+h) - Mi(t)],

[M j(t+h) - Mj(t)] *Ût ).  Equation (3) of Proposition 2 again ensures that this equals   E( [ri ,rj ] t+h - [r i ,rj ] t

* Ût ).     9

A couple of scenarios highlight the role of the quadratic variation in driving the return volatility process. 

These important special cases are collected in a corollary which follows immediately from Theorem 1.

COROLLARY: Let an n-dimensional square-integrable arbitrage-free logarithmic price process, as

described in Theorem 1, be given.  If the mean process, {A(s) - A(t)}s0[t,t+h]  , conditional on information at

time t is independent of the return innovation process, {M(u)}u0[t,t+h] , then the conditional return

covariance matrix reduces to the conditional expectation of the quadratic return variation plus the

conditional variance of the mean component, i.e.,

Cov( r(t+h,h) * Ût  )  =   E( [r,r ] t+h  - [r,r ] t * Ût  )   +  'A (t+h,h), (5)

where 0 # t # t+h # T.  If the mean process, {A(s) - A(t)}s0[t,t+h], conditional on information at time t is a

predetermined function over [t, t+h], then the conditional return covariance matrix equals the

conditional expectation of the quadratic return variation process, i.e.,

Cov( r(t+h,h) * Ût  )  =   E( [r,r ] t+h  - [r,r ] t * Ût ), (6)

where 0 # t # t+h # T.



     6 Merton (1982) provides a similar intuitive account of the continuous record h-asymptotics. These limiting results
are also closely related to the theory rationalizing the quadratic variation formulas in Proposition 2 and Theorem 1.
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It is apparent, under the conditions leading to equation (6), that the quadratic variation is the critical

ingredient in volatility measurement and forecasting.  The conditional covariance matrix is simply given

by the conditional expectation of the quadratic variation.  Moreover, it follows that the ex-post realized

quadratic variation is an unbiased estimator for the return covariance matrix conditional on information

at time t.  Although these conclusions may appear to hinge on restrictive assumptions, they apply to a

wide set of models used in the literature.  For example, a constant mean is frequently invoked in models

for daily or weekly asset returns.  Equation (6) further allows for deterministic intra-period variation in

the conditional mean process, induced, e.g., by time-of-day or other calendar type effects.  Of course, the

specification in (6) also accommodates a stochastic evolution of the mean process as long as it remains a

function, over the interval [t-h, t], of variables that belong to the information set at time t-h.  What is

precluded are feedback effects from the random intra-period evolution of the system to the instantaneous

mean.  Although this may be counter-factual, such effects are likely trivial in magnitude, as discussed

below.  It is also worth stressing that equation (6) is compatible with the existence of a so-called

leverage, or asymmetric return-volatility, relation.  The latter arises from a correlation between the return

innovations - measured as deviations from the conditional mean - and the innovations to the volatility

process.  Hence, the leverage effect does not require contemporaneous correlation between the return

innovations and the instantaneous mean return.  And, as emphasized above, the formulation (6) does

allow for the return innovations over [t-h, t] to impact the conditional mean over [t, t+h] and onwards,

so that the intra-period evolution of the system still may impact the future expected returns.  In fact, this

is how potential interaction between risk and return is captured within discrete-time ARCH or stochastic

volatility models that incorporate leverage effects.

In contrast to equation (6), equation (5) does accommodate continually evolving random

variation in the conditional mean process, although it must be independent of the return innovations. 

However, even with this feature present, the quadratic variation is likely an order of magnitude larger

than the mean variation, and hence the former remains the critical determinant of the return volatility

over shorter horizons.  This observation follows from the fact that, locally, over horizons of length h,

with h small, the mean return is of order h, and the variance of the mean return thus of order h2, while the

quadratic variation is of order h.  It is obviously an empirical question whether these results are a good

guide for volatility measurement at practically relevant frequencies .6  To illustrate the likely implications
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at a daily horizon, consider an asset return with (typical) standard deviation of 1% daily, or 15.8%

annually, and a (large) mean return of 0.1%, or about 25% annually.  The squared mean return is still

only one-hundredth of the variance.  The expected daily variation of the mean return is obviously smaller

yet, unless the required daily return is expected to behave truly erratically within the day.  In fact, we

would generally expect the within-day variance of the expected daily return to be much smaller than the

expected daily return itself.  Hence, the daily return fluctuations induced by within-day variations in the

required mean return are almost certainly trivial.  Even for a weekly horizon, similar calculations suggest

that the identical conclusion applies.

The general case, covered by Theorem 1, allows for direct intra-period interaction between the

return innovations and the instantaneous mean.  This occurs, for example, in the arguably empirically

relevant scenario where there is a leverage effect, or asymmetry, by which the volatility impacts the

contemporaneous mean drift.  In this setting, a string of negative within-period return innovations will be

associated with an increase in return volatility and this may in turn raise the risk premium and induce a

larger return drift.  Relative to the corollary, the theorem involves an additional set of 'AM  terms. 

Nonetheless, the results and intuition discussed above survive.  It is readily established that the ik’th

component of these terms may be bounded as,  {'AM (t+h,h)}i,k   #  {Var(A i(t+h) - Ai(t) * Ût )}
½

{Var(Mk(t+h) - Mk(t) * Ût )}
½,  but the latter terms are of order h and h½  respectively, so the 'AM  terms

are at most of order h3/2, which again is dominated by the corresponding quadratic variation of order h. 

Moreover, this upper bound is quite conservative, since it allows for a correlation of unity, whereas the

typical correlation estimated from daily or weekly returns is much lower, de facto implying that the

quadratic variation process is the main driving force behind the high-frequency return volatility.

We now turn towards an even more ambitious goal.  Accepting that the above results carry

implications for the measurement and modeling of return volatility, it is natural to ask whether we also

can infer something about the appropriate specification of the return generating process that builds on the

realized volatility measures.  Obviously, at the level of generality that we are operating at so far -

requiring only square integrability and absence of arbitrage - we cannot derive specific distributional

results.  However, it turns out that we may obtain a useful benchmark under somewhat restrictive

conditions, including a continuous price process, i.e., no jumps or M / 0.  We first recall the martingale

representation theorem.7 
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PROPOSITION 3:  For any n-dimensional square-integrable arbitrage-free logarithmic price process,

p, with continuous sample path and a full rank of the associated nxn quadratic variation process, [r,r ] t 

we have a.s.(P)  for all 0 #  t # T,

r(t+h,h)    =    p(t+h) - p(t)    =    I0
h µt+s  ds   +   I0

h Ft+s  dW(s)  , (7)

where µs denotes an integrable predictable nx1 dimensional vector, Fs = ( F(i,j),s )i,j=1,...,n  is a nxn matrix, 

W(s) is a nx1 dimensional standard Brownian motion, and integration of a matrix (vector) w.r.t. a scalar

denotes component-wise integration, e.g., the mean component is the nx1 vector,

I0
h µt+s  ds  =   ( I0

h µ1,t+s  ds, ... ,  I0
h µn,t+s  ds )’,

and integration of a matrix w.r.t. a vector denotes component-wise integration of the associated vector,

 I0
h Ft+s  dW(s)  =  ( I0

h Ej=1,..,n  F(1,j),t+s  dWj(s) , ... ,  I0
h Ej=1,..,n  F(n,j),t+s  dWj(s) )’. (8)

Moreover, we have

P[ I0
h (F(i,j),t+s )

2  ds < 4 ]  =  1,    1 #  i, j  # n. (9)

Finally, letting  Ss  =  Fs Fs’, the increments to the quadratic return variation process take the form

[r,r ] t+h  -  [r,r ] t   =   I0
h St+s  ds . (10)

The condition of Proposition 3 that the nxn matrix  [r,r]t  is of full rank for all t, implies that no asset is

redundant at any time, so that no individual asset return can be spanned by a portfolio created by the

remaining assets.  This condition is not restrictive; if it fails, a parallel representation may be achieved on

an extended probability space.8

We are now in position to state a distributional result that inspires our empirical modeling of the

full return generating process in Section 7.  It extends a result recently noted by Barndorff-Nielsen and

Shephard (2000) by allowing for a more general specification of the conditional mean process and, more

importantly, accommodating a multivariate setting.  It should be noted that if we only focus on volatility

forecasting, as in Sections 5 and 6 below, we do not need the auxiliary assumptions invoked here.

THEOREM 2:  For a n-dimensional square-integrable arbitrage-free price process with continuous

sample paths satisfying Proposition 3, and thus representation (7), with conditional mean and volatility

processes, µs  and Fs , that are independent of the innovation process, W(s), over [t,t+h], we have 

r(t+h,h) * F{ µt+s , Ft+s }s0[0,h]   -  N( I0
h µt+s ds , I0

h St+s ds ), (11)

where F{ µt+s , Ft+s }s0[0,h]  denotes the F-field generated by ( µt+s , Ft+s )s0[0,h] .
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PROOF:  Clearly,  r(t+h,h)  - I0
h µt+s ds  =  I0

h Ft+s  dW(s)  and  E(I0
h Ft+s  dW(s) * { µt+s , t+s }s0[0,h] ) =  0.  We

proceed by establishing the normality of  I0
h Ft+s  dW(s) conditional on the volatility path { t+s }s0[0,h].  The

integral is n-dimensional, and we define I0
h Ft+s  dW(s) = (I0

h (F(1),t+s)’dW(s), .., I0
h (F(n),t+s )’dW(s))’, where

F(i),s = (F(i,1),s , ... , F(i,n),s)’,  so that  I0
h (F(i),t+s)’ dW(s)  denotes the i’th element of the nx1 vector in equation

(8).  The vector is multivariate normal, if and only if any linear combination of the elements are univariate

normal but this follows readily if each element of the vector is univariate normal.  From equation (8),

each element of the vector is a sum of integrals and hence will be normally distributed if each component

of the sum is univariate normal conditional on the volatility path.  This is what we establish next.  A

typical element of the sums in equation (8), representing the j’th volatility factor loading of asset i over

[t,t+h], takes the form,  Ii,j (t+h,h)  =  I0
h F(i,j),t+s dWj(s),  for 1 # i, j # n.  Obviously, Ii,j (t)  / Ii,j (t,t)  is a

continuous local martingale, and then by the "change of time" result, see, e.g., Protter (1992), Chapter II,

Theorem 41, it follows that  Ii,j (t) = B( [Ii,j , Ii,j ]t ), where B(t) denotes a standard univariate Brownian

motion.  Further, we have  Ii,j (t+h,h) = Ii,j (t+h) - Ii,j (t) = B([Ii,j , Ii,j ]t+h) - B([Ii,j , Ii,j ]t ), and this increment to

the Brownian motion is distributed  N(0, [Ii,j , Ii,j ]t+h - [Ii,j , Ii,j ]t ).  Finally, the quadratic variation governing

the variance of the Gaussian distribution above is readily determined to be  [Ii,j , Ii,j ]t+h - [Ii,j , Ii,j ]t  =  I0
h

(F(i,j),t+s )
2 ds,  see, e.g., Protter (1992), Chapter II.6, which is finite by equation (9) of Proposition 3. 

Conditional on the ex-post realization of the volatility path, the quadratic variation is given (measurable),

and the conditional normality of  Ii,j(t+h,h)  follows.  Since both the mean and the volatility paths are

independent of the return innovations over [t,t+h], the mean is readily determined from the first line of the

proof.  This verifies the conditional normality asserted in equation (11).  The only remaining issue is to

identify the conditional return covariance matrix.  For the ik’th element of the matrix we have

Cov[ I0
h (F(i),t+s)’ dW(s) , I0

h (F(k),t+s)’ dW(s) * { µt+s , t+s }s0[0,h] ]

=  E[ Ej=1,..,n I0
h F(i,j),t+s dWj(s)  @ Ej=1,..,n I0

h F(k,j),t+s dWj(s) * {  µt+s , t+s }s0[0,h] ]   

=  Ej=1,..,n  E[ I0
h F(i,j),t+s F(k,j),t+s ds * {  µt+s , t+s }s0[0,h] ]   

=  Ej=1,..,n  I0
h F(i,j),t+s F(k,j),t+s ds   

=  I0
h (F(i),t+s)’ F(k),t+s  ds   

=  ( I0
h Ft+s (Ft+s)’ ds )ik   

=  (I0
h t+s ds )ik .

This confirms that each element of the conditional return covariance matrix equals the corresponding

element of the variance term indicated in equation (11).     9



     9 See, for example, Andersen, Benzoni and Lund (2000), Bates (2000), Bakshi, Cao and Chen (1997), Pan (1999),
and Eraker, Johannes and Polson (2000).

- 11 -

Notice that the distributional characterization in Theorem 2 is conditional on the ex-post sample-path

realization of ( µs , Fs ).  Theorem 2 may thus appear to be of little practical relevance, because such 

realizations typically are unobservable.  However, Proposition 2 and equation (10) suggest that we may

construct approximate measures of the realized quadratic variation, and hence of the conditional return

variance, directly from high-frequency return observations.  In addition, as discussed previously, for daily

or weekly returns, the conditional mean is largely negligible relative to the return innovations. 

Consequently, ignoring the time variation of the conditional mean, the daily returns, say, follow a

Gaussian mixture distribution with the realized daily quadratic return variation governing the mixture.

From the auxiliary assumptions invoked in Theorem 2, the Gaussian mixture distribution is

strictly only applicable if the price process has continuous sample paths and the volatility and mean

processes are independent of the within-period return innovations.  This raises two main concerns.  First,

some recent evidence suggests the possibility of discrete jumps in asset prices, rendering sample paths

discontinuous.9  On the other hand, the findings also tend to indicate that jumps are infrequent and have a

jump size distribution about which there is little consensus.  Second, for some asset classes there is

evidence of leverage effects that may indicate a correlation between concurrent return and volatility

innovations.  However, as argued above, such contemporaneous correlation effects are likely

quantitatively insignificant.  Indeed, the theorem does allow for the more critical impact leading from the

current return innovations to the volatility in subsequent periods, corresponding exactly to the effect

captured in the related discrete-time literature.  We thus retain the Gaussian mixture distribution as a

natural starting point for empirical work.  Obviously, if the realized volatility-standardized returns fail to

be normally distributed, it may speak to the importance of incorporating jumps and/or contemporaneous

return innovation-volatility interactions into the data generating process.

 In summary, the arbitrage-free setting imposes a semi-martingale structure that leads directly to

the representation in Proposition 1 and the associated quadratic variation in Proposition 2.  In addition,

equation (2) in Proposition 2 suggests a practical way to approximate the quadratic variation.  Theorem 1

and the associated corollary reveal the intimate relation between the quadratic variation and the return

volatility process.  For the continuous sample path case, we further obtain the representation in equation

(7), and the quadratic variation reduces by equation (10) to I0
h St+s ds , which is often referred to as the

integrated volatility.  Theorem 2 consequently strengthens Theorem 1 by showing that the realized

quadratic variation is not only a useful estimator of the ex-ante conditional volatility, but also, under



     10 Before the advent of the Euro, the dollar, Deutschemark and yen were the most actively traded currencies in the
foreign exchange market, with the DM/$ and ¥/$ accounting for nearly fifty percent of the daily trading volume,
according to a 1996 survey by the Bank for International Settlements.

     11 The data comprise several million quotes kindly supplied by Olsen & Associates.  Average daily quotes number
approximately 4,500 for the Deutschemark and 2,000 for the Yen.
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auxiliary assumptions, identical to the realized integrated return volatility over the relevant horizon. 

Moreover, it delivers a reference distribution for appropriately standardized returns.  Combined these

results provide a general framework for integration of high-frequency intraday data into the measurement

and estimation of daily and lower frequency volatility and return distributions.

3.  MEASURING REALIZED FOREIGN EXCHANGE VOLATILITY

Practical implementation of the procedures suggested by the theory in Section 2 must confront the fact

that no financial market provides a frictionless trading environment with continuous price recording. 

Consequently, the notion of quadratic return variation is an abstraction that, strictly speaking, cannot be

observed.  Nevertheless, we may use the continuous-time arbitrage-free framework to motivate and guide

the creation of return series and associated volatility measures from high-frequency data.  We do not

claim that this provides exact counterparts to the (non-existing) corresponding continuous-time quantities. 

Instead, we assess the usefulness of the theory through the lens of predictive accuracy.  Specifically,

theory guides the nature of the data collected, the way the data are transformed into volatility measures,

and the model used to construct conditional return volatility and density forecasts.

3.1  Data

Our empirical analysis focuses on the spot exchange rates for the U.S. dollar, the Deutschemark and the

Japanese yen.10  The raw data consists of all interbank DM/$ and ¥/$ bid/ask quotes displayed on the

Reuters FXFX screen during the sample period from December 1, 1986 through June 30, 1999.11  These

quotes are merely indicative (that is, non-binding) and subject to various market microstructure

"frictions," including strategic quote positioning and standardization of the size of the quoted bid/ask

spread.  Such features are generally immaterial when analyzing longer horizon returns, but may distort the

statistical properties of the underlying "equilibrium" high-frequency intraday returns.  The sampling

frequency at which such considerations become a concern is intimately related to market activity.  For our

exchange rate series, preliminary analysis based on the methods of ABDL (2000) suggests that the use of

equally-spaced thirty-minute returns strikes a satisfactory balance between the accuracy of the



     12 An alternative approach would be to utilize all of the observations by explicitly modeling the high-frequency
market microstructure.  That approach, however, is much more complicated and subject to numerous pitfalls of its own.

     13 We follow the standard terminology of the interbank market by measuring the exchange rates and computing the
corresponding rates of return from the prices of $1 expressed in terms of DM and ¥, i.e., DM/$ and ¥/$.  Similarly, we
express the cross rate as the price of one DM in terms of ¥, i.e., ¥/DM.

     14  All of the empirical results in ABDL (2001a, 2001b), which in part motivate our approach, are based on data for
the in-sample period, justifying the claim that our forecast evaluation is “out-of-sample.”
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continuous-record asymptotics underlying the construction of our realized volatility measures on the one

hand, and the confounding influences from the market microstructure frictions on the other. 12

The actual construction of the returns follows Müller et al. (1990) and Dacorogna et al. (1993). 

First, we calculate thirty-minute prices from the linearly interpolated logarithmic average of the bid and

ask quotes for the two ticks immediately before and after the thirty-minute time stamps throughout the

global 24-hour trading day.  Second, we obtain thirty-minute returns as the first difference of the

logarithmic prices.13  In order to avoid modeling specific weekend effects, we exclude all of the returns

from Friday 21:00 GMT until Sunday 21:00 GMT.  Similarly, to avoid complicating the inference by the

decidedly slower trading activity during certain holiday periods, we delete a number of other inactive

days from the sample.  We are left with a bivariate series of thirty-minute DM/$ and ¥/$ returns spanning

a total of 3,045 days.  In order to explicitly distinguish the empirically constructed continuously

compounded discretely sampled returns, and corresponding volatility measures, from the theoretical

counterparts in Section 2, we will refer to the former by time subscripts.  Specifically for the half-hour

returns rt+),), t = ), 2), 3), ..., 3,045, where ) = 1/48  . 0.0208.  Also, for notational simplicity we label

the corresponding daily returns by a single time subscript, so that  rt+1 / rt+1,1 / rt+),) + rt+2),) + ... rt+1,) for

t = 1, 2, ..., 3,045.  Finally, we partition the full sample period into an in-sample estimation period

covering the 2,449 days from December 1, 1986 through December 1, 1996, and an out-of-sample

forecast evaluation period covering the 596 days from December 2, 1996 through June 30, 1999.14

3.2  Construction of Realized Volatilities

The preceding discussion suggests that meaningful ex-post interdaily volatility measures may be

constructed by cumulating cross-products of intraday returns sampled at an appropriate frequency, such as

thirty minutes.  In particular, based on the bivariate vector of thirty-minute DM/$ and ¥/$ returns, i.e.,

with  n = 2, we define the h-day realized volatility, for  t = 1, 2, ..., 3045,  ) = 1/48, by

Vt,h  /  Ej=1,..,h/)  rt-h+j·),)  ·  rt
N

-h+j·),)  =   Rt,hN Rt,h, (12)

where the (h/))xn matrix, Rt,h , is defined by  Rt,hN  / (rt-h+),), rt-h+2·),) , ... , rt,)).  As before, we simplify the
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notation for the daily horizon by defining Vt /Vt,1.  The Vt,h measure constitutes the empirical counterpart

to the h-period quadratic return variation and, for the continuous sample path case, the integrated

volatility.  In fact, by Proposition 2, as the sampling frequency of intraday returns increases, or ) 6 0, Vt,h

converges almost surely to the quadratic variation. The same intuition underlies the continuous record

asymptotics for the estimation of a time-invariant diffusion in Merton (1980) and the filtering results for

continuous-time stochastic volatility models in Nelson and Foster (1995).

One obstacle frequently encountered when constructing conditional covariance matrix estimates

from a finite set of return observations is that the estimator becomes non-positive definite.  In fact, even

for relatively low-dimensional cases, such as three or four assets, imposition and verification of

conditions that guarantee positive definiteness of conditional covariance matrices can be challenging; see,

e.g., the treatment of multivariate GARCH processes in Engle and Kroner (1995).  Interestingly, it is

straightforward to establish positive definiteness of our Vt,h measure.  The following proposition follows

from the correspondence between our realized volatility measures and standard unconditional sample

covariance matrix estimators which, of course, are positive semi-definite by construction.

PROPOSITION 4:  If the columns of Rt,h are linearly independent, then Vt,h is positive definite. 

PROOF:  It suffices to show that aN Vt,h a > 0  for all non-zero a.  Linear independence of the columns of

Rt,h ensures that  bt,h  = Rt,h a ú 0, æa0ßn
 \{0}, and in particular that at least one of the elements of bt,h is

non-zero.  Hence aN Vt,h a  =  aN Rt,hN Rt,h a  =  bt,hN  bt,h  =  Ej=1,..,h/)  (bt,h)j
2 > 0,  æa0ßn

 \{0}.      9

The fact that positive definiteness of the volatility measure is virtually assured within high-dimensional

applications is encouraging.  However, the theorem also points to a problem that will arise for very high-

dimensional systems.  The assumption of linear independence of the columns of Rt,h, although weak, will

ultimately be violated as the dimension of the price vector increases relative to the sampling frequency of

the intraday returns.  Specifically, for  n > h/   the rank of the Rt,h matrix is obviously  less than n, so  RtN

Rt = Vt  will not have full rank and it will fail to be positive definite.  Hence, although the use of Vt 

facilitates rigorous measurement of conditional volatility in much higher dimensions than is feasible with

most alternative approaches, it does not allow the dimensionality to become arbitrarily large.  Concretely,

the use of thirty-minute returns, corresponding to 1/) = 48 intraday observations, for construction of daily

realized volatility measures, implies that positive definiteness of Vt requires n, the number of assets, to be

no larger than 48.



     15 Similarly, the realized correlation between the two dollar rates is given by  t,12  = ½·( vt,1 + vt,2 - vt,3 ) / ( vt,1 · vt,2 )
½.

     16 For a prescient early contribution along these lines, see also Zhou (1996).
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The construction of an observable series for the realized volatility allows us to model the daily

conditional volatility measure, Vt, using standard and relatively straightforward time series techniques. 

The diagonal elements of Vt , say vt,1 and vt,2 , correspond to the daily DM/$ and ¥/$ realized variances,

while the off-diagonal element, say vt,12 , represents the daily realized covariance between the two rates. 

We could then model vech(Vt) = (vt,1, vt,12, vt,2)N directly but, for reasons of symmetry, we replace the

realized covariance with the realized variance of the ¥/DM cross rate which may be done, without loss of

generality, in the absence of triangular arbitrage, resulting in a system of three realized volatilities.

To appreciate the implication of precluding triangular arbitrage, note that this constraint requires

the continuously compounded return on the ¥/DM cross rate to equal the difference between the ¥/$ and

DM/$ returns, which has two key consequences.  First, it implies that, even absent direct data on the

¥/DM cross rate, we can calculate it using our DM/$ and ¥/$ data.  We can then calculate the realized

cross-rate variance, vt,3, by summing the implied thirty-minute squared cross-rate returns,

vt,3  =  Ej=1,..,1/) [ ( -1 , 1 )N · rt-1+j·),)  ]
 2 . (13)

Second, because it implies that vt,3 =  vt,1 + vt,2 - 2 vt,12, we can infer the realized covariance from the three

realized volatilities,15

vt,12  =  ½·( vt,1 + vt,2 - vt,3 ) . (14)

Building on this insight, we infer the covariance from the three variances, vt / ( vt,1, vt,2, vt,3 )', and the

identity in equation (14), instead of directly modeling vech(Vt).

We now turn to a discussion of the pertinent empirical regularities that guide our specification of

a trivariate forecasting model for the three DM/$, ¥/$, and ¥/DM volatility series.

4.  PROPERTIES OF EXCHANGE RATE RETURNS AND REALIZED VOLATILITIES

The in-sample distributional features of the DM/$ and ¥/$ returns and the corresponding realized

volatilities have been characterized previously by ABDL (2001a, 2001b).16  Here we briefly summarize

those parts of the ABDL results that are relevant for the present inquiry.  We also provide new results for

the ¥/DM cross rate volatility and an equally-weighted portfolio that explicitly incorporates the realized

covariance measure discussed above.

4.1  Returns



     17 Similar results obtain for the multivariate standardization Vt
-1/2 rt , where [·]  -1/2 refers to the Cholesky factor of the

inverse matrix, as documented in ABDL (2001b).

     18 This same observation also underlies the ad hoc multiplication factors often employed by practioners in the
construction of VaR forecasts.
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The statistics in the top panel of Table 1 refer to the two daily dollar denominated returns, rt,1 and rt,2, and

the equally-weighted portfolio ½@ (rt,1+r t,2).  As regards unconditional distributions, all three return series

are approximately symmetric with zero mean.  However, the sample kurtoses indicate fat tails relative to

the normal, which is confirmed by the kernel density estimates shown in Figure 1.  As regards conditional

distributions, the Ljung-Box test statistics indicate no serial correlation in returns, but strong serial

correlation in squared returns.  These results are entirely consistent with the extensive literature

documenting fat tails and volatility clustering in asset returns, dating at least to Mandelbrot (1963) and

Fama (1965).

The statistics in the bottom panel of Table 1 refer to the distribution of the standardized daily

returns rt,1@ vt,1 
-1/2  and rt,2 @ vt,2 

-1/2, along with the standardized daily equally-weighted portfolio returns  ½ @

(rt,1+r t,2) @ (¼@ vt,1 +¼@ vt,2 +½@ vt,12 )
-½ , or equivalently by equation (14), ½@ (rt,1+r t,2) @ (½@ vt,1 +½@ vt,2 - ¼@ vt,3

)-½.  The results are striking.  Although the kurtosis for all of the three standardized returns are less than

the normal value of three, the returns are obviously close to being Gaussian.  Also, in contrast to the raw

returns in the top panel, the standardized returns display no evidence of volatility clustering. 17  This

impression is reinforced by the kernel density estimates in Figure 1, which visually convey the

approximate normality.

Of course, the realized volatility used for standardizing the returns is only observable ex post. 

Nonetheless, the result is in stark contrast to the typical finding that, when standardizing daily returns by

the one-day-ahead forecasted variance from ARCH or stochastic volatility models, the resulting

distributions are invariably leptokurtic, albeit less so than for the raw returns; see, e.g., Baillie and

Bollerslev (1989) and Hsieh (1989).  In turn, this has motivated the widespread adoption of volatility

models with non-Gaussian conditional densities, as suggested by Bollerslev (1987). 18  The normality of

the standardized returns in Table 1 and Figure 1 suggests a different approach:  a fat-tailed Gaussian

mixture distribution governed by the realized volatilities.  Of course, this is also consistent with the

results of Theorem 2.  We now turn to a discussion of the distribution of the realized volatilities.

4.2  Realized Volatilities

The statistics in the top panel of Table 2 summarize the distribution of the realized volatilities, vt,i
1/2

 , for



     19 The density function for the lognormal-normal mixture is formally given by

f(r) = (2· · 2)-1 I0
4

 y
-3/2·exp{-½·[ r

2y-1 + -2(log(y) - µ)2 ]}  dy ,

where µ and  denote the mean and the variance of the logarithmic volatility.  This same mixture distribution has
previously been advocated by Clark (1973), without any of the direct empirical justification provided here.

     20 See Andersen and Bollerslev (1998) for a detailed efficiency comparison of various volatility proxies.
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each of the three exchange rates:  DM/$, ¥/$ and ¥/DM.  All the volatilities are severely skewed to the

right and highly leptokurtic.  In contrast, the skewness and kurtosis for the three logarithmic standard

deviations, yt,i / ½·log( vt,i ), shown in the bottom panel of Table 2, appear remarkably Gaussian.  Figure 2

confirms these impressions.  In fact, the kernel density estimates for the logarithmic volatilities nearly

coincide with the normal reference densities, rendering the curves effectively indistinguishable.

The log-normality of realized volatility suggests the use of standard Gaussian distribution theory

and associated critical values for modeling and forecasting realized logarithmic volatilities.  Moreover,

combining the results for the returns in Table 1, suggesting  rt@ Vt
-1/2- N( 0 , I ),  with the results for the

volatility in Table 2,  yt / ( yt,1, yt,2, yt,3 )' - N( µ , S ), we should expect the overall return distribution (not

conditioned on the realized volatility) to be well approximated by a lognormal-normal mixture. 19  We

present density forecasts and VaR calculations below that explicitly build on this insight.

Turning again to Table 2, the Ljung-Box statistics indicate strong serial correlation in the realized

daily volatilities, in accord with the significant Ljung-Box statistics for the squared unstandardized returns

in the top panel of Table 1.  It is noteworthy, however, that the Q2(20) statistics in Table 1 are orders of

magnitude smaller than those in Table 2.  This reflects the fact that the daily squared returns constitute

very noisy volatility proxies relative to the daily realized volatilities. 20  Consequently, the strong

persistence of the underlying volatility dynamics is masked by the measurement error in the daily squared

returns.

Several recent studies have suggested that the strong serial dependence in financial asset return

volatility may be conveniently captured by a long-memory, or fractionally-integrated, process (e.g., Ding,

Granger and Engle, 1993, and Andersen and Bollerslev, 1997).  Hence in the last column of Table 2 we

report estimates of the degree of fractional integration, obtained using the Geweke and Porter-Hudak

(1983) (GPH) log-periodogram regression estimator as formally developed by Robinson (1995).  The

three estimates of d are all significantly greater than zero and less than one half when judged by the



     21 Consistent with the simulation evidence in Bollerslev and Wright (2000), the corresponding estimates of d for vt,
not reported here, are about  0.15 less than those for yt  reported in the bottom panel of Table 2.

     22 More complicated formal testing procedures for fractional cointegration have recently been developed by Robinson
and Marinucci (1999) and Davidson (2000).
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standard error of 0.028 in the asymptotic normal distribution.21  Moreover, the three estimates are very

close, indicative of a common degree of long-run dependence in the logarithmic volatilities.  The

multivariate extension of the GPH estimator developed by Robinson (1995) provides a formal framework

for testing this hypothesis.  On implementing Robinson’s estimator we obtain $d = 0.401, and the

corresponding test statistic for a common d across the three volatilities has a p-value of 0.510 in the

asymptotic chi-square distribution with three degrees of freedom.

Figure 3 provides graphical confirmation and elaboration of the long-memory results.  It displays

the sample autocorrelations of the realized logarithmic volatilities out to a displacement of 70 days, or

about one quarter.  The slow hyperbolic autocorrelation decay symptomatic of long memory is evident,

and the qualitatively identical autocorrelation values across the three volatilities supports the assertion of

a common degree of fractional integration.  Figure 3 also shows the sample autocorrelations of the

logarithmic volatilities, fractionally differenced by applying the filter (1-L)0.401.  It is evident that this

single fractional differencing operator eliminates the bulk of the serial dependence in each of the three

realized logarithmic volatilities, although Ljung-Box portmanteau tests (not reported here) do reject the

hypothesis of white noise fractionally-differenced volatilities.

It is possible that the three series are fractionally cointegrated, so that a linear combination will

exhibit a degree of fractional integration less than 0.401.  On heuristically testing for this by regressing

each of the logarithmic volatilities on the two other logarithmic volatilities and a constant, and then

estimating the degree of fractional integration in the residuals, the three estimates for d are 0.356, 0.424,

and 0.393, respectively, all of which are very close to the value of d for the original series in Table 2.22

Although the realized logarithmic volatility series do not appear to be fractionally cointegrated,

they are nevertheless strongly contemporaneously correlated.  In particular, the sample correlations

between yt,1 and yt,2 and yt,3 are respectively 0.591 and 0.665, while the correlation between yt,2 and yt,3 is

0.648.  Again, this is entirely consistent with the extant ARCH and stochastic volatility literatures.  In the

next section, we propose a simple multivariate model capable of accommodating both the strong

dynamics and contemporaneous correlations in the realized volatilities.

5.  A VAR FOR MODELING AND FORECASTING REALIZED VOLATILITY



     23 Both the Akaike and Schwarz criteria select a first-order VAR.  Degrees of freedom are plentiful, however, so we
included a week’s worth of lags to maintain conservatism.

     24 Details concerning model estimates and related test statistics are available upon request.
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The distributional features highlighted in the previous section suggest that a long-memory Gaussian VAR

for the realized logarithmic volatilities should provide a good description of the volatility dynamics.  We

therefore consider the simple tri-variate VAR,

 A(L)(1-L)d(yt - µ)  =  ,t , (15)

where ,t is a vector white noise process.

The impulse response functions for the model (15) are easily calculated and lend insight into its

implied dynamics.  On rearranging terms and multiplying by (1-L), we obtain,

 (1-L) (yt - µ)  = A(L)-1 (1-L)1-d ,t . (16)

Hence the impulse response coefficients associated with the lag k shocks are simply given by the powers

in the matrix lag polynomial '(L) / A(L)-1 (1-L)1-d, say 'k .  If all of the roots of the estimated polynomial


A(z)
=0  are outside the unit circle, the model is stationary and 'k 6 0 .  Moreover, all of the cumulative

impulse response coefficients associated with the volatility shocks, '1+'2 +...+'k , eventually dissipate at

the slow hyperbolic rate kd-1.

We now estimate the unrestricted VAR in equation (15) by applying OLS equation-by-equation. 

In so doing, we impose the normalization A(0) = I, and fix the value of d at the earlier-reported common

estimate of 0.401.  We also assume that the orders of the lag polynomials in A(L) are all equal to five

days, or one week.  This choice is somewhat arbitrary, and the model could easily be refined through a

more detailed specification search explicitly allowing for zero parameter restrictions and/or different

autoregressive lag lengths.23  Additional explanatory variables, such as interest rate differentials, daily

trading activity measures, etc., could also easily be included.  However, in order to facilitate the

comparison with the daily volatility models in common use, for which the mechanics of including

additional explanatory variables are much more complicated and typically not entertained, we restrict our

attention to the simple unrestricted VAR in equation (15).

Many of the estimated VAR coefficients (not shown) are statistically significant, and all the roots

of the estimate of the matrix lag polynomial A(L) are outside the unit circle, consistent with covariance

stationarity.  Moreover, Ljung-Box tests for serial correlation in the VAR residuals reveal no evidence

against the white noise hypothesis, indicating that the VAR has successfully accommodated all volatility

dynamics not already captured by the first-stage long memory modeling. 24
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It is striking to note how much volatility variation is explained by the univariate long-memory

models (the R2 values are in the neighborhood of 50%), and how little of the variation of the residuals

from the long-memory models is explained by the VAR (the R2 values are in the neighborhood of 2%). 

Effectively, the univariate one-parameter long-memory models are so successful at explaining realized

volatility dynamics that only little is left for the VAR.  This is also evident from the previously discussed

plots of the autocorrelations in Figure 3.  Nevertheless, the Ljung-Box statistics for the three univariate

fractionally differenced volatility series all indicate significant serial correlation, while those for the

residuals from the VAR do not.  Moreover, the VAR captures important cross-rate linkages.  In particular,

Granger causality tests reveal strong evidence of predictive enhancement from including lags of the

logarithmic DM/$ and ¥/$ volatility in the realized logarithmic ¥/DM volatility equation.

It is natural to conjecture that vector autoregressive forecasts of realized volatility based on

equation (15) will outperform more traditional daily ARCH and related volatility forecasts.  Our forecasts

are based on explicitly-modeled long-memory dynamics, which seem to be a crucial feature of the data. 

Long-memory may, of course, also be incorporated in otherwise standard ARCH models, as in Baillie,

Bollerslev and Mikkelsen (1996).  As such, the genuinely distinctive feature of our approach is instead the

effective incorporation of information contained in the high-frequency data, which enables the realized

volatilities and their forecasts to quickly adapt to changes in the underlying latent volatility.  The next

section explores these conjectures in detail.

6.  EVALUATING AND COMPARING ALTERNATIVE VOLATILITY FORECASTS

Volatility forecasts play a central role in the financial decision making process.  In this section we assess

the performance of the realized volatility forecasts generated from our simple vector autoregressive

model.  In Figure 4, to convey some initial feel, we plot the daily realized DM/$, ¥/$, and ¥/DM standard

deviations, along with the corresponding one-day-ahead VAR forecasts for the out-of-sample period,

December 2, 1996, through June 30, 1999.  It appears that the VAR does a good job of capturing both the

low-frequency and the high-frequency movements in the realized volatilities.  We next proceed to a more

thorough statistical evaluation of the forecasts along with a comparison to several alternative volatility

forecasting procedures currently in widespread use.

6.1 Forecast Evaluation Regressions

Many methods have been proposed for modeling and forecasting financial market volatility.  The most

widespread procedure used by practitioners is arguably J.P. Morgan’s (1997) RiskMetrics.  The



     25 Further details regarding the actual estimates are available on request.  To explicitly accommodate long-memory in
the volatilities, we also estimated a set of FIGARCH(1,d,0) models (see, Baillie, Bollerslev, and Mikkelsen, 1996). 
However, the one- and ten-day-ahead predictions for these models were generally very close to the results for the
GARCH(1,1) models discussed below, and are therefore omitted to conserve space.  Again, further details are available
upon request.

     26 Following standard practice, we focus on forecasts of the volatility, vt
1/2, based on the square root of the unbiased

GARCH(1,1) and VAR forecasts for vt .  Of course, these forecasts are not formally unbiased, so we also experimented
with a first order Taylor series expansion of the square root operator to adjust for this bias.  The resulting regression
estimates and R2’s were almost identical to the ones reported in Table 3.  Similarly, the evaluation regressions for the
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RiskMetrics daily variances and covariances are calculated as exponentially weighted averages of cross

products of daily returns, using a smoothing factor of 8=0.94.  This corresponds to an IGARCH(1,1)

model in which the intercept is fixed at zero and the moving average coefficient in the ARIMA

representation for the squared returns equals -0.94.

  The most widespread procedure used by academics is arguably the GARCH model of Engle

(1982) and Bollerslev (1986), with the GARCH(1,1) model constituting the leading case.  As with the

VAR model discussed in the previous section, we will base the GARCH(1,1) model estimates on the

2,449 daily in-sample returns from December 1, 1996, through December 1, 1996.  Consistent with

previous results reported in the literature, the quasi-maximum likelihood parameter estimates indicate a

strong degree of volatility persistence, with the autoregressive roots for each of the three rates equal to

0.986, 0.968, and 0.990, respectively.25

Finally, we will also compare the forecasts from our fifth-order VAR for the long-memory

filtered realized volatility (henceforth VAR-RV) to those obtained from a fifth-order VAR for the long-

memory filtered daily logarithmic absolute returns (henceforth VAR-ABS).  This makes for a controlled

comparison, as the model structures are identical in all respects except the volatility proxy:  one uses daily

realized volatility, while the other uses daily absolute returns.

No universally acceptable loss function exists for the ex-post evaluation and comparison of

nonlinear model forecasts, and in the context of volatility modeling, several statistical procedures have

been used for assessing the quality of competing forecasts (see, e.g. the discussion in Andersen,

Bollerslev, and Lange, 1999, and Christoffersen and Diebold, 1999).  Following the analysis in Andersen

and Bollerslev (1998), and in the tradition of Mincer-Zarnowitz (1969) and Chong and Hendry (1986), we

focus our evaluations on regressions of the realized volatilities on a constant and the various model

forecasts.

For the one-day-ahead in-sample and out-of-sample forecasts reported in Tables 3A and 3B, the

evaluation regressions take the form26



realized variances, vt , and logarithmic standard deviations, yt / ½@ log(vt ), produced very similar results to the ones
reported here.  Details are available upon request.

     27 These results are consistent with Engle (2000), who reports that the inclusion of the lagged daily realized variance
in the conditional variance equation of a GARCH(1,1) model for the daily DM/$ returns analyzed here renders the
coefficient associated with the lagged daily squared returns insignificant.  In contrast, the results of Taylor and Xu
(1997), based on a limited one-year sample of 253 daily DM/$ returns, suggest that the lagged daily realized variance
offers little incremental explanatory power over a univariate GARCH(1,1) model.

     28 To account for the overlap in the multi-day forecasts, we use robust standard errors, calculated using an
unweighted covariance matrix estimator allowing for up to ninth order serial correlation in ut+10 ,i.
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({vt+1 }i )
½ =  b0 + b1@ ({vt+1
t ,VAR-RV }i )

½ + b2@ ({vt+1
t , Model }i )
½ + ut+1,i. (17)

The results are striking.  For the regressions including just one volatility forecast, the regression R2 is

always the highest for the VAR-RV model, and for none of the VAR-RV forecasts can we reject the

hypothesis that b0 = 0 and b1 = 1 using the corresponding t tests.  In contrast, we reject the hypothesis that

b0 = 0 and/or b2 = 1 for most RiskMetrics, GARCH and VAR-ABS in-sample and out-of-sample

forecasts.  Moreover, on including both the VAR-RV and the RiskMetrics, GARCH or VAR-ABS

forecast in the same regression, the coefficient estimates for b1 and b2 are generally not different from

unity and zero, respectively.  Finally, inclusion of the RiskMetrics, GARCH or VAR-ABS forecasts

improves the R2s very little relative to those based solely on the VAR-RV forecasts. 27

Turning to the ten-day-ahead forecasts, the results are qualitatively identical.  The evaluation

regressions are

({3j=1,..,10 vt+j  }i )
½ = b0 + b1@ ({3j=1,..,10 vt+j
t ,VAR-RV }i )

½

 + b2@ ({3j=1,..,10 vt+j
t , Model }i )
½ + ut+10,i . (18)

Both the in-sample and out-of-sample results in Tables 3C and 3D, respectively, systematically favor the

VAR-RV forecasts for all three rates.28  As with the one-day-ahead regressions discussed above, the

estimates for b1 are generally not significantly different from unity, while very few of the estimates for b 0

and b2 in the multiple regressions including both the VAR-RV forecasts and the other forecasts are

statistically significantly different from zero.  These results are especially noteworthy insofar as several

previous studies have found it difficult to outperform simple daily GARCH(1,1) formulations for

exchange rate volatility using more complicated multivariate models (e.g., Sheedy, 1998), or ARCH

models estimated directly from high-frequency data (e.g., Beltratti and Morana, 1999).

6.2 On the Superiority of VAR-RV Forecasts

Why does the VAR-RV produce superior forecasts?  We have identified the quadratic variation and its



     29 Suppose, for example, that integrated volatility has been low for many days, t = 1, ..., T-1, so that both realized and
GARCH volatilities are presently low as well.  Now suppose that integrated volatility increases sharply on day T and that
the effect is highly persistent as is typical.  Realized volatility for day T, which makes extensive use of the day-T
information, will increase sharply as well, as is appropriate.  GARCH or RiskMetrics volatility, in contrast, won’t move at
all on day T, as they depend only on squared returns from days T-1, T-2, ..., and they will increase only gradually on
subsequent days, as they approximate volatility via a long and slowly decaying exponentially weighted moving average.

     30 The actual start dates for the forecasts in each of the four panels are 11/16/1988, 3/6/1989, 5/13/1991, and
8/28/1998, respectively.
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empirical counterpart, the realized volatility, as the key objects of interest for volatility measurement, and

consequently assess our various volatility forecast relative to this measure.  It is therefore maybe not

surprising that models built directly for the realized volatility produce forecasts superior to those obtained

from more indirect methods, a conjecture consistent with the literature on forecasting under the relevant

loss function, e.g., Christoffersen and Diebold (1997).

There is a more direct reason for the superior performance of the VAR-RV forecasts, however. 

The essence of forecasting is quantification of the mapping from the past and, in particular, the present

into the future.  Hence, quite generally, superior estimates of present conditions translate into superior

forecasts of the future.  Realized volatility excels in this dimension: it provides a superior and quickly-

adapting estimate of current volatility.  Standard models based on daily data such as GARCH and

RiskMetrics rely on long and slowly decaying weighted moving averages of past squared returns and

therefore adapt only gradually to volatility movements. 29

Figure 5 confirms the above assertions graphically.  We display the realized standard deviations

for DM/$ returns, ¥/$ returns and ¥/DM returns, along with the corresponding one-day-ahead GARCH

forecasts for the out-of-sample period, December 2, 1996, through June 30, 1999.  The GARCH forecasts

appear to track the low-frequency variation adequately, matching the broad temporal movements in

volatility, but they track much less well at higher frequencies.  Note the striking contrast with Figure 4

which, as discussed earlier, reveals a close coherence between daily realized volatility and VAR-RV

forecasts at high as well as low frequencies.

We provide a more detailed illustration of the comparative superiority of the VAR-RV forecasts

in Figure 6, which depicts four illustrative DM/$ episodes of thirty-five days each.30  First, for days one

through twenty-five (the non-shaded region) we show daily realized volatility together with one-day-

ahead forecasts made on the previous day using VAR-RV and GARCH models.  The accuracy of the

VAR-RV forecasts is striking, as is the inaccuracy of the GARCH forecasts, due to their inability to adapt

rapidly to high-frequency movements.  Second, for days twenty-six through thirty-five (the shaded



     31 Portfolio VaR at confidence level  percent and horizon k is simply the th percentile of the k-step-ahead portfolio
return density forecast.  For an overview, see Duffie and Pan (1997).  When calculating VaR at confidence level  and
horizon k, the appropriate values of  and k are generally situation-specific, although the Basel Committee on Banking
Supervision has advocated the systematic use of five- and one-percent VaR, and one- and ten-day horizons.
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region), we continue to display the daily realized volatility, but we show one- through ten-day-ahead

VAR-RV and GARCH forecasts based on information available on day twenty-five.  Hence the forecasts

for day twenty-six are one-day-ahead, the forecasts for day twenty-seven are two-day-ahead, and so on. 

Examination of these multi-step trajectories makes clear the forecasting benefit of having a superior

estimate of current volatility:  in each case the VAR-RV forecasts "take off" from a good estimate of

current (day twenty-five) volatility, and then revert to the unconditional mean of approximately 0.6 in a

fashion consistent with historical experience.  In contrast, the lack of an equally accurate assessment of

current volatility within the GARCH setting results in markedly inferior longer-run volatility forecasts.

The above findings do not reflect a failure of the GARCH model per se, but rather the efficacy of

exploiting volatility measures based on intraday return observations.  In fact, Andersen and Bollerslev

(1998) find that the GARCH model explains about as much of the future variation in volatility as is

theoretically feasible, and thus exploits the information in daily foreign exchange data very well.  The

point is that the noise in daily squared returns necessarily renders the measurement of the current

innovation to volatility imprecise, independent of the correct model for daily volatility.

In light of the excellent performance of the VAR-RV volatility forecasts, we now turn to an

investigation of the corresponding return density forecasts and VaR calculations, in which we explicitly

incorporate the theoretically motivated distributional features of the realized volatilities and standardized

returns highlighted in section 4.

7.  DENSITY FORECASTS AND QUANTILE CALCULATIONS:  A VAR FOR VaR

Measuring and forecasting portfolio Value-at-Risk, or VaR, and fluctuations in VaR due to changing

market conditions and/or portfolio shares, is an important part of modern financial risk management, see,

e.g., Gouriéroux, Laurent and Scaillet (2000).  Our results suggest that accurate return density forecasts

and associated VaR estimates may be obtained from a long-memory VAR for realized volatility, coupled

with the assumption of normally distributed standardized returns.31  We assess this conjecture using the

methods of Diebold, Guther and Tay (1998).  The basic idea is as follows.  Suppose that the daily returns

 is generated from the series of one-day-ahead conditional densities  , where Ût-1 {rt } { f (rt | Û t&1 )}

denotes the full information set available at time t-1.  If the series of one-day-ahead conditional density



     32 Standard qq-plots, available on request, reveal an equally close fit throughout the full support of the distributions. 

     33 This apparent lack of dependence is confirmed by formal Ljung-Box portmanteau tests for the joint significance of
the depicted autocorrelations.  One could, of course, examine the sample autocorrelations of higher powers of  aszt& z̄
well, but the second moment is the one crucial for our application, which centers on volatility dynamics.
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forecasts  coincides with , it follows under weak conditions, that the sequence{ f t | t&1 (rt ) } { f (rt |Û t&1 ) }

of probability integral transforms of  with respect to should be iid uniformly distributed on thert ft | t&1 (@)

unit interval.  That is, , where the probability integral transform  is simply the{ zt }
iid
- U (0 ,1) zt

cumulative density function corresponding to , evaluated at , i.e., .  Hencef t | t&1 (@) rt zt'm
rt

&4

f t |t&1 (u )du

the adequacy of the VAR-RV based volatility forecast and the lognormal-normal mixture distribution may

be assessed by checking whether the corresponding distribution of  is iid U(0,1).{ zt}

To this end, Table 4 reports the percentage of the realized DM/$, ¥/$ and equally-weighted

portfolio returns that are less than various quantiles forecast by the long-memory lognormal-normal

mixture model.  The close correspondence between the percentages in each column and the implied

quantiles by the model, both in-sample and out-of-sample, is striking.  It is evident that the VAR-RV

lognormal-normal mixture model affords a very close fit for all of  the relevant VaRs.32 

Although uniformity of the  sequences is necessary for adequacy of the density forecasts, it iszt

not sufficient.  The ’s must be independent as well, to guarantee, for example, that violation of azt

particular quantile forecast on day t conveys no information regarding its likely violation on day t+1.  In

general, dependence in  would indicate that dynamics have been inadequately modeled and captured byzt

the forecasts.  To assess independence, Figure 7 therefore plots the sample autocorrelation functions for

 and corresponding to the density forecasts for the DM/$, the ¥/$, and the equally-weightedzt& z̄ zt& z̄ 2

portfolio returns.  All told, there is no evidence of serial correlation in any of the six series, indicating that

the model’s density forecasts are not only correctly unconditionally calibrated, but also correctly

conditionally calibrated.33

8.  CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

Guided by a general theory for continuous-time arbitrage-free price processes, we develop a framework

for the direct modeling and forecasting of realized volatility and correlation.  Our methods are simple to

implement empirically, even in multivariate situations.  We illustrate the idea in the context of the foreign

exchange market, specifying and estimating a long-memory Gaussian VAR for a set of daily logarithmic

realized volatilities.  The model produces strikingly successful volatility forecasts, which dominate those
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from conventional GARCH and related approaches.  It also generates well-calibrated density forecasts

and associated quantile, or VaR, estimates.  Numerous interesting directions for future research remain.

First, the realized volatility measures used in this paper do not distinguish between variability

originating from continuous price movements or jumps.  However, as discussed in Section 2, the dynamic

impact may differ across the two sources of variability.  Hence, it is possible that improved volatility

forecasting models may be constructed by explicitly modeling the jump component, if present.

Second, although the lognormal-normal mixture distribution works very well in the present

context, the predictive distribution could be refined and adapted to more challenging contexts using the

numerical simulation methods of Geweke (1989), the Cornish-Fisher expansion of Baillie and Bollerslev

(1992), or the recalibration methods of Diebold, Hahn and Tay (1999).

Third, although we focused on using density forecasts to obtain VaR estimates (quantiles), the

same density forecasts could of course be used to calculate other objects of interest in financial risk

management.  Examples include the probability of loss exceeding a specified threshold (shortfall

probabilities), and the expected loss conditional upon loss exceeding a pre-specified threshold (expected

shortfall), as discussed for example in Heath, Delbaen, Eber and Artzner (1999) and Basak and Shapiro

(1999).  In contrast, the quantile regression methods of Granger, White and Kamstra (1989) and Engle

and Manganelli (1999) do not readily lend themselves to such extensions.

Fourth, our approach to exchange rate density forecasting could be extended to other classes of

financial assets.  Although the structure of our proposed modeling framework builds directly on the

empirical regularities for the foreign exchange markets documented in Section 4, the empirical features

characterizing other asset markets appear remarkably similar, as shown for example by Andersen,

Bollerslev, Diebold and Ebens (2001) for U.S. equities.

Fifth, and perhaps most importantly, volatility forecasts figure prominently in many practical

financial decisions, such as asset allocation (e.g., Fleming, Kirby and Ostdiek, 2001), market timing (e.g.,

Busse, 1999), and derivative pricing (e.g., Bollerslev and Mikkelsen, 1999).  It will be of interest to

explore the gains afforded by the simple volatility modeling and forecasting procedures developed here,

particularly in high-dimensional environments.  In this regard, a couple of issues merit particular

attention.  One critical task is to develop realized volatility forecasting models that are parameterized in

ways that guarantee positive definiteness of forecasted covariance matrices within high-dimensional

settings.  Because the in-sample realized covariance matrix is positive definite under quite general

conditions, one approach would be to model the Cholesky factors rather than the realized covariance

matrix itself.  The corresponding forecasts for the Cholesky factors are then readily transformed into
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forecasts for the future variances and covariances by simple matrix multiplications.

Finally, and also of particular relevance in high-dimensional situations, allowing for factor

structure in the modeling and forecasting of realized volatility may prove useful, as factor structure is

central to both empirical and theoretical financial economics.  Previous research on factor volatility

models has typically relied on complex procedures involving a latent volatility factor, as for example in

Diebold and Nerlove (1989), Engle, Ng and Rothschild (1990), and King, Sentana and Wadhwani (1994). 

In contrast, factor analysis of realized volatility should be relatively straightforward, even in high-

dimensional environments.  Moreover, the identification of explicit volatility factors, and associated

market-wide variables that underlie the systematic volatility movements, may help to provide an

important step towards a better understanding of "the economics of volatility." 
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TABLE 1
Daily Return Distributions

Mean Std.Dev. Skewness Kurtosis Q(20) Q2(20)
Returns
  DM/$ -0.007 0.700  0.003  5.28 14.13 140.3
  ¥/$ -0.010 0.692 -0.129  6.64 27.88 142.6
  Portfolio -0.008 0.630 -0.046  5.81 20.30 111.5
Standardized Returns
  DM/$ -0.007 0.993  0.032  2.57 19.42 23.32
  ¥/$  0.007 0.964 -0.053  2.66 32.13 24.83
  Portfolio -0.005 0.993  0.028  2.61 25.13 29.20

Notes:  The daily returns cover the period from December 1, 1986 through December 1, 1996.  The top
panel refers to the distribution of raw daily returns, while the bottom panel refers to the distribution of
daily returns standardized by realized volatility.  The rows labeled "Portfolio" refer to returns on an
equally-weighted portfolio.  The columns labeled Q(20) and Q2(20) contain Ljung-Box test statistics for
up to twentieth order serial correlation in the returns and the squared returns.

TABLE 2
Daily Realized Volatility Distributions

Mean St.Dev. Skewness Kurtosis Q(20) d
Volatility
  DM/$ 0.626 0.283  1.99  10.49  5249.2 -
  ¥/$ 0.618 0.290  2.20  12.94  4155.1 -
  ¥/DM 0.571 0.234  1.49    7.86 10074.2-
Logarithmic Volatility
  DM/$ -0.554 0.405 0.251  3.29  7659.6 0.387
  ¥/$ -0.572 0.419 0.191  3.44  5630.0 0.413
  ¥/DM -0.637 0.388 0.058  3.04 12983.20.430

Notes:  The sample covers the period from December 1, 1986 until December 1, 1996.  The top panel
refers to the distribution of realized standard deviations, vt

1/2
 .  The daily realized volatilities are

constructed from 30-minute squared returns, as detailed in the text.  The bottom panel refers to the
distribution of logarithmic realized standard deviations, yt / ½·log( vt ).  The column labeled Q(20)
contains Ljung-Box test statistics for up to twentieth order serial correlation.  The last column gives the
log-periodogram regression estimate of the fractional integration parameter, d, based on the m = [T 4/5 ] =
514 lowest-frequency periodogram ordinates.  The asymptotic standard error for all the d estimates is
B·(24·m)-½ = 0.028.



TABLE 3A
Mincer-Zarnowitz Regressions for Realized Volatilities

 In-Sample, One-Day-Ahead

     b0      b1      b2 R2

DM/$
VAR-RV -0.008 (0.020)  1.065 (0.035) - 0.353
RiskMetrics  0.110 (0.019) - 0.767 (0.030) 0.262
GARCH -0.071 (0.026) - 1.014 (0.040) 0.261
VAR-ABS  0.242 (0.019) - 1.176 (0.061) 0.152
VAR-RV+RiskMetrics -0.019 (0.020)  0.948 (0.059) 0.120 (0.046) 0.356
VAR-RV+GARCH -0.047 (0.024)  0.950 (0.059) 0.157 (0.062) 0.356
VAR-RV+VAR-ABS -0.018 (0.020)  1.030 (0.046) 0.093 (0.072) 0.354
¥/$
VAR-RV -0.010 (0.021)  1.069 (0.039) - 0.374
RiskMetrics  0.142 (0.021) - 0.725 (0.035) 0.263
GARCH -0.102 (0.033) - 1.064 (0.052) 0.295
VAR-ABS  0.258 (0.019) - 1.186 (0.065) 0.153
VAR-RV+RiskMetrics -0.021 (0.022)  0.947 (0.054) 0.126 (0.046) 0.377
VAR-RV+GARCH -0.080 (0.032)  0.869 (0.060) 0.277 (0.079) 0.381
VAR-RV+VAR-ABS -0.022 (0.021)  1.029 (0.047) 0.117 (0.066) 0.375
¥/DM
VAR-RV -0.022 (0.013)  1.079 (0.025) - 0.505
RiskMetrics  0.162 (0.012) - 0.735 (0.023) 0.368
GARCH  0.107 (0.015) - 0.816 (0.027) 0.389
VAR-ABS  0.192 (0.014) - 1.331 (0.051) 0.299
VAR-RV+RiskMetrics -0.022 (0.013)  0.989 (0.046) 0.087 (0.037) 0.507
VAR-RV+GARCH -0.029 (0.013)  0.941 (0.048) 0.144 (0.043) 0.509
VAR-RV+VAR-ABS -0.028 (0.013)  1.012 (0.037) 0.146 (0.060) 0.507

Notes:  We report OLS parameter estimates for Mincer-Zarnowitz regressions of realized volatility on a
constant and forecasts from different models.  The regression is ({vt+1 }i )

½ = b0 + b1@({vt+1
t ,VAR-RV }i )
½ +

b2@({vt+1
t , Model }i )
½ + ut+1,i , with heteroskedasticity robust standard errors in parentheses.  The forecast

evaluation period is December 1, 1987 through December 1, 1996, for a total of 2,223 daily observations. 
All model parameter estimates are based on data from December 1, 1986 through December 1, 1996. 
VAR-RV denotes forecasts from a long-memory vector autoregression for daily realized volatility, VAR-
ABS denotes forecasts from a long-memory vector autoregression for daily log absolute returns,
RiskMetrics denotes forecasts from an exponential smoothing model applied to squared daily returns, and
GARCH denotes forecasts from a univariate GARCH(1,1) model.  See the main text for details.



TABLE 3B
Mincer-Zarnowitz Regressions for Realized Volatilities

Out-of-Sample, One-Day-Ahead

     b0      b1      b2 R2

DM/$
VAR-RV  0.021 (0.049)  0.987 (0.092) - 0.249
RiskMetrics  0.219 (0.042)  -  0.618 (0.075) 0.097
GARCH  0.051 (0.063)  -  0.854 (0.105) 0.096
VAR-ABS  0.439 (0.028) -  0.450 (0.089) 0.028
VAR-RV+RiskMetrics  0.017 (0.046)  0.979 (0.133)  0.014 (0.112) 0.249
VAR-RV+GARCH  0.015 (0.060)  0.980 (0.134)  0.016 (0.156) 0.249
VAR-RV+VAR-ABS  0.035 (0.046)  1.018 (0.107) -0.106 (0.103) 0.250
¥/$
VAR-RV -0.006 (0.110)  1.085 (0.151) - 0.329
RiskMetrics  0.164 (0.108)  -  0.767 (0.131) 0.266
GARCH -0.002 (0.147)  -  1.020 (0.187) 0.297
VAR-ABS  0.349 (0.086) -  1.256 (0.241) 0.115
VAR-RV+RiskMetrics -0.022 (0.115)  0.859 (0.113)  0.219 (0.123) 0.336
VAR-RV+GARCH -0.081 (0.144)  0.733 (0.121)  0.424 (0.247) 0.346
VAR-RV+VAR-ABS -0.038 (0.111)  1.037 (0.159)  0.179 (0.132) 0.331
¥/DM
VAR-RV -0.047 (0.101)  1.146 (0.143) - 0.355
RiskMetrics  0.248 (0.084)  -  0.668 (0.107) 0.286
GARCH  0.243 (0.092)  -  0.692 (0.119) 0.300
VAR-ABS  0.405 (0.062) -  1.063 (0.175) 0.119
VAR-RV+RiskMetrics -0.029 (0.093)  0.941 (0.130)  0.160 (0.117) 0.360
VAR-RV+GARCH -0.020 (0.086)  0.873 (0.137)  0.215 (0.159) 0.364
VAR-RV+VAR-ABS -0.039 (0.097)  1.176 (0.167) -0.080 (0.146) 0.355

Notes:  We report OLS parameter estimates for Mincer-Zarnowitz regressions of realized volatility on a
constant and forecasts from different models.  The regression is ({vt+1 }i )

½ = b0 + b1@({vt+1
t ,VAR-RV }i )
½ +

b2@({vt+1
t , Model }i )
½ + ut+1,i , with heteroskedasticity robust standard errors in parentheses.  The forecast

evaluation period covers December 2, 1996 through June 30, 1999, for a total of 596 daily observations. 
All model parameter estimates are based on data from December 1, 1986 through December 1, 1996. 
VAR-RV denotes forecasts from a long-memory vector autoregression for daily realized volatility, VAR-
ABS denotes forecasts from a long-memory vector autoregression for daily log absolute returns,
RiskMetrics denotes forecasts from an exponential smoothing model applied to squared daily returns, and
GARCH denotes forecasts from a univariate GARCH(1,1) model.  See the main text for details.



TABLE 3C
Mincer-Zarnowitz Regressions for Realized Volatilities

In-Sample, Ten-Days-Ahead

     b0      b1      b2 R2

DM/$
VAR-RV -0.046 (0.135)  1.036 (0.068) - 0.436
RiskMetrics  0.712 (0.134) - 0.638 (0.066) 0.337
GARCH  0.026 (0.189) - 0.938 (0.090) 0.374
VAR-ABS  0.692 (0.153) - 0.224 (0.026) 0.269
VAR-RV+RiskMetrics -0.029 (0.139)  0.980 (0.137) 0.046 (0.097) 0.437
VAR-RV+GARCH -0.152 (0.149)  0.801 (0.128) 0.269 (0.130) 0.445
VAR-RV+VAR-ABS -0.055 (0.137)  0.989 (0.102) 0.017 (0.028) 0.437
¥/$
VAR-RV -0.012 (0.152)  1.020 (0.079) - 0.387
RiskMetrics  0.848 (0.134) - 0.578 (0.069) 0.299
GARCH -0.086 (0.205) - 0.991 (0.100) 0.366
VAR-ABS  0.784 (0.130) - 0.097 (0.011) 0.230
VAR-RV+RiskMetrics  0.030 (0.153)  0.922 (0.131) 0.075 (0.093) 0.389
VAR-RV+GARCH -0.239 (0.176)  0.634 (0.130) 0.467 (0.146) 0.413
VAR-RV+VAR-ABS -0.028 (0.155)  0.944 (0.100) 0.013 (0.011) 0.389
¥/DM
VAR-RV -0.163 (0.102)  1.102 (0.058) - 0.584
RiskMetrics  0.705 (0.089) - 0.659 (0.049) 0.461
GARCH  0.444 (0.103) - 0.782 (0.057) 0.513
VAR-ABS  0.520 (0.101)   - 0.299 (0.022) 0.436
VAR-RV+RiskMetrics -0.131 (0.124)  1.033 (0.134) 0.054 (0.082) 0.585
VAR-RV+GARCH -0.100 (0.105)  0.813 (0.112) 0.257 (0.078) 0.599
VAR-RV+VAR-ABS -0.151 (0.104)  0.976 (0.106) 0.049 (0.029) 0.588

Notes:  We report OLS parameter estimates for Mincer-Zarnowitz regressions of realized volatility on a
constant and forecasts from different models.  The regression is ({3j=1,..,10 vt+j }i )

½  = b0 + b1@({3j=1,..,10 vt+j
t

,VAR-RV }i )
½ + b2@({3j=1,..,10 vt+j
t , Model }i )

½ +  ut+10 ,i.  We report robust standard errors calculated using an
unweighted covariance matrix estimator allowing for up to ninth order serial correlation in ut+10, i.  The
forecast evaluation period covers December 1, 1987 through December 1, 1996, for a total of 2,223 daily
observations.  All model parameter estimates are based on data from December 1, 1986 through
December 1, 1996.  VAR-RV denotes forecasts from a long-memory vector autoregression for daily
realized volatility, VAR-ABS denotes forecasts from a long-memory vector autoregression for daily log
absolute returns, RiskMetrics denotes forecasts from an exponential smoothing model applied to squared
daily returns, and GARCH denotes forecasts from a univariate GARCH(1,1) model.  See the main text for
details.



TABLE 3D
Mincer-Zarnowitz Regressions for Realized Volatilities

Out-of-Sample, Ten-Days-Ahead

     b0      b1      b2 R2

DM/$
VAR-RV  0.417 (0.329)  0.753 (0.176) - 0.197
RiskMetrics  1.304 (0.265) -  0.312 (0.144) 0.056
GARCH  0.780 (0.397) -  0.559 (0.205) 0.082
VAR-ABS  1.633 (0.241) -  0.042 (0.037) 0.012
VAR-RV+RiskMetrics  0.441 (0.318)  0.880 (0.250) -0.147 (0.173) 0.204
VAR-RV+GARCH  0.443 (0.340)  0.772 (0.266) -0.031 (0.266) 0.198
VAR-RV+VAR-ABS  0.471 (0.302)  0.981 (0.234) -0.087 (0.049) 0.232
¥/$
VAR-RV  0.188 (0.530)  1.010 (0.227) - 0.278
RiskMetrics  1.329 (0.322) -  0.526 (0.133) 0.211
GARCH  0.706 (0.403) -  0.810 (0.175) 0.263
VAR-ABS  0.935 (0.581) -  0.113 (0.040) 0.186
VAR-RV+RiskMetrics  0.202 (0.551)  0.989 (0.292)  0.015 (0.104) 0.278
VAR-RV+GARCH  0.194 (0.502)  0.622 (0.229)  0.387 (0.196) 0.297
VAR-RV+VAR-ABS  0.059 (0.571)  0.834 (0.178)  0.035 (0.022) 0.288
¥/DM
VAR-RV  0.154 (0.438)  1.048 (0.201) - 0.293
RiskMetrics  1.258 (0.329) -  0.529 (0.136) 0.299
GARCH  1.173 (0.324) -  0.578 (0.135) 0.328
VAR-ABS  0.992 (0.533) -  0.286 (0.097) 0.218
VAR-RV+RiskMetrics  0.614 (0.289)  0.522 (0.269)  0.301 (0.227) 0.316
VAR-RV+GARCH  0.667 (0.367)  0.399 (0.331)  0.404 (0.252) 0.341
VAR-RV+VAR-ABS   0.139 (0.452)  0.848 (0.195)  0.084 (0.118) 0.302

Notes:  We report OLS parameter estimates for Mincer-Zarnowitz regressions of realized volatility on a
constant and forecasts from different models.  The regression is ({3j=1,..,10 vt+j }i )

½  = b0 + b1@({3j=1,..,10 vt+j
t

,VAR-RV }i )
½ + b2@({3j=1,..,10 vt+j
t , Model }i )

½ +  ut+10 ,i.  We report robust standard errors calculated using an
unweighted covariance matrix estimator allowing for up to ninth order serial correlation in ut+10, i..  The
forecast evaluation period covers December 2, 1996 through June 30, 1999, for a total of 596 daily
observations.  All model parameter estimates are based on data from December 1, 1986 through
December 1, 1996.  VAR-RV denotes forecasts from a long-memory vector autoregression for daily
realized volatility, VAR-ABS denotes forecasts from a long-memory vector autoregression for daily log
absolute returns, RiskMetrics denotes forecasts from an exponential smoothing model applied to squared
daily returns, and GARCH denotes forecasts from a univariate GARCH(1,1) model.  See the main text for
details.



TABLE 4
Distributions of One-Day-Ahead Probability Integral Transforms

Density Forecasts From Long-Memory Lognormal-Normal Mixture Model

    Quantile: 1% 5% 10% 90% 95% 99%
In-Sample
  DM/$ 0.016 0.059 0.105 0.895 0.943 0.987
  ¥/$ 0.016 0.061 0.103 0.901 0.951 0.990
  Portfolio 0.010 0.052 0.091 0.912 0.958 0.990
Out-of-Sample
  DM/$ 0.005 0.045 0.092 0.893 0.941 0.990
  ¥/$ 0.019 0.055 0.099 0.884 0.956 0.993
  Portfolio 0.010 0.042 0.079 0.909 0.968 1.000

Notes: We report selected points of the empirical c.d.f. for the probability integral transform of returns
with respect to the density forecasts from our VAR-RV long-memory lognormal-normal mixture model;
see the main text for details.  The rows labeled "portfolio" give the results for an equally-weighted DM/$,
¥/$ portfolio.  The in-sample forecast evaluation period is December 1, 1987 through December 1, 1996,
for a total of 2,223 daily observations.  The out-of-sample period is December 2, 1996 through June 30,
1999, for a total of 596 daily observations.  All model parameter estimates used for out-of-sample
forecasting are based on data from December 1, 1986 through December 1, 1996.
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Figure 1
Return Distributions

Notes:  We show kernel estimates of the density of daily returns on the DM/$ rate, the ¥/$ rate, and an
equally-weighted portfolio.  The sample period extends from December 1, 1986 through December 1,
1996.  The solid line is the estimated density of raw returns, standardized using its (constant) sample
mean and sample standard deviation.  The dashed line is the estimated density of returns standardized
using its constant sample mean and time-varying realized standard deviation.  The dotted line is a N(0,1)
density for visual reference.
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Figure 2
Realized Volatility Distributions

Notes:  We show kernel estimates of the density of daily realized DM/$, ¥/$ and ¥/DM volatility.  The
sample period extends from December 1, 1986 through December 1, 1996.  The solid line is the estimated
density of the realized standard deviation, standardized to have zero mean and unit variance.  The dashed
line is the estimated density of the realized logarithmic standard deviation, standardized to have zero
mean and unit variance.  The dotted line is a N(0,1) density for visual reference.
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Figure 3
Realized Volatility Autocorrelations

Notes:  We show the sample autocorrelation functions for daily DM/$, ¥/$ and ¥/DM realized volatility. 
The sample period extends from December 1, 1986 through December 1, 1996.  The solid line gives the
autocorrelation function of realized logarithmic standard deviation, while the dashed line refers to the
autocorrelation function of realized logarithmic standard deviation fractionally differenced by (1-L)0.401. 
The dotted lines are the Bartlett two standard error bands.
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Realized Volatility and Out-of-Sample VAR-RV Forecasts

Notes:  We show time series of daily realized volatility for DM/$, ¥/$ and ¥/DM, along with one-day-
ahead VAR-RV forecasts.  The plot spans the out-of-sample period from December 2, 1996 through June
30, 1999.  The dotted line is realized volatility, while the solid line gives the corresponding one-day-ahead
VAR-RV forecast from a long-memory vector autoregression for the daily realized volatility.  See the
main text for details.
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Figure 5
Realized Volatility and Out-of-Sample GARCH Forecasts

Notes:  We show time series of daily realized volatility for DM/$, ¥/$ and ¥/DM, along with one-day-
ahead GARCH(1,1) forecasts.  The plot spans the out-of-sample period, running from December 2, 1996
through June 30, 1999.  The dotted line is realized volatility, while the solid line gives the corresponding
one-day-ahead GARCH forecast.  See the main text for details.
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Figure 6
Realized Volatility and Two Out-of-Sample Forecasts

Notes:  We show four out-of-sample episodes of thirty-five days each.  For each of the first twenty-five
days, we show the daily realized volatility together with the one-day-ahead forecasts made on the
previous day using the VAR-RV and GARCH(1,1) models.  Then, for days twenty-six through thirty-five
(shaded), we continue to show daily realized volatility, but we show multi-step VAR-RV and GARCH
forecasts based on information available on day twenty-five.  Hence the forecasts for day twenty-six are
one-day-ahead, the forecasts for day twenty-seven are two-day-ahead, and so on.  See the main text for
details.
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Figure 7
Dependence Structure of Probability Integral Transforms

Out-of-Sample One-Day-Ahead Density Forecasts
Long-Memory Lognormal-Normal Mixture Model

Notes:  We graph the sample autocorrelation functions of  and , where zt denotes thezt& z̄ zt& z̄ 2

probability integral transform of returns with respect to the one-day-ahead density forecasts from our
long-memory lognormal-normal mixture model; see the main text for details.  Other things the same, the
closer are  and  to white noise, the better.  The three subplots correspond to DM/$ returns,zt& z̄ zt& z̄ 2

¥/$ returns, and equally-weighted portfolio returns.  The dashed lines are Bartlett two standard error
bands.  The out-of-sample period is December 2, 1996 through June 30, 1999.


