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Abstract
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of empirical estimates of the default correlation. To this purpose we start with a
one-factor model in which the correlation with the systematic risk factor equals the
asset correlation between two firms. In the theoretical part of the paper the small
sample performance of three different correlation estimators is analysed by Monte
Carlo simulation.

In the empirical part asset correlations are estimated from time series of ten
years with default histories of 53280 German companies. The sample is divided into
categories that are homogenous with respect to default probability (PD) and firm
size. In this way we can explore to what extent correlations depend on these two
factors. Several economic explanations why asset correlation depends on size and PD
are discussed.

The empirical analysis is motivated as well by current proposals for the internal
rating based approaches of the new Basel Accord. They suggest that the asset
correlation parameter in the formula for the risk weights depends on the PD and
on the firm size of the obligor. Our empirical results are compared with this proposal.
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1 Introduction

The objective of this paper is to estimate the asset correlation of German corporate

obligors. In the theoretical part the small sample properties of three estimators of the

asset correlation are analysed by Monte Carlo simulations. In the empirical part the asset

correlation is estimated and its dependency on two factors – firm size and probability of

default (PD) – is explored. The analysis of these potential drivers of the asset correlation

is inspired by a recent proposal of the Basel Committee for the corporate risk weight

function of the internal rating based (IRB) approach of the new Accord.1 In this proposal

a two-dimensional dependency of the parameter asset correlation on the PD and the size

of the obligor is introduced.

Our analysis is based on the one-factor model that has been used to derive the IRB capital

charge of the new Accord.2 We refer to this model because it facilitates the comparison

with the IRB risk weight functions. In this model there exists a one-to-one mapping

between default correlation and asset correlation for a given probability of default. Hence,

the analysis provides new results on the level of default correlation which is a key driver

of credit risky loan portfolios. Therefore, the results are relevant as well for credit risk

modeling in general.

This paper makes the following five main contributions:

First, the asset correlation is estimated from default histories of German firms taken from

a database that includes 53280 privately-owned or corporate companies. This database

which is maintained by Deutsche Bundesbank allows the calculation of default frequencies

for ten years, from 1991 until 2000. A possible sample bias is accounted for by calibrating

the default rates to business-sector specific insolvency statistics. To control for the effect

of insolvency as a late legal definition of default we calibrate the default rates to a level

that is inferred from loan net provisions of German banks.

Second, this study provides theoretical results for a small sample estimation problem.

Specifically, we compare the maximum likelihood estimator for the asset correlation which

was suggested in Gordy and Heitfield (2000) with two versions of method-of-moments

estimators. All these estimators rely on asymptotic theory and their small sample

distributions are unknown. By Monte Carlo simulation we can shed some light on the

questions how the number of time periods and the size of the portfolio determine a potential

estimation bias and which estimator performs best for typical values of these two factors.

Third, this paper explores empirically the simultaneous dependency of asset correlation

on PD and on firm size. Earlier work by Dietsch and Petey (2002) has focused on the

dependency of asset correlation solely on PD. Two recent papers by Lopez (2002) and
1See on Banking Supervision (2002).
2See Gordy (2001).
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Dietsch and Petey (2003) are to the best of our knowledge the only ones that consider the

cumulative influence of PD and firm size on the asset correlation. However, both differ

from our work in important ways.

The work by Lopez (2002) is based on a vendor model developed by Moody’s KMV3.

However, estimating the asset correlation from default data which is the approach in this

paper is more in line with the predominant book-value approach to the management of

bank loans than an estimation from a structural model like the one by Moody’s KMV that

uses equity data. Differences between our work and that by Dietsch and Petey (2003) exist

in the use of a quite different sample of German corporates and in that our results are

based on a longer time series of ten compared to four years that better covers a full business

cycle.

As a fourth contribution we provide tentative answers why dependencies of asset

correlation on PD and firm size are observed. To this purpose we take into account

earlier work in the literature as well as new empirical results for German corporates.

The fifth contribution is related to the implementation of internal rating systems in

Basel II. Our new results for the estimation of the asset correlation as a measure of the

impact of systematic risk may help to improve the estimation and the validation of PDs.

Our paper is divided into seven major sections. In section 2 previous theoretical and

empirical results on a potential PD- or size-dependency of asset correlation are reviewed.

Section 3 describes the model framework and the estimators for the model parameters. A

preliminary investigation of their small sample properties is carried out by Monte Carlo

simulations in section 4. Section 5 describes the data sample and explains how it is divided

by size and by credit quality. The estimation results for the asset correlation and potential

implications for the calibration of regulatory capital in the new Basel Accord are discussed

in section 6. Section 7 summarizes and concludes.

2 Previous Theoretical and Empirical Results

In this section arguments why we should observe a dependency of asset correlation firstly

on firm size and secondly on PD are reviewed, together with empirical results from earlier

studies.

In the one-factor model asset correlation measures the exposure against systematic risk,

broadly speaking against business cycle risk. The asset correlation is lower for small and

medium enterprises (SMEs) than for large corporates if their systematic (idiosyncratic)

risk is relatively smaller (higher). This may be the case if the size dependency conceals

a dependency on the industrial sector. Different sectors differ in their dependency on the
3See Crosbie (1999).
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Table 1: Percentage of small and medium enterprises in Germany, 1997

business sector percentage of small and medium

enterprises

manufacturing 15.6 %
construction 17.6 %
automotive 15.4 %

transport & communication services 31.7 %
health & financial services 27.4 %

other public & personal services 42.1 %

business cycle and in their firm size distribution. Therefore, if sectors which are highly

cyclical are dominated by large firms whereas in less cyclical sectors SMEs prevail, then

we expect to observe that systematic risk and asset correlation overall increase with firm

size. In other words firm size would serve as a proxy for a business sector dependency of

the asset correlation.

This hypothesis is supported by the figures in table 1 which show the percentage of small

and medium German companies in selected business sectors.4 The first three sectors which

are in general viewed as more cyclical possess a lower share of small and medium companies

than the last three sectors which are in general considered as less cyclical. Considering

the implication that the cyclical sectors have a relatively higher share of large companies

higher asset correlation estimates for large companies may derive from this underlying

sector dependency.

A second explanation for a higher asset correlation of large firms may be that they are

better diversified than small firms. Because of their better diversification the idiosyncratic

risk would be relatively smaller than for small firms and their correlation with the

systematic risk factor relatively higher. However, empirical work by Roll (1988) casts

some doubt on this hypothesis. He observed that the returns of size-matched portfolios

of small firms are better explained by systematic risk factors (have a higher R2) than the

returns of large companies. This result suggests that in the contrary large firms tend to

be less diversified than small firms and, therefore, their asset correlation would in general

be lower.

At the same time other work from Bernanke and Gertler (1995) and Bernanke et al.

(1996) suggests that asset correlation decreases with increasing firm size.5 These authors

analyse adverse shocks to the economy which are amplified and propagated by changes
4The figures have been provided by the ”Institut für Mittelstandsforschung” in Bonn and are based on

data from the Federal Statistical Agency. They define small and medium companies as those with a yearly

turnover of up to 50 Mln. Euro.
5See Bernanke et al. (1996).
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in credit-market conditions. A key role plays the external finance premium which they

define as the difference between the cost of funds raised externally and internally. This

premium arises from information asymmetries in the credit markets. It increases when the

economic conditions deteriorate and collateral values decline. As a consequence firms have

increasing difficulties to obtain funding even for profitable projects. This effect amplifies

an economic downturn and is known in the literature as ”financial accelerator”.6 The

authors expect that the impact of a higher external finance premium will be stronger

the more a corporate borrower has to rely on bank loans. Larger firms may to some

extent circumvent this effect by tapping capital markets. As a consequence small firms

are expected to be more vulnerable against the financial accelerator than large companies.

Therefore, macroeconomic shocks should have a stronger impact on SMEs and we should

observe a higher asset correlation.

In their empirical work with US data Bernanke et al. (1996) find, that in an economic

downturn following tight money small-firm sales drop earlier and their short–term debt

drops stronger compared with large firms.7 This result still holds after controlling for

industrial sector composition within size categories and suggests that asset correlation

decreases with size.

In summary economic theory proposes two conflicting potential impacts on asset

correlation: the business sector argument suggests that asset correlation increases with

firm size whereas the financial accelerator works in the opposite direction.

Compared with a potential dependence of asset correlation on firm size the theoretical

arguments advocating that asset correlation decreases with PD are less developed. Two

theoretical arguments for a PD-dependence are the following:

The first one is a time series argument: If the credit risk of a company increases firm-

specific risk factors become relatively more important than systematic risk and, therefore,

the correlation with the systematic factor declines. This argument holds only if the cause

of the deterioration in credit quality is not the business cycle because otherwise it would

have to be attributed to systematic risk. Instead, the argument holds if firm-specific events

lower the credit quality and start a downward spiral.

The second argument is a cross-sectional: firms that are more vulnerable to the business

cycle may choose a safer capital structure in order to account for this higher risk. Because

of the more secure capital structure they have a lower probability of default.

Recent empirical work on the relation between asset correlation and PD has been done

by Dietsch and Petey. They estimate the asset correlation in a very similar one-factor

model for French corporates. They observe that for homogenous business sectors asset

correlation increases with the risk of default with a noticable exception for the highest
6See Bernanke and Gertler (1995), p. 35.
7See Bernanke et al. (1996), p. 10-11.
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risk category.8 These results contrast with the perception that asset correlation decreases

with PD.

After this brief overview of possible reasons for a size- or PD-dependent asset correlation

and of earlier work in the literature we introduce in the following section the one-factor

model and three estimation methods for the asset correlation.

3 One-Factor Model and Estimation Methodology

Default correlation and asset correlation are deeply intertwined. Earlier studies have found

strong evidence of correlation in the movements of the credit quality of different obligors.9

If two obligors belong to a homogenous group sharing the same default correlation, its

value can be determined from time series of defaulted and non-defaulted loans of this

group without further assumptions.10 Therefore, estimating correlation is not a problem

of methodology. However, in practice we do not know firsthand which obligors build

a homogenous group and, even if, estimates may be distorted by a small sample bias

because regularly the available time series of default rates are rather short and do not

extend 10 to 20 yearly observations. The first problem of homogeneity will be accounted

for by splitting our sample into groups according to their credit quality and firm size.

The second problem of the small sample performance of the estimators is discussed in the

following.

A natural solution to overcome the small sample problem is to pose parametric restrictions.

Gordy and Heitfield (2000) improve on the efficiency of the estimation by working in a

Merton-type firm value model. This framework is broadly consistent with the widely

applied concept of CreditMetrics. Instead of estimating default correlation first and

deriving asset correlation thereafter, the authors estimate asset correlation directly from

default data. If the model applies there is a one-to-one mapping, conditional on PD,

between these two correlations.

In order to estimate asset correlation in the one-factor model we apply three different

estimation methods. The first is the maximum likelihood (ML) estimation method put

forward in Gordy and Heitfield (2000). Afterwards the model parameters are estimated

by two additional methods. These two estimators are based on the method-of-moments

and described after a short overview of the model and of the ML−approach.

The underlying one-factor model is as follows.11 The firm value Ai,t of obligor i follows a

geometric Brownian motion. Under the usual assumptions its log-value at time t can be
8See Dietsch and Petey (2002), p. 311–312.
9See Carty (1997).

10See Lucas (1995) where this methodology is applied.
11A more comprehensive description of the model can be found in Schönbucher (2000).
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described as follows where µ denotes the drift rate and Yi,t the stochastic error term of

obligor i:

log(Ai,t) = log(Ai,0) +
(
µ− σ2

2

)
t+ σ

√
t Yi,t. (1)

Yi,t follows a Gaussian distribution, i. e. a standard Normal distribution with mean 0

and variance 1. It is decomposed into the return of a systematic risk factor Xt and an

idiosyncratic part εi,t.

Yi,t =
√
ρi Xt +

√
1− ρi εi,t. (2)

For every point in time t, Xt and εi,t are independent for every obligor i and follow

a Gaussian distribution. The factor loading
√
ρi of the systematic risk factor can be

interpreted either as the sensitivity against systematic risk or as the square root of the

asset correlation ρi of obligor i. As usual it is assumed that ρi does not vary over time.

Company i defaults if Yi < γi that means if the asset value falls below the default threshold

γi. The step-function Li,t with Li,0 = 0 describes if a credit event has occurred during the

target horizon (Li,t = 1) or not (Li,t = 0) and follows a Bernoulli distribution.

In the following it is important to differentiate between the unconditional and the

conditional default probability. The unconditional default probability of obligor i for

the time span from 0 to t is defined as follows:

P (Li,t = 1) = P (Yi,t < γi) = Φ(γi). (3)

Let g(x) denote the default probability conditional on X = x that is

g(x; ρi, γi) = P (Li = 1|X = x) = Φ
(
γi −√

ρi x√
1− ρi

)
. (4)

Equation (4) provides as well the link to the proposed IRB risk weight function in Basel

II. These risk weights are defined as the product of

• a factor of 12.5 (to compensate for the solvability coefficient of 0.08)

• the LGD (loss given default)

• the conditional PD given by (4) conditional on an adverse realization (99.9 %

quantile) of X and

• an adjustment that accounts for the maturity of the exposure.

The capital charge is determined by multiplying the risk weight of an exposure with the

solvability coefficient of 0.08.

The first estimator of the model parameters ρi and γi which is called ML−estimator in

the following uses the fact that the number of defaults D for a homogenous portfolio with

n obligors for a certain time period is binomial distributed that is

P (D = d|X = x) =
(
n

d

)
g(x; ρ, γ)d (1− g(x; ρ, γ))n−d. (5)
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The ML−estimator has already been analysed by Gordy and Heitfield and it involves

maximizing the following log-likelihood-function LL(n,d; ρ, γ). Let n denote the (T ×
1)−vector of total numbers of obligors for T time periods and d the (T × 1)−vector

collecting the number of defaulted obligors. The estimation procedure is carried out only

for homogenous segments of obligors so that we can drop the index i.12

LL(n,d; ρ, γ) =
∑

t

log(Lt(n,d; ρ, γ)) (6)

Lt(n,d; ρ, γ) =
∫ 1

0

(
nt

dt

)
g(Φ−1(x); ρ, γ)dt (1− g(Φ−1(x); ρ, γ))nt−dt d x. (7)

The log-likelihood function LL is maximized numerically.

The second and third estimators are referred to as ”method-of-moments”–estimators

because the first and second moments of g(X) are matched with the moment estimates

from the time series of default rates for T → ∞. The unconditional PD is estimated by

the average p̄ of the time series of default rates.

E [g(X)] = p̄. (8)

Let Φ2(.) denote the cumulative bivariate Gaussian distribution. The following holds for

the second moment:13

V ar [g(X)] = Φ2

(
Φ−1(p̄),Φ−1(p̄), ρ

) − p̄2. (9)

After having estimated V ar [g(X)] from the time series of default rates, the asset

correlation ρ can be backed out from (9). The second and third estimator differ in the

way how V ar [g(X)] is estimated.

The second estimator which we refer to as the ”asymptotic moment estimator” (AMM)

estimates V ar [g(X)] from the sample variance σ2
p̂ of the default frequencies.14

The third estimator which is called ”finite (sample) moment estimator” (FMM) adjusts

the sample variance for the finite number of exposures in the sample from which the

default frequencies are taken. This adjustment has already been applied by Gordy (2000)

and with this adjustment the estimator of V ar [g(X)] is defined as follows:15

V̂ ar [g(X)] =
σ2

p̂ − E [1/n] p̄ (1− p̄)
1− E [1/n]

. (10)

The finite sample adjustment in (10) accounts for the contribution of idiosyncratic risk to

the volatility of the empirical default rates. However, when default correlations are low

and the sample size is small this estimator can produce a negative estimate of V ar [g(X)].

Since all three estimators rely on asymptotic theory it is unclear which performs best in

small samples. This issue is explored further in the next section.
12This is the estimator called MLE 1 in Gordy and Heitfield (2000).
13See Gordy (2000), appendix C.
14See Blum et al. (2003), p. 118–119.
15See Gordy (2000), p. 146–147.
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4 Small Sample Performance of Estimators

Since the small sample performance of the three estimators presented in section 3 is

unknown Monte Carlo simulations are carried out to provide a guideline which estimation

technique is more accurate for a relevant small sample size. In the first part of this section

the design of the simulation exercise is described. In the second part we explore how

the estimation bias depends on the length of the time series and in the third part how it

depends on the number of exposures in the sample.

At the outset of the simulation experiments the parameters PD and ρ of a data generating

process (DGP) are defined. The simulation exercise consists of two nested loops. The

outer loop runs over S simulation runs. The inner loop runs over T observation periods.

Therefore, the s-th simulation step for the t-th time period, that is described in the

following, is repeated S · T times:

In the s−th step in period t a realization of the systematic factor X
(s)
t is drawn from

a standard Normal distribution. This is repeated N times for the idiosyncratic risk

component ε
(s)
i,t of N obligors which is collected in the (N × 1)−vector ε

(s)
t . Then, the

(N × 1)−asset return vector Y(s)
t is determined as follows where 1N denotes an (N × 1)−

vector of ones.

Y(s)
t =

√
ρ0 Xs

t 1N +
√
1− ρ0 ε

(s)
t . (11)

The default rate at time t is determined as

p̂
(s)
t =

d
(s)
t

N
(s)
t

(12)

where d(s)
t denotes the number of defaults which occur whenever Y (s)

i,t ≤ γ0 and N
(s)
t refers

to the number of not yet defaulted obligors at the beginning of the time period.

After iterating this simulation step in the inner loop T−times the two parameters can be

estimated by the ML−, the AMM− and the FMM−estimators from section 3.

Finally, after iterating in the outer loop we can estimate bias, standard error and root

mean squared error (RMSE) for the ML−, the AMM− the FMM−estimates of ρ.

With these Monte Carlo simulations the small sample properties of the estimators are

explored for a specific DGP. We differentiate between two types of small sample bias:

1. the bias that is caused by the finite number of time periods and

2. the bias that is due to the finite number of exposures from which the default

frequencies are taken.

We explore the first type of bias next and the second type afterwards.
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Table 2: Sample statistics of ML−, AMM− and FMM−estimates of the asset

correlation ρ

sample bias standard

size error

ML AMM FMM ML AMM FMM

5 -0.020 -0.012 -0.017 0.056 0.055 0.056
10 -0.010 -0.006 -0.011 0.042 0.044 0.044
20 -0.004 -0.002 -0.006 0.032 0.035 0.035
31 -0.003 < 0.000 -0.004 0.025 0.029 0.029

The number of issuers N is set to 1000, the number of simulation runs S is set to 1500 and

the number of time periods T varies between 5 and 31 periods. In order to base the DGP

for the simulation runs on estimates from a realistic sample we select default histories of

bond data, rated by Moody’s and aggregated over all speculative grade rating classes.16

The ML−estimates ρ0 = 0.098 and γ0 = −1.805 (corresponds to an unconditional PD of

3.55 %) serve as starting values for the simulation runs.

The relevant statistics of the estimation error are given in table 2. The bias is defined as

the difference between the mean of the simulation estimates and the true value ρ (here

0.098). A positive value indicates, therefore, an upward bias of the estimator. In general

the figure of 31 observation periods is far beyond the sample size that is typically available

for bank loan loss data. To explore how shorter time series of default frequencies affect the

estimates of ρ we gradually reduce T from 31 to 20, to 10 and finally to 5 observations. The

figure of 5 observations is consistent with the number of years of data that will ultimately

be required by banks following the IRB approach of the new Basel accord.17

Table 2 shows how the accuracy of the estimates increases with sample size. For the

ML−estimates with 31 observations the standard is 2.5 bp compared with 5.6 bp for

5 observations in time. This means that for a Basel II-compliant period of 5 years the

standard error is as high as 57 % of the true value of ρ0 = 0.098. These numbers reveal

the wide margin of error if asset correlation has to be estimated from small samples.

We omit here and in the following the estimation results for the second parameter, that is

the unconditional PD (or equivalently the threshold value γ). The estimates for a sample

size of 10 and higher are pretty accurate and the standard error is below 1 bp. Only for

a sample size of 5 the standard error increases to 1.3 bp for both estimation methods.

Considering the absolute level of the unconditional PD which is 3.55 % the estimates are

still rather accurate.
16The default rates are given in appendix 7.1.
17For a transition period a shorter time series of 2 years will be deemed sufficient.
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Table 3: Small sample downward bias and RMSE of asset correlation estimates

estimator error Gordy/Heitfield new simulations

statistic (? exposures) (1000 exposures)

AMM bias n.a. 0.0003
RMSE n.a. 0.032

FMM bias -0.020 -0.009
RMSE n.a. 0.035

ML bias -0.016 -0.004
RMSE n.a. 0.032

Next we compare the results of our simulations with those of the previous study by Gordy

and Heitfield (2000). The DGP is adopted from Gordy and Heitfield (2000) (ρ = 0.09

and PD=1 % corresponding with an average default rate for BB-rated obligors18) in order

to facilitate comparison. Following their example we generate 1500 random draws of 20

yearly observations. Table 3 summarizes the sample bias for the AMM−, the FMM−
and the ML− estimator. According to this table the FMM− and the ML− estimator

produce a considerably lower small sample bias in the new simulations than in Gordy and

Heitfield (2000).19 A possible explanation may be a lower number of exposures in their

samples. The difference between the estimated bias of the FMM−estimator (-0.009) and

the ML−estimator (-0.004) in the new simulations is small in relation to the RMSE.

An at first glance surprising result is the observation that the FMM− estimator does

not outperform the AMM−estimator given this DGP with 1000 exposures. The bias

of the AMM−estimates (0.003) is by the order of 10 smaller than those of the other

two estimators and it has a different sign. The fact that the FMM−estimator explicitly

controls for the number of exposures motivates an analysis of the dependance of the bias

on this variable.

Next we analyse for a fixed length of the time series of default rates how the performance

of the three estimators depends on the number of exposures. Default histories are sampled

for 20 time periods with the same DGP (i. e. PD of 1 %, ρ = 0.09) as in Gordy

and Heitfield (2000) but with varying exposure numbers between 100 and 1000. The

results of the 5000 simulation runs for each number of exposures are summarized in

table 4. They show that the AMM−estimator is essentially unbiased and outperforms

the FMM−estimator in terms of a smaller bias for 500 or more exposures. For smaller

samples of 100 or 250 exposures, however, it is notably upward biased and is outperformed

by the FMM−estimator. Overall the FMM−estimator underestimates the true asset
18We assume that this value for the PD has been used in Gordy and Heitfield (2000), too.
19A comparison of the AMM−estimator is not possible because Gordy and Heitfield haven’t applied

this estimation method.
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Table 4: Bias and RMSE of the AMM− and FMM−estimator dependent on the

number of exposures

estimator: AMM FMM

statistic: bias RMSE bias RMSE

exposure number

1000 -0.0004 0.033 -0.010 0.036
500 0.009 0.035 -0.010 0.039
250 0.024 0.044 -0.011 0.044
100 0.066 0.079 -0.004 0.053

correlation in all four cases. Its bias does not vary much with the number of exposures

which was expected because it controls for this variation.

With 100 exposures a negative adjusted variance was estimated in 12 % of the simulation

runs. This high number casts some doubt on the usefulness of this estimator for small

sample sizes even if the bias is relatively small.

The RMSE of both estimators are overall similar and relatively high compared with the

estimates of ρ. They notably differ only for a sample size of 100 exposures when the

AMM−estimator has a notably higher RMSE. So for this DGP we conclude that except

for relatively small samples both MM− estimators perform similarly.

Further simulations have shown that this result depends heavily on the parameters of

the DGP. For instance with ρ = 0.03 the FMM− outperforms the AMM−estimator for

portfolio sizes up to 1000 exposures. From these results we conclude that the estimators

can produce biased estimates but that there is no evidence that one of the three estimators

outperforms the others for the whole parameter space. These results clearly warrant

further investigation of the small sample bias and its relation to the model parameters

including the number of exposures. The next step that is still left to future research will

be a response surface analysis where the bias of the estimators is analysed for the whole

relevant parameter space that is spanned by the length of the time series T , the number

of exposures N , the asset correlation ρ and the unconditional PD. Applying a response

surface will enable us to greatly reduce the problem of specificity20.

In the empirical analysis in section 6 we control for differences in the small sample bias of

the estimators by applying both, the ML− and the AMM−estimator.
20See Hendry (1984), p. 955.
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5 Classification into PD- and Size Categories

The simulation runs in section 4 illustrate the small sample problem that occurs with

the estimation of the asset correlation. The Deutsche Bundesbank has provided us access

to a database that contains the credit history of 53280 German firms from whom the

Bundesbank has purchased fine-bills between 1987 and 2000.21 Before the introduction of

the Euro these fine bills were purchased at a special rate below the discount credit facility

and this financing procedure has been much favored by German companies. The bank

of the corporate obligor purchases a fine-bill from its client that is afterwards submitted

to a branch office of the Bundesbank and included in the database. In this way there is

no direct credit relationship between the Bundesbank and the firm. Therefore, contrary

to the definition in the new Basel Accord, the default event is defined solely by legal

insolvency.22 Accordingly, the number of defaults is always conservative in the sense that

it would be higher under the Basel definition of default.

The corporates included in the Bundesbank database are only a sample of all German

corporates. Arguably this sample may be biased in the sense that the sector distribution

in the database differs from the sector distribution of all German firms. Therefore, the

default rates are calibrated in the first step to default frequencies which are representative

for the German industry in order to remove a potential sector bias. In order to explore if

the results from the first step are biased by a late definition of default, a second calibration

is carried out. In this second step the default rates are inferred from loan net provisions

of German banks. In the following, both steps are explained in more detail.

The first step in the calibration of the default rates uses the business-sector specific

insolvency statistics of the Federal Statistical Office ”Statistisches Bundesamt”. A default

rate is always determined by dividing the number of defaulted obligors in year t by the

total number of solvent obligors at the end of year t − 1. The numerator of the default

rate always refers to the number of all defaulted companies in the Bundesbank database.

The number of firms in the denominator, however, is adjusted by the calibration to ensure

that the ratio reflects the default rate from the insolvency statistics. This number of firms

is then drawn from the Bundesbank database and used in the analysis of a PD- and/or

size-dependency of the asset correlation. In this calibration step we account for different

insolvency statistics of the three business sectors manufacturing, trade and a third sector

that comprises the rest, namely firms in the service business.

The firms that are drawn from the Bundesbank database in the calibration are assigned
21This is the same data base that is used in Hamerle et al. (2002). We thank Stefan Blochwitz who has

provided very helpful SAS-routines for the data preparation.

Due to data constraints and the need to have two years of balance sheet data for the calculation of a score

value the time series of default rates only covers the years 1991–2000.
22This is laid down in the German Insolvency Code.
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Figure 1: Corporate Default Frequencies between 1991 and 2000 in Percent
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to three different size categories according to their yearly turnover. The boundaries are

selected in order to ensure that the firms are relatively equally distributed among these

categories. The respective upper boundaries are 5 mln EUR for smaller and 20 mln EUR

for medium size companies. The rest is assigned to the third bucket of large companies.

Figure 1 shows the time series of default rates in the three rating categories for small,

medium and large firms.23 The highest average default rate of 0.91 % (over time) is

observed for medium size firms compared with 0.63 % for small firms and 0.61 % for large

firms. This result is not fully consistent with other empirical evidence that with decreasing

firm size the default probability increases. However, small and medium companies together

have on average a higher default risk than large companies.

The observation that size categories have different PDs may distort the estimates for the

asset correlation if PD is a driver of this correlation. Therefore, we assign obligors with

similar PDs to three different PD-categories which we refer to as rating grades. This

allows estimating the asset correlation in the three categories small, medium and large

firms separately and conditional on their PD (or rating grade).

A time discrete probit hazard model was estimated to assign the firm years into PD

categories. The explanatory variables of this model are a constant, a firm specific credit

score SCit
24 and a macro-economic variable Zt. The firm- and time-specific hazard rate

HRit is determined as follows:

HRit = Φ(β0 + β1 SCit + β2 Zt). (13)
23See also tables 14 to 16 in appendix 7.3.
24See appendix 7.2.
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Table 5: Distribution of companies by size and sector in percent

size manufacturing trade services total

small 31.6 % 30.3 % 38.1 % 100 %
medium 44.5 % 37.8 % 17.7 % 100 %
large 55.4 % 29.4 % 15.2 % 100 %

total 40.1 % 32.4 % 27.5 % 100 %

The boundaries of the rating categories are fixed to ensure that the defaults are relatively

equally distributed among the three categories. The respective intervals of hazard rates

for the three categories are 0 < HR ≤ 0.01, 0.01 < HR ≤ 0.015 and HR > 0.015. The

PD–categories are assigned rating grades from 1 to 3 to facilitate referencing. Grade 1

denotes the rating grade bearing the lowest and grade 3 the grade with the highest credit

risk.

Table 5 summarizes the distribution of companies in the sample among three sectors:

manufacturing, trade and a residual sector that mainly comprises of service companies.

From small to large companies the percentage share of manufacturing increases from 31.6 %

to 5.4 % and presumably the cyclicality. The contrary holds for the service sector whose

weight in the sample decreases from small to large companies. The share of the trade

sector shows no monotonic dependency on size.

The results in table 5 for the sector distribution would be consistent with the hypothesis

that a higher asset correlation is observed for large companies because of the relatively

higher share of manufacturing and, therefore, more cyclical firms. If this hypothesis is

supported by empirical results is discussed in the following section.

6 Estimates of the Asset Correlation

From the default frequencies of tables 14 to 16 in appendix 7.3 the PD and the asset

correlation ρ are estimated by the methods described in section 3. We employ the AMM−
estimator and the ML−estimator (assuming a large number of 3000 exposures). These

”asymptotic” estimators for an infinite or at least large number of exposures are more

appropriate because the underlying default frequencies have been calibrated to insolvency

rates or loan net provisions that have been observed for the whole universe of German

firms.

The estimates of ρ for the selected size- and PD-categories are summarized in table 6

for the AMM− and in table 7 for the ML−estimator. The estimation results show a

relatively low absolute level of the asset correlation. The strongest increase is observed for
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Table 6: Parameter estimates (with standard errors) calibrated to insolvency

rates (AMM−estimator)

ρ̂AMM

rating 1 2 3

small 0.005 0.011 0.004
(0.006) (0.010) (0.006)

medium 0.007 0.012 0.018
(0.006) (0.012) (0.014)

large 0.021 0.015 0.064
(0.011) (0.021) (0.036)

Table 7: Parameter estimates (with standard errors) calibrated to insolvency

rates (ML−estimator)

ρ̂ML

rating 1 2 3

small 0.002 0.010 0.005
(0.001) (0.005) (0.002)

medium 0.007 0.011 0.016
(0.003) (0.005) (0.007)

large 0.013 0.016 0.045
(0.006) (0.007) (0.020)
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the lowest rating category 3. This is consistent with estimation results for asset correlation

in Dietsch and Petey (2002) for French corporates.25

The estimates of ρ in tables 6 and 7 increase with size for all three rating grades and

under both estimation methods. This result supports the hypothesis that asset correlation

is positively correlated with firm size. It contrasts, however, with the observation in

Dietsch and Petey (2003) that inside the SME-segment asset correlation decreases with

firm size. But consistent with our results they observe the highest asset correlations for

large corporates.

The standard errors in table 7 are determined by bootstrapping for the AMM− and

analytically for theML−estimator. Especially for small correlation estimates the standard

errors from bootstrapping are considerably higher than the asymptotic ones. This suggests

that the asymptotic standard errors may be severely underestimated. Due to the short

time series of default data, the standard errors are relatively high, especially for the

AMM−estimates. Although the ranking of the estimates for ρ in table 7 supports the

hypothesis of a size-dependency, it is, therefore, difficult to prove this relation statistically.

The low level of the estimates may be driven by the late legal definition of default. To

account for this effect in the next step the level of the default rates is calibrated to default

frequencies that are inferred from loan net provisions of banks.

The calibration to loan net provisions, however, cannot control for a potential bias that is

induced by size-dependent differences in the distribution of default events. Legal default,

for instance, is more common for small firms than for large companies.

The data on loan net provisions are extracted from the OECD-report on ’Bank Profitability

- Financial Statements of Banks’. They are available for different banking groups. For the

purpose of calibration we use the group ’commercial banks’ which comprises the former

category of installment sales financing institutions which have developed into universal

banks.

The transformation of the loan net provisions of year t into an inferred default-rate is

carried out by the following formula in which LGD denotes the loss given default:

DROECD(t) =
Loan Net Provisions(t)

Loan volume(t− 1)× LGD
. (14)

The calibrated default rate DRcal(g, t) for rating grade g in year t is determined from the

default rates of all obligors in that year, DR(t), the obligors of this rating grade, DR(g, t),

and the default rate from the OECD-data, DROECD(t):

DRcal(g, t) =
DROECD(t)

DR(t)
DR(g, t). (15)

25See Dietsch and Petey (2002), p. 311–312.
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Figure 2: Corporate Default Frequencies between 1991 and 2000 in Percent
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The LGD is set to 50 % which equals the LGD-assumption of uncollateralised loans in the

2nd consultative paper of the new Basel accord. This assumption is made only to avoid

severe empirical problems with estimating the LGD separately. Note that recent research

suggests that LGD should be modeled as a stochastic variable that is correlated with the

PD.26 In our case keeping LGD constant means that all variability is transferred into the

PD so that the PD behaves more volatile than in the case where the LGD is stochastic.

This may distort the estimates of the asset correlation.

Figure 2 shows the default rates calibrated to insolvency statistics aggregated over all

size- and PD-buckets and compares them with the default rates inferred from the loan net

provisions. Two observations are noteworthy:

First the default rates from loan net provisions are overall on a higher level. This may

be explained by the fact that loan net provisions provide in general an ”earlier” default

criterion than insolvency and not all obligors for whom specific provisions have been made

enter insolvency at a later stage.

Second the default rates determined by loan net provisions appear to be be more volatile.

This observation may suggest that they are more sensitive to the business cycle and

estimates of the asset correlation from these data may be higher than those from insolvency

rates.

Based on the calibrated default rates DRcal(g, t) the asset correlation is estimated again

with the AMM−estimator. The results are given in table 8. The level of the estimated

asset correlation is higher for the calibrated data in table 8 than in table 6. The maximum
26See Altman et al. (2002) and further references given there.
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Table 8: Parameter estimates (with standard errors) calibrated to loan net

provisions (AMM−estimator)

ρ̂AMM

rating 1 2 3

small 0.012 0.046 0.032
(0.008) (0.028) (0.020)

medium 0.016 0.033 0.075
(0.010) (0.024) (0.043)

large 0.021 0.049 0.140
(0.014) (0.045) (0.083)

Table 9: Estimates of asset correlation and default correlation calibrated to

loan net provisions (ML−estimator)

ρ̂ML ρ̂def
ML

rating 1 2 3 1 2 3

small 0.009 0.040 0.025 < 0.000 0.007 0.006
(0.004) (0.017) (0.011)

medium 0.012 0.036 0.057 < 0.000 0.007 0.018
(0.005) (0.016) (0.024)

large 0.016 0.053 0.094 < 0.000 0.012 0.033
(0.007) (0.022) (0.040)

is observed again for large corporates with the lowest rating grade but with 0.14 it is

2.2times higher than in table 6. Again we observe that the asset correlation overall

increases with size conditional on the rating grade. The only exception occurs for rating

grade 2 where the estimated asset correlation of small companies is slightly higher than for

medium size corporates. For the lowest rating grade it increases with size quite strongly

from 0.03 to 0.14.

Table 9 shows the estimates of the asset correlation by applying the ML−estimator. The

estimates overall increase with firm size for all three PD-categories. The only exception

occurs again for grade 2 in the transition from small to medium enterprises.

Moving the focus towards a potential PD-dependence of the asset correlation we observe in

table 9 that the asset correlation increases with PD for medium and for large enterprises.

Both findings reflect previous results from the AMM−estimates in table 8. Note, that

although both estimators provide similar results as to the ranking of asset correlations of

PD- and size categories the level of the estimates differs, particularly for large companies

with high PDs (0.094 for ML− vs. 0.140 for AMM−estimates). In order to examine if
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this difference can arise from estimation error we simulate both estimators with a given

parameter set of ρ = 0.1 and PD = 0.1. Whereas the mean estimates (0.094 for ML−
and 0.099 for the AMM−estimator) are close to the true values, the mean squared error

in both cases is with 0.054 and 0.048 rather high. This result indicates that the differences

between table 8 and table 9 are caused by estimation error.

In the one-factor model and in a homogenous portfolio an estimate ρ̂def of the default

correlation between two firms can be determined directly from the estimates of the PD

and the asset correlation.

ρ̂def =
Φ

(
Φ−1(p̂),Φ−1(p̂), ρ̂

) − p̂2

p̂ (1− p̂)
. (16)

The estimates of ρ̂def are provided in the right section of table 9. Due to the low level

of the estimates of the asset correlation the default correlation between firms in the best

rating class is less than 0.1 %. In the rating classes 2 and 3 we observe that default

correlations increase with size. The highest estimate of 3.3 % is observed for large firms

in rating category 3.

Envoking the Wald principle we apply a statistical test in order to answer the question

if the observed differences in the estimates of ρ for portfolios of different firm size are

statistically significant. If this is the case we should at least observe a significant difference

between the estimates of asset correlation of large and of small firms. The following test

statistic
ρ̂large − ρ̂small√

(σ̂large)2 + (σ̂small)2
(17)

asymptotically follows a Gaussian distribution. We test the null hypothesis, that the

estimates of ρ are the same for the categories of large and small firms in every rating class.

The p-values are given in table 10.

We can reject the null hypothesis on a significance level of 5 % for three out of four

estimates in the lowest rating category. For the other two rating categories it is mostly

not possible to reject the null hypothesis.

Three out of four rejections in table 10 occur for the ML-estimator. The standard errors

for this estimator are overall smaller than for the AMM−estimates because they are

asymptotic values. This may be the reason that the null hypothesis is more often rejected

for the ML−estimates.

We conclude that although the estimates indicate that asset correlation depends on size,

this relation is only in some cases statistically significant on the usual confidence levels.

The latter result may be driven by a relatively high estimation error that is due to the

short time series of data.

Next we compare these empirical results with the prospective IRB risk weights of the new

Basel Accord. Since the publication of the second consultative document in January 2001
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Table 10: P-values for mean-test of differences between estimates of ρ for large

and small firms

estimator default rates rating

calibrated to ... 1 2 3

AMM insolvency rates 0.114 0.432 0.049
loss Provisions 0.292 0.473 0.103

ML insolvency rates 0.035 0.243 0.023
loss Provisions 0.193 0.320 0.048

two notable changes have been made to the risk weights for corporate obligors from which

the capital charge can be determined. These two changes involve the parameter asset

correlation which is no longer a constant value of 0.2. The risk weights proposed in the

third Quantitative Impact Study of the Basel Committee depend on the obligor’s PD and

– for SMEs27 – additionally on firm size which is measured by yearly turnover. The new

risk weight function assumes that asset correlation decreases with PD and increases with

size.

The first modification which assumes that asset correlation declines with PD is not

supported by our empirical results. Whereas the results are mixed for the default rates

calibrated to the insolvency statistics the results for the calibrated OECD-data suggest

that in two out of three size classes asset correlation increases monotonicly with higher

PDs. This increase is stronger for larger corporates.

The second modification that asset correlation increases with size is qualitatively backed

by the correlation estimates in table 6, 8 and 9 and holds, therefore, independent of the

calibration and of the estimation method. The increase is strongest for the category with

the highest credit risk. This result may derive from the distribution of companies among

business sectors, e. g. that the share of firms in cyclical sectors increases with firm size.

Turning to correlation estimates based on the OECD-statistics we find again that asset

correlation overall increases with firm size. Summarizing, our results support a size-

dependent capital relief for SMEs in the IRB risk weights.28

7 Conclusion

The first and theoretical part of this paper explores the small sample performance of three

estimators of the asset correlation from time series of default rates. We find that these
27SMEs are defined as firms with a yearly turnover below 50 Mln. EUR.
28This capital relief is implemented in the IRB-corporate risk weights by a size dependent reduction of

the asset correlation parameter.
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estimators are biased in small samples and that in a homogenous portfolio the size of the

bias depends on the number of exposures, the PD and the ”true” asset correlation.

The bias can be accounted for in two ways: directly by adjusting the estimator, as has been

suggested by Gordy (2000) to control for the influence of idiosyncratic risk, or indirectly

by estimating a functional relation between the bias and the relevant model parameters

(response surface analysis) and adjusting the biased estimate afterwards. More worrisome

than the bias, however, are the relatively high standard errors of the estimates.

In the second and empirical part the asset correlation of German corporate obligors is

estimated from a database of balance sheet information and default histories of German

corporates that is maintained at the Bundesbank. A special focus is given to a potential

dependence of asset correlation on PD and firm size. The results from default rates,

calibrated to German insolvency statistics, show that aggregated over all rating categories

as well as for single rating grades the asset correlation increases with size. However, we do

not observe an unambiguous dependence on PD. The absolute level of the asset correlation

is relatively low (between 0.002 and 0.06). The same estimation carried out with default

rates implied by net loan net provisions of German banks show higher asset correlations

(between 0.01 and 0.14). Again we find that asset correlation overall increases with firm

size but we do not observe an unambiguous relation between asset correlation and PD.

Comparing the results with the currently proposed calibration of the IRB-risk weights for

corporate loans in the new Basel Accord needs a word of caution. These risk weights are

calibrated from a macro-prudential as well as a micro-economic perspective. The decision

to have an asset correlation parameter declining with PD, for instance, is justifiable by

the desire to reduce pro-cyclical effects of the New Accord. In this paper instead, we deal

only with the micro-perspective and in this case our estimation results indicate a converse

but more ambiguous relationship between asset correlation and PD. The modification that

asset correlation increases with size which has been introduced into the risk weights but

is restricted to SMEs is overall corroborated by our estimates. This relation exists in

all of the obligors PD-categories and seems to be stronger for obligors with higher PDs.

The empirical results indicating a size- and a PD-dependence of asset correlation hold

irrespective of the chosen estimation technique.

Our results suggest that further research is warranted in the following two areas. The

first area is an economic explanation for the empirical result that the asset correlation

increases with firm size. We find tentative evidence that this result may derive from the

fact that the size-distribution of corporates varies between business sectors which in turn

differ in their dependence on the business cycle.

The second area where further research seems to be warranted are the small sample

properties of the estimators for the asset correlation. The differences in levels between the

ML− and the AMM−estimates of this parameter may be distorted by the estimation
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error which has a level component (bias) and a volatility component (standard error).

In order to improve our understanding of the impact of the estimation error we intend

to analyse the relation between the estimation error and the estimation method with a

response surface analysis.
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Appendix

7.1 Bond default rates from Moodys (speculative grade)

Table 11: Bond default rates

year default rate year default rate

1970 9.38 1986 5.67
1971 1.14 1987 4.23
1972 1.94 1988 3.47
1973 1.28 1989 6.03
1974 1.35 1990 9.85
1975 1.79 1991 10.52
1976 0.89 1992 4.86
1977 1.35 1993 3.51
1978 1.79 1994 1.93
1979 0.42 1995 3.30
1980 1.62 1996 1.65
1981 0.71 1997 2.03
1982 3.57 1998 3.41
1983 3.88 1999 5.63
1984 3.39 2000 5.71
1985 3.90

Source: Hamilton et al. (2001), p. 45–46.

7.2 Scoring Function

The parameters of the scoring function depend on the affiliation of the obligor to one of the

three business sectors manufacturing, trade or others.29 The respective scoring function

is defined in table 12.

Table 12: Scoring Function

industry function

Manufacturing 10.1749 + 0.1651× CRR+ 0.3608×ROR− 0.1681×APR+ 0.0829× ER

Trade 2.2943 + 0.2080×RER+ 1.0275×RCE − 0.1290×ARR+ 0.2618× ER

Others 8.9966 + 0.0718×ARD + 0.5746×ROR− 0.1233× CRR+ 0.1830× ER

29We are very grateful to Stefan Blochwitz who has provided us with the parameters of the scoring

function.
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Table 13: Definition of input factors to the scoring function

factor interpretation

CRR capital recovery rate= net cash flow
invested capital ∗ 100

ROR return on revenues= earnings before tax
total turnover ∗ 100

APR notes payable+trade accounts payable
total turnover ∗ 100

ER equity ratio= equity+accounts payable to owners
total assets ∗ 100

RER net cash flow
total turnover ∗ 100

RCE return on total capital employed= earnings before taxes and interest payments
total assets ∗ 100

ARR trade accounts receivable
total turnover ∗ 100

ARD ability to repay debt= net cash flow
accounts payable−liquid assets ∗ 100
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7.3 Default Rates calibrated to Insolvency Statistics

Table 14: Default frequencies of small firms for different rating grades between

1991 and 2000 in percent

year all grade 1 grade 2 grade 3

1991 0.62 0.34 1.47 2.52
1992 0.45 0.25 1.18 1.72
1993 0.56 0.26 1.45 2.06
1994 0.65 0.28 1.43 1.90
1995 0.72 0.33 1.11 2.12
1996 0.49 0.28 0.69 1.31
1997 0.78 0.41 1.11 2.17
1998 0.69 0.33 0.83 2.06
1999 0.68 0.27 1.09 2.16
2000 0.69 0.27 1.76 2.04

Average 0.63 0.30 1.21 2.00

Table 15: Default Frequencies of medium firms for different rating grades

between 1991 and 2000 in percent

year all grade 1 grade 2 grade 3

1991 0.47 0.25 1.72 3.31
1992 0.66 0.40 1.78 4.74
1993 0.95 0.54 2.76 5.83
1994 1.04 0.47 3.20 3.62
1995 1.09 0.40 3.19 5.03
1996 1.16 0.55 1.72 6.25
1997 1.02 0.55 2.62 3.53
1998 1.10 0.59 1.83 4.57
1999 0.82 0.39 2.56 2.83
2000 0.79 0.46 1.82 2.81

Average 0.91 0.46 2.32 4.25
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Table 16: Default Frequencies of large firms for different rating grades between

1991 and 2000 in percent

year all grade 1 grade 2 grade 3

1991 0.17 0.15 0.82 0.00
1992 0.43 0.26 1.94 4.55
1993 0.56 0.39 1.50 3.55
1994 0.71 0.30 1.71 4.72
1995 0.67 0.31 1.43 5.52
1996 1.07 0.52 1.30 7.50
1997 0.76 0.38 2.17 4.64
1998 0.76 0.45 2.61 2.82
1999 0.44 0.20 1.79 2.55
2000 0.53 0.35 2.32 1.31

Average 0.61 0.33 1.76 3.72
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