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Abstract

We propose a novel econometric model for estimating and forecasting cross-sections

of time-varying conditional default probabilities. The model captures the systematic

variation in corporate default counts across e.g. rating and industry groups by using

dynamic factors from a large panel of selected macroeconomic and financial data as

well as common unobserved risk factors. All factors are statistically and economically

significant and together capture a large part of the time-variation in observed default

rates. In this framework we improve the out-of-sample forecasting accuracy associated

with conditional default probabilities by about 10-35% in terms of Mean Absolute

Error, particularly in years of default stress.
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1 Introduction

Modeling dependence between default events is considered to be one of the major challenges

in modern credit risk management. To understand and price the risk of a loan portfolio it is

necessary to have reliable estimates of current default probabilities and default correlations

for the obligors in the portfolio. Default probabilities may depend on firm specific information

as well as the general macroeconomic conditions, see inter alia the recent papers by Das et al.

(2007), Duffie et al. (2007), Pesaran et al. (2006), and Figlewski et al. (2006).

In this paper we develop a model targeted towards estimation and out-of-sample fore-

casting of conditional default probabilities. We include a very large array of selected macro

variables by focusing on what they have ‘in common’. In effect, the proposed model combines

the non-Gaussian panel data approach of Koopman and Lucas (2008) with the main features

of Stock and Watson’s (2002a) approximate dynamic factor model. To our knowledge, this

article is the first to nest these two strands of literature on high-dimensional multivariate

time series modeling. As a result, the final model accommodates common factors from ob-

served data as well as unobserved dynamic factors. For ease of reference we will refer to our

model as the Common Factor Panel (CFP) model.

While very popular, the Stock and Watson methodology is typically not applied outside of

a linear regression framework. We show that principal components can be used in a nonlinear

non-Gaussian model to address the important problem of estimating and forecasting time-

varying default probabilities. The main novelty is the development of a framework in which

default conditions depend on both unobserved components and common factors from a large

set of selected macro and financial data.

Following Das et al. (2007), we refer to such a situation as ‘frailty’ correlated defaults.

The task of estimating and forecasting conditional default probabilities is not standard when

default conditions depend on unobserved serially correlated risk factors in addition to ob-

served firm characteristics and macroeconomic variables. The econometric literature which

can allow for unobserved risk factors is fairly recent. Most notably it includes Duffie et al.

(2006), McNeil and Wendin (2007), Koopman et al. (2008), and Koopman and Lucas (2008).

When default events depend on unobserved components, advanced econometric techniques

based on simulation methods are required. For example, Duffie et al. (2006) employ a Sim-
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ulated EM approach with Gibbs sampling, while Koopman et al. (2008) use importance

sampling techniques derived for non-Gaussian state space models. The dependence on sim-

ulation methods is one reason why unobserved component models typically allow for only a

limited number of observable macro variables alongside the unobserved factor.

This paper makes three contributions to the econometric credit risk literature. First,

we show theoretically how a non-Gaussian panel data specification for default risk can be

combined with an approximate dynamic factor model. The resulting model inherits the best

of both worlds. Factor models readily permit the use of information from very large arrays

of relevant predictor variables. The non-Gaussian panel structure in addition captures the

cross-sectional heterogeneity of firms, allows for unobserved ‘frailty’ factors, and can easily

accommodate missing values. The missing values arise easily if we consider default counts

at a highly disaggregated level.

Second, we show that common factors from a panel of selected macroeconomic and finan-

cial variables capture a statistically and economically significant part of the time-variation

in observed default rates. Thus, macroeconomic risk and systematic default risk conditions

are closely linked. By decomposing overall default risk into a systematic and idiosyncratic

part we follow the credit risk literature on latent variable models as given by Wilson (1998),

Gordy (2000), and Lando (2003). For the computation of common macro factors we draw

from the extensive and growing literature on large N , large T dynamic factor models, most

notably Stock and Watson (2002a, 2002b, 2005), and Bai and Ng (2002, 2007).

Third, we show that common factors are useful for out-of sample forecasting of default

risk conditions. In a forecasting experiment we find that adding common factors to an

unobserved component specification improves forecasting accuracy. Feasible improvements

are substantial, in particular in years of high default stress such as 2001. The extent of

the improvements depend mainly on firm’s rating classes and prevailing macro conditions.

Improved forecasts of conditional default probabilities over a large cross-section of firms

are relevant to credit risk management in financial institutions, banking supervision, asset

management, and potentially for institutional investors in credit derivatives markets. The

forecasted probabilities can be used as input for the calculation of one-year ahead Value-at-

Risk levels as well as for stress testing loan portfolios.

We proceed as follows. In Section 2 we introduce the econometric framework of the Com-
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mon Factor Panel model and show how the non-Gaussian panel and the approximate dynamic

factor model are combined. In Section 3 we discuss the estimation of the model. Section

4 shows that there exists a one-on-one correspondence between the proposed econometric

model and a multi-factor firm value model for dependent defaults. Section 5 introduces the

two panel data sets used in this article, presents the empirical findings and the forecasting

results. Section 6 concludes.

2 The econometric framework

In this section we present the full set of model equations. We denote the default counts of

cross section j at time t as yjt, where j = 1, . . . , J , and t = 1, . . . , T . The index j denotes

a combination of firm characteristics, such as industry specification, current rating class,

or company age. Defaults are assumed to be correlated in the cross-section through risk

factors. We distinguish two different sets of risk factors, i.e., an unobserved factor fuc
t and

exogenous factors Ft which we construct from a large panel of macroeconomic and financial

time series. The default counts are modeled as Binomially distributed after conditioning on

these factors,

yjt|fuc
t , Ft ∼ Binomial(kjt, Πjt), (1)

where yjt is the number of default ‘successes’ from kjt independent Bernoulli-trials, each with

probability Πjt. In our case, kjt denotes the number of firms in cell j that are active at the

beginning of period t and can default with probability Πjt. The conditional independence

assumption is standard in the credit risk literature on latent variable models, see for instance

the CreditMetrics (2007) framework as well as the textbook exposition of Lando (2003,

Chapter 9).

The conditional default probabilities Πjt are specified as the logistic transform of an index

function θjt,
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Πjt = (1 + e−θjt)−1, (2)

θjt = λj + βjf
uc
t + γ′jFt, (3)

where λj constitutes a fixed effect for each cross section, and coefficients βj and γj capture risk

factor sensitivities which may depend on firm characteristics such as industry specification

or rating class. This specification is analogous to a standard logit model commonly used

in micro-econometrics to model discrete events. Estimation and forecasting Πjt is the main

focus of this paper. The conditional default probabilities may vary over time due to either

variation in the unobserved component, fuc
t , or variation in the common factors Ft from a

large set of macroeconomic and financial data.

The dynamics of the unobserved component fuc
t are specified as a stationary autoregres-

sion of order 1,

fuc
t = φfuc

t−1 +
√

1− φ2ηt, ηt ∼ NID(0,1), (4)

where 0 < φ < 1. Other dynamic specifications for fuc
t can also be considered. The

autoregressive process is normalized such that E[fuc
t ] = 0, Var[fuc

t ] = 1, and Cov[fuc
t , fuc

t−h] =

φh. It follows that coefficient βj can be interpreted as the standard deviation (volatility) of

the unobserved factor fuc
t for the firms of cross section j.

Finally, we collect a large number of macroeconomic and financial variables into a panel

of time series xit for i = 1, . . . , N . This large array of macroeconomic predictor variables is

assumed to contain information about economy-wide default risk conditions, and adhere to

a factor structure such as

xit = ΛiFt + eit, (5)

where Ft is a vector of factors, Λi is a row vector of factor loadings, and eit is an idiosyn-

cratic error term which satisfies the weak regularity conditions of Stock and Watson (2002b,

Assumptions F1 and M1). Equation (5) gives the static representation of an approximate

dynamic factor model, see Stock and Watson (2002a). Intuitively, (5) states that a large
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part of the variation in macroeconomic and financial data may be traced back to only a

few common factors. This idea has a long tradition in macro-econometrics, dating back to

Sargent and Sims (1977) and Geweke (1977). The static representation (5) can be derived

easily from a dynamic specification such as xit = υi(L)ft + eit by assuming that the lag

polynomials υi(L) operating on the factors ft are of finite (low) order, see Stock and Watson

(2002b). The coefficients in υi can be stacked in Λi, while the contemporaneous and lagged

factors can be stacked in Ft. The estimated Ft represent current and lagged forces in the

economy. This methodology has proven to be effective in forecasting inflation or industrial

production, see Massimiliano, Stock, and Watson (2003).

The main advantage of the static representation (5) is that Ft can be estimated con-

sistently using the method of principal components. This method is convenient for several

reasons. First, dimensionality problems do not occur even for very large values of N and

T . All computations remain tractable. Second, the method works under relatively weak

assumptions. Finally, the obtained factors can be used directly for forecasting purposes.

Equations (1) to (5) combine the approximate dynamic factor model with the non-Gaussian

panel data model by inserting the elements of Ft from (5) into the signal equation (3).

Statistical model formulation and estimation is discussed below.

3 Estimation and state space form

In this section we provide the details of the estimation of the parameters and factors in

model (1) to (5). We first estimate the macro factors using the method of Stock and Watson

(2002a) as discussed in Section 3.1. Next, we cast the complete model in state space form

with the details provided in Section 3.2. We estimate the parameters using computationally

efficient (Monte Carlo) Maximum Likelihood and Signal Extraction techniques based on

Importance Sampling. A brief outline of the procedure is given in Section 3.3. We perform

all computations using the Ox programming language and the associated set of state space

routines from SsfPack, see Koopman et al. (1998), and Doornik (2002).
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3.1 Estimation of the macro factors

The common factors Ft from the macro data are estimated by minimizing the objective

function given by

min
{F1,...,FT ,Λ}

V (F, Λ) = (NT )−1

T∑
t=1

(Xt − ΛFt)
′(Xt − ΛFt), (6)

where Xt is of dimension Nx1 and contains stationary macroeconomic variables. Concen-

trating out Ft and rearranging terms shows that (6) is equivalent to

max V̄ (Λ) = tr

(
Λ′

[
T∑

t=1

XtX
′
t

]
Λ

)
= T tr (Λ′SX′XΛ) (7)

subject to Λ′Λ = Ir, and where SX′X = T−1
∑

t XtX
′
t denotes the covariance matrix of the

data, see Stock and Watson (2002a). The principal components estimator of Ft is given

by F̂t = X ′
tΛ̂, where Λ̂ collects the normalized eigenvectors associated with the R largest

eigenvalues of SX′X .

In case variables are not completely observed, we employ the Expectation Maximization

(EM) procedure as devised in the appendix to Stock and Watson (2002a). This iterative

procedure takes a simple form under the assumption that xit ∼ NID(ΛiFt, 1), where Λi

denotes the ith row of Λ. In this case V (F, Λ) from (6) is affine to the complete data

log-likelihood L(F, Λ|X), where X denotes the missing parts of the data. Since V (F, Λ) is

proportional to −L(F, Λ|X), the minimizers of V (F, Λ) are also the maximizers of L(F, Λ|X).

The procedure for obtaining the principal components in case of missing data is as follows.

The objective function (6) is given by

min
{F1,...,FT ,Λ}

V ∗(F, Λ) =
N∑

i=1

T∑
t=1

Iit(xit − ΛiFt)
2, (8)

where Iit = 1 if xit is observed, and zero otherwise. Equation (8) is minimized iteratively,

using the following two step EM algorithm:

1. For the Expectation-step, take as given F̂t, Λ̂. In the first round we use the estimates
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from the balanced panel as starting values. The complete panel is balanced as follows:

x̂bal
it =





xit if xit is observed,

Λ̂iF̂t if xit is missing.

Thus, missing values are replaced by their expectations given the smaller set of observed

data points, which we denote as X∗.

2. In the Maximization-step, F̂t, Λ̂ are updated by performing the eigenvalue/-vector

decomposition on the estimated covariance matrix of the balanced data, Sbal
X′X =

T−1(X̂bal′
t X̂bal

t ). Since V (F, Λ) ∝ const − L(F, Λ|X), the pair F̂t, Λ̂ also maximizes

EF̂t,Λ̂
[L(F, Λ)|X∗].

We iterate the two E/M steps until convergence has taken place. To formulate a stopping

criterion, the objective function V (F, Λ) can be computed as the squared Frobenius matrix

norm of the TxN error matrix E = X̂bal − F̂ Λ̂′, since V (F, Λ) = (NT )−1tr(E ′E). The

iterations stop when the changes in the objective function become negligible, say smaller

than 10−7.

3.2 The Common Factor Panel model in state space form

In this subsection we formulate the model (1) to (4) in state space form where Ft is treated

as given. In practise, Ft will be replaced by F̂t.

The conditionally Binomial log-density function of the model (1) is given by

log p(yjt|Πjt) = yjt log

(
Πjt

1− Πjt

)
+ kjt log(1− Πjt) + log

(
kjt

yjt

)
.

By substituting (2) for Πjt we obtain the log-density in terms of the log-odds ration θjt as

log p(yjt|θjt) = yjtθjt + kjt log(1 + eθjt) + log

(
kjt

yjt

)
. (9)

The ‘signal’ is given by

θjt = Zjtαt,
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where

Zjt = (e′j, F ′
t ⊗ e′j, βj),

and ej denotes the jth column of the unit matrix of dimension j. The system matrices Zjt

are time-varying due to the inclusion of Ft.

The state equation is given in its general form as

αt+1 = Ttαt + Btξt, ξt ∼ N(0, Qt), (10)

where αt = (λ1, . . . , λJ ; γ1,1, . . . , γR,J , fuc
t )′ collects the fixed effects λj, all macro factor sen-

sitivities γr,j as well as the unobserved component, and where R denotes the dimension of

Ft. The initial elements of the state vector are set to zero with a diffuse prior distribution,

except for fuc
t whose prior is given by N(0,1). The state equation system matrices are given

by

Tt = diag(I, φ), Bt =


 0

√
1− φ2


 , Qt = 1.

Equations (9) and (10) form a non-Gaussian state space model as discussed in Durbin

and Koopman (2001) part II, and Koopman and Lucas (2008). We note that equation (9)

replaces the more familiar observation equation associated with a linear Gaussian model. In

this formulation, most unknown coefficients are part of the state vector αt and are estimated

as part of the filtering and smoothing procedures described in Section 3.3. This increases

the computational efficiency of our estimation procedure. The remaining parameters are

collected in a coefficient vector ψ = (φ, β1, . . . , βJ)′ and are estimated by the Monte Carlo

Maximum Likelihood methods of Section 3.3.

3.3 Estimation for the Common Factor Panel model

Parameter estimation for a non-Gaussian model in state space form proceeds in two steps.

First, the coefficients in ψ are estimated by Monte Carlo maximum likelihood. Second, we

obtain conditional mean and variance estimates of the state vector αt. Both steps make use

of importance sampling.

In the presentation of Monte Carlo maximum likelihood estimation, we suppress the
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dependence of the density p(y; ψ) on ψ and express the likelihood as

p(y) =

∫
p(y, θ)dθ =

∫
p(y|θ)p(θ)dθ

=

∫
p(y|θ) p(θ)

g(θ|y)
g(θ|y)dθ = Eg

[
p(y|θ) p(θ)

g(θ|y)

]
, (11)

where y = (y11, y21, . . . , yJT )′, θ = (θ11, θ21, . . . , θJT )′, p(·) is a density function, p(·, ·) is

a joint density, p(·|·) is a conditional density, g(θ|y) is a Gaussian importance density, Eg

denotes expectations with respect to g(θ|y), and

p(y|θ) =
∏
t,j

p(yjt|θjt).

Using Bayes’ identity g(θ|y)g(y) ≡ g(y|θ)g(θ), where g(y) denotes the likelihood associ-

ated with an approximating linear Gaussian model, (11) can be rewritten as

p(y) = Eg

[
p(y|θ) p(θ)

g(y|θ)
g(y)

p(θ)

]

= Eg

[
g(y)

p(y|θ)
g(y|θ)

]
= g(y)Eg [w(y, θ)] ,

where w(y, θ) = p(y|θ)/g(y|θ). The Monte Carlo likelihood is thus estimated as

p̂(y) = g(y)w̄,

where

w̄ = M−1

M∑
m=1

wm = M−1

M∑
m=1

p(y|θm)

g(y|θm)
,

where θm is a draw of θ from g(θ|y), and M is the number of importance draws of θ.

The simulated draws are obtained using the simulation smoothing algorithm of Durbin and

Koopman (2002). We estimate the log-likelihood as log p̂(y) = log ĝ(y) + log w̄, and include

the bias correction term discussed in Durbin and Koopman (1997).

The approximating Gaussian model is found by matching the first and second derivative

of log p(y|θ) and log g(y|θ) with respect to the signal θ. This matching takes place around a

current guess of the mode of θ. The next guess of the mode is then obtained as the smoothed
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estimate of θ from a linear model which relates y and θ. Iterations proceed until convergence

to the final approximating linear Gaussian model is achieved, which usually occurs in less

than 10 iterations. A new approximating model is constructed for each trial evaluation of

log p(y) for a different value of parameter vector ψ.

Standard errors for the parameters in ψ are constructed from the numerical second deriv-

atives of the log-likelihood,

Σ̂ =

[
−∂2 log p(y)

∂ψ∂ψ′

]−1
∣∣∣∣∣
ψ=ψ̂

.

For signal extraction, we require the estimation of the conditional mean of an arbitrary

function of θ, say x(θ), as given by

x̄ = E [x(θ)|y] =

∫
x(θ)p(θ|y)dθ

=

∫
x(θ)

p(θ|y)

g(θ|y)
g(θ|y)dθ = Eg

[
x(θ)

p(θ|y)

g(θ|y)

]
.

Using Bayes’ identities and the fact that p(θ) = g(θ) we obtain

x̄ =
Eg [x(θ)w(θ, y)]

Eg [w(θ, y)]
,

where w(θ, y) are the importance sampling weights as defined above, see also Durbin and

Koopman (2001), p. 190.

Given these results, we estimate the conditional mean as

θ̂ = E[θ|y] =

[
M∑

m=1

wm

]−1 M∑
m=1

θmwm,

where wm = w(θm, y) denotes the importance weight associated with the m-th draw θm from

g(θ|y). The associated conditional variances are given by

Var[θit|y] =




[
M∑

m=1

wm

]−1 M∑
m=1

(θm
it )

2wm


−

(
θ̂it

)2

.
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4 The financial framework

In this section we discuss the connection between the above econometric model and a multi-

factor firm value model for dependent defaults, see e.g. Tasche (2006) and Lando (2003,

Chapter 9). The financial framework of the firm value model gives economic meaning to the

statistical estimates and clarifies the economic mechanism at work. Single- and multi-factor

models for firm default risk are widely used in risk management practice.

In a standard static one-factor credit risk model for dependent defaults the values of the

obligors’ assets, Vi, are usually driven by a common, standard normally distributed factor

Y , and an idiosyncratic standard normal noise term εi, i = 1, . . . , I,

Vi =
√

ρY +
√

1− ρεi.

A dynamic version of the single-factor specification would specify how Vi varies over time.

Since we would in addition also like to allow for multiple factors, we generalize the model to

Vit = δ0if
uc
t + δ1iF1,t + · · ·+ δRiFR,t +

√
1− (δ0i)

2 − (δ1i)
2 − · · · − (δRi)

2εit

= δ′ift +
√

1− δ′iδiεit, (12)

where ft := (fuc
t , F1,t, . . . , FR,t)

′, and δi := (δ0i, δ1i, . . . , δRi)
′. In the remainder we assume

that the δi parameters are common to all firms with characteristic j, and denote this vector

δj.

The F1,t, . . . , FR,t are by construction uncorrelated principal components. The unob-

served component fuc
t serves to pick up credit cycle conditions which are not captured by

the first R macro factors. We thus proceed by assuming, for this section only, that all

factors in the model are unconditionally uncorrelated and normally distributed, such that

ft = (fuc
t , F1,t, . . . , FR,t)

′ ∼ N(0, IR+1). This in turn implies that E[Vit] = 0 and Var[Vit] = 1,

regardless of the assumed distribution for the idiosyncratic noise component εit.

Following Merton’s (1974) firm value-model, we assume that a default occurs as soon as a

firm’s net asset value Vit drops below a specified default barrier, say cj. This default barrier

may depend on the current rating class, industry specification, or time from initial rating
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assignment. With these assumptions a default of firm i with firm characteristic j occurs as

soon as

Vit < cj ⇔ δ′jft +
√

1− δ′jδjεit < cj

⇔ εit <

(
cj − δ′jft√
1− δ′jδj

)
.

Denoting information up to time t as Ft we obtain,

Πjt = Pr

(
εit <

cj − δ′jft√
1− δ′jδj

∣∣∣∣∣Ft

)
= Fε

(
cj − δ′jft√
1− δ′jδj

)
, (13)

where Fε denotes the cumulative distribution function for εit.

Equation (13) is intuitive. Good credit cycle conditions, i.e. high values of ft are asso-

ciated with low default probabilities Πjt. The choice of Fε as logistic allows to express the

structural parameters of the firm value model from (13) in terms of the coefficients from the

econometric specification. Specifically,

cj = λj

√
1− aj,

δ0,j = −βj

√
1− aj,

δr,j = −γr,j

√
1− aj,

where

aj =
β2

j + γ2
1,j + γ2

2,j

1 + β2
j + γ2

1,j + γ2
2,j

.

5 Estimation results and Forecasting Accuracy

5.1 The Data: Macro Variables and Default Counts

We estimate the CFP model using data from two main sources. First, a large panel of time

series is constructed from the Federal Reserve Economic Database FRED.1 In total 120 vari-

1http://research.stlouisfed.org/fred2
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ables are selected from about 3000 available US variables in the complete database. The

goal is to select series which contain information about systematic credit risk conditions.

The variables are sorted into five broad categories, see Table 1. These are (1) bank lending

conditions and the extend of problematic loans, (2) macroeconomic and business cycle in-

dicators, including measurements of general economic activity, labor market conditions and

monetary policy instruments, (3) Open Economy macroeconomic indicators from the balance

of payments and terms of trade, (4) Micro-level business conditions such as wage rates, cost

of capital and cost of resources, and finally (5) stock market returns and volatilities. Thus,

the panel contains both current information indicators (such as real GDP, unemployment

rate, new orders, etc.) as well as forward looking variables (such as stock prices, interest

rates, inflation expectations, etc.). As is common in factor analysis, each variable from this

panel is transformed to covariance stationarity, either by (log-)differencing the original series

once or twice, as appropriate, or by alternatively employing a suitable filter to remove the

stochastic trend. Each series is standardized to zero mean and unit variance. We remove

outliers by winsorizing the stationary series. This implies that observations larger than 3.5

in absolute value are adjusted to either 3.5 or −3.5.

[insert Table 1 around here ]

[insert Figure 1 around here ]

A second set of data comes from the Standard and Poor’s CreditPro 7.0 database. The

latter contains a full set of rating transition histories and (possibly) a default date for all

S&P-rated firms from 1980:1 to 2005:2. This set allows us to calculate the required values of

yjt and kjt in (1). We distinguish 13 industries which we pool into D = 7 industry groups.

These are the consumer goods, financials, transport and aviation, leisure, utilities, high

tech and telecom, and health care sector. We further consider A = 4 ‘age’ cohorts. These

indicate less than 3, 3 to 6, 6 to 12, and more than 12 years from the time of initial rating.

The rationale for this distinction is that default probabilities may depend on the age of a

company, which we proxy here by the time since the initial rating assignment. Finally, there

are S = 4 rating groups, specifically one investment grade group AAA − BBB, and three

speculative grade groups BB, B, CCC. Pooling over investment grade firms is necessary
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since defaults are very rare for this segment. The disaggregated default fractions can be

observed from Figure 2. Default fractions cluster most visibly around the recession years of

1991 and 2001, and are most visible in the BB and B rating class.

[insert Figure 2 around here ]

5.2 The macro factors

We first report the results from applying principal components to the macro panel introduced

in Section 5.1. We employ the EM procedure from Section 3.1 to iteratively balance the panel

before estimating the factors. Figure 3 shows the first four principal components from this

panel. It can be seen that the first PC exhibits clear peaks around NBER US business

cycle troughs located around 1969/70, 1973/75, 1980, 1981/82, 1990/91, and 2000/01, see

www.nber.org. This would suggest that it mainly loads from macro data and business cycle

indicators, which is confirmed below. The second factor also appears to exhibit peaks around

these times, but the association with a business cycle is less strong. Factors three and four

do not exhibit the clear cyclical swings present in the first two factors.

[insert Figure 3 around here ]

To determine a good value for R - the dimension of Ft - we compute the panel information

criteria (IC) suggested by Bai and Ng (2002) in Table 2. We evaluate the IC for both the

balanced subset of the data as well as the full panel. The criterion function ICp1(r) is

minimized for r = 2, indicating two common factors. This finding is not robust, as ICp2(r)

indicates only one factor, and ICp3(r) decreases monotonously over a range of plausible

values. We interpret these results as evidence that most information is contained in the first

two factors. These factors capture about 44% of the total variation in the macro panel.

[insert Table 2 around here]

To further illustrate the empirical economic underpinnings of the two common factors we

regress each macro variable on each of the two factors separately. Figure 4 depicts the R-

squared from these regressions. We observe that the first PC mainly loads mainly from macro

and employment data, as well as business cycle indicators and interest rates. According to

its associated eigenvalue, the first factor accounts for about 30% of the data variance.
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[insert Figure 4 around here ]

The second principal component loads mainly from series associated with firm profit

margins, such as the price of intermediate inputs and resources, the cost of energy, and

prices of final goods. It accounts for about 14% of data variance. Without presenting

the respective graph, we report that the third factor loads from series related to financing

conditions and from variables indicating the extent of problematic banking loans (7%). The

fourth factor explains relatively little, and the loadings do not appear to be concentrated in

a particular field (6%).

5.3 The complete CFP model

We now turn to the estimates of the complete non-Gaussian model. Since defaults are rare

events we cannot freely and reliably estimate all parameters λj, βj and γr,j for each cross

section j. Instead we propose a parsimonious model structure that allows enough flexibility

to address the key issues. We do so by setting

λj = λ0 + λ1,dj
+ λ2,aj

+ λ3,sj
,

βj = β0 + β1,dj
+ β2,sj

,

γr,j = γr,sj
,

where dj = 1, . . . , 7, aj = 1, . . . , 4 and sj = 1, . . . , 4 are the industry index, rating age

index, and rating class index of cross section j, respectively. For identification, we set

λ1,7 = λ2,4 = λ3,4 = β1,7 = β2,4 = 0. Baseline intensities λj and factor sensitivities βj and

γr,j thus depend on industry, rating, and rating age in a well-defined and parsimonious way.

We report three different specifications of the model in Table 3. Model 1 contains the

first two common factors (principal components) from the macro panel, and no unobserved

risk factor. Conversely, Model 2 contains an unobserved risk factor, but no common macro

factors. Finally, Model 3 combines both specifications. In Model 1 and 3, the macro factor

sensitivities γ1,s and γ2,s depend on the firm’s current rating class. In Model 2 and 3, the

β coefficients depend on industry and rating class. Rating dependent factor sensitivities
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capture the notion that exposure to systematic risk may be less pronounced for lower rating

classes. Similarly, industry specific sensitivities capture the notion that some industries may

be more sensitive to macro risk than others.

[insert Table 3 around here]

The fixed effects λj are similar across models. There is a highly significant monotonic

pattern in the coefficients for the rating classes λ3,s. This pattern indicates that lower ratings

are more likely to default. The coefficients indicating the age cohort λ2,a show a similar

pattern. This suggests that a firm which has just recently acquired access to the capital

market is less likely to default. This initial effect appears to subside over time. Finally,

there is considerable heterogeneity across industry groups λ1,d. Firms categorized as being

part of the financial or leisure industry are less likely to default than for instance firms from

the transport and aviation segment.

We now address the time varying part of the models. It is useful to recall that F1,t, F2,t,

and fuc
t have zero mean and unit unconditional variance by construction. This implies that

all factor sensitivities can also be interpreted in terms of factor standard deviations for these

firms. The estimated β-coefficients indicate an important role for the unobserved component

even after the first two common macro factors are included. The impact of the unobserved

component differs considerably across rating and industry groups. For example, financial

firms are found to have much lower systematic risk than firms from the high tech or transport

and aviation sector. We report t-statistics for the β-coefficients, but note that they are not

asymptotically normal. The null-hypothesis β0 = 0 entails a restriction on the rank of the

covariance matrix of the signal. Such tests have non-standard properties, cf. for instance

Nyblom and Harvey (2000). Similarly, the large increase in likelihood from Model 1 to 2

cannot be used in a formal Likelihood Ratio test. However, the increase by more than 70

points is indicative of a large improvement in model fit. The further increase in likelihood

from Model 2 to 3 by 10 points is statistically significant at a 5% level. Thus, all factors

are both statistically and economically significant and help to explain the systematic co-

movement in the cross section. For scaled estimates of the risk factors we refer to Figure

5.

[insert Figure 5 around here]
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The factor sensitivities γ1,s, γ2,s also differ considerably across rating groups. In all spec-

ifications, investment grade firms appear to have high systematic risk. Conversely, defaults

from the lowest rating class appear to be largely unrelated to the current macroeconomic

climate.

5.4 Out of sample forecasting accuracy

In this subsection we estimate a number of competing model specifications and compare

them in terms of their out of sample forecasting accuracy. This is achieved by forecasting

conditional default probabilities for a cross-section of firms one year ahead. Measuring the

forecasting accuracy of time-varying default probabilities is not straightforward. The basic

reason for this is that observed default fractions are only a crude measure of the ‘true’ default

probability pertaining to a certain cross section at a given time. To see this most clearly,

consider a cell with, say, 5 firms. Even if the default probability for this cell is forecast

perfectly, it is unlikely to coincide with the observed default fraction of either 0, 1/5, 2/5,

etc. The forecast error may be large but does not indicate a bad forecast.

Observed default fractions are a useful measure only for a sufficiently large number of

firms per cell. For this reason we pool default and exposure counts over the four age cohorts

and consider only two rating groups, i.e., firms rated AAA − BB (IG), and B speculative

grade (SG). Furthermore, we focus on predicting an annual quantity instead of quarterly

fractions. A mean absolute error (MAE) and root mean squared error statistic (RMSE) is

computed as follows.

MAE(t) =
1

D

∑

d

∣∣∣Π̂an
d,t+4|t − Π̄an

d,t+4

∣∣∣ ,

RMSE(t) =

(
1

D

∑

d

[
Π̂an

d,t+4|t − Π̄an
d,t+4

]2
) 1

2

,
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where

Π̂an
d,t+4|t = 1−

4∏

h=1

(
1− Π̂qu

d,t+h|t

)
,

Π̄an
d,t+4 = 1−

4∏

h=1

(
1− yd,t+h

kd,t+h

)
.

There are several ways to forecast the required default signals. In this paper we first fore-

cast all factors jointly using a vector autoregression. This approach takes into account that

the factors are conditionally correlated. We then predict the conditional default probabilities

using equations (2) and (3).

Table 4 reports the forecast error statistics for five competing models. Model M0a does

not contain any common factors. It thus corresponds to the practice of forecasting the

time-varying probabilities using long-term historical averages. This yields relatively small

forecast errors when the risk factors happen to be close to their unconditional averages, such

as in the years 1998 and 2004, see Figure 5. However, there are substantial forecast errors

when this is not the case. Model M0a thus constitutes a lower benchmark. As an upper

bound, Model M4 uses the true (estimated) factors, and holds the model parameters fixed

at their end-of-sample values. This constitutes an infeasible best case. This upper bound for

improvements on average over the years 1997 to 2004 is about 26% for both rating groups.

The reductions in MAE are largest when risk factors are far from their long-term averages.

For instance, the MAE associated with the year 2000 ‘forecast’ of the recession year 2001 is

67% lower for investment grade firms, and about 48% lower for speculative grade firms.

[insert Tables 4 and 5 around here]

Model M0b uses three observed regressors instead of common factors to forecast condi-

tional default probabilities. These are the HP-filtered US unemployment rate, percentage

change in filtered unemployment, and the Baa corporate yield spread over treasuries. Similar

regressors are found to have a good in-sample fit, see Metz (2007). This set of regressors

turns out to improve out-of-sample forecasting accuracy only very slightly by about 1-2%

on average in terms of MAE.

Models M1, M2, and M3 from Table 4 correspond to out of sample forecasts using the

models estimated in Table 3. M1 contains only the common macro factors, with rating

19



dependent factor sensitivities. Model M2 contains one unobserved component only, and

allows its sensitivity to vary over both rating classes and industry groups. Model M3 contains

both types of factors. We note that the common macro factors F1,t and F2,t are helpful

in out of sample forecasting. The observed reduction in MAE is about 1-7%. Forecasts

improve when an unobserved component is added to about 11-18% on average. Reductions

in MAE are again highest when risk factors are far from their long term averages. The MAE

associated with the year 2000 forecast of 2001 default conditions is reduced by about 37%

(IG) and 26% (SG) when compared to Model M0b which contains only observable macro

variables. When compared to Model M0a the reduction is 38% for investment grade firms

and 27% for speculative grade firms. Such improvements are substantial and have clear

practical implications for the computation of capital requirements.

6 Conclusion

We propose and motivate a novel times series panel data model to estimate and forecast

large cross-sections of time varying conditional default probabilities. The model is the first

to combine the non-Gaussian panel data model of Koopman and Lucas (2007) with Stock

and Watson’s (2002a) approximate dynamic factor model. The final model accommodates

two different types of factors, both of which are statistically and economically significant

and capture a large part of the time-variation in observed default rates.

In this paper we can overcome a number of complications that arise naturally when

modeling firm defaults. For instance, we consider a ‘frailty’ setting in which all risk factors

are unobserved and need to be estimated. We take into account the information from a large

array of relevant macroeconomic and financial variables without running into dimensionality

problems. Finally, the panel data specification allows to efficiently capture the heterogeneity

in the cross-section of firms at any point in time. We focus on combinations of the current

rating class, industry specification and time from initial rating as characterizing the cross-

section. Other dimensions of firm heterogeneity such as firm size or geographical location

can be addressed in exactly the same way.

In an out-of-sample forecasting experiment we improve forecasts of time-varying con-

ditional default probabilities. Out-of-sample reductions are greatest when risk factors are
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far from their unconditional averages. Improvements range up to 25% compared to mod-

els which only use observable variables, and up to 27-30% when compared to models that

disregard changes in systematic risk conditions. The largest improvements on average are

achieved for a model specification which contains both unobserved components as well as

common factors from macro data.
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Table 1: Predictor Time Series in the Macro Panel

Main category, sub-category Summary of time series in category Total no

Bank lending conditions

Size of overall lending
Total Commercial Loans
Total Real Estate Loans
Total Consumer Credit outstanding
Debt of Domestic Sector
Commercial &Industrial Loans
Bank loans and investments
Household obligations/income

Household Debt/Income-ratio
Federal Debt of Non-fin. sector
Excess Reserves Depository Inst.
Total Borrowing from Fed Reserve
Household debt service payments
Total Loans and Leases, all banks

13

Extend of problematic
banking business

Non-performing Loans Ratio
Net Loan Losses
Return on Bank Equity
Non-perf. Commercial Loans

Non-performing Total Loans
Total Net Loan Charge-offs
Loan Loss Reserves 7

Macro and BC conditions

General macro indicators
Real GDP
Industr. Production Index
Private Fixed Investments
National Income
Manuf. Sector Output
Manuf. Sector Productivity
Government Expenditure

ISM Manufacturing Index
Uni Michigan Consumer Sentiment
Real Disposable Personal Income
Personal Income
Consumption Expenditure
Expenditure Durable Goods
Gross Private Domestic Investment

14

Labor market conditions
Unemployment rate
Weekly hours worked
Employment/Population-Ratio
Unemployed, more than 15 weeks

Total No Unemployed
Civilian Employment
Unemployed, less than 5 weeks 7

Business Cycle leading/
coinciding indicators

New Orders: Durable goods
New orders: Capital goods
Capacity Util. Manufacturing
Capacity Util. Total Industry
Light weight vehicle sales
Housing Starts
New Building Permits
Final Sales of Dom. Product

Retail sales and Food services
Inventory/Sales-ratio
Change in Private Inventories
Inventories: Total Business
Non-farm housing starts
New houses sold
Final Sales to Domestic Buyers

15

Monetary policy
indicators

M1 Money Stock
M2 Money Stock
M3 Money Stock
UMich Infl. Expectations
Personal Savings
Gross Saving

CPI: All Items Less Food
CPI: Energy Index
Personal Savings Rate
GDP Deflator, chain type
GDP Deflator, implicit

11

Corporate Profitability
Corp. Profits
Net Corporate Dividends

After Tax Earnings
Corporate Net Cash Flow 4

Intern’l competitiveness

Terms of Trade
Trade Weighted USD
USD/GER Exchange Rate

FX index major trading partners
USD/GBP Exchange Rate 4

Balance of Payments
Current Account Balance
Balance on Merchandise Trade
Real Exports Goods, Services

Balance on Services
Real Imports Goods & Services 5

Micro-level conditions

Labour cost/wages
Unit Labor Cost: Manufacturing
Total Wages & Salaries
Wholesale Trade Wages
Management Salaries
Technical Services Wages
Wages & Salaries: Other
Employee Compensation Index

Unit Labor Cost: Nonfarm Business
Non-Durable Manufacturing Wages
Durable Manufacturing Wages
Employment Cost Index: Benefits
Employment Cost Index: Wages & Salaries
Employee Compensation: Salary Accruals

13

Cost of capital
1Month Commerical Paper Rate
3Month Commerical Paper Rate
Effective Federal Funds Rate
AAA Corporate Bond Yield
BAA Corporate Bond yield

Treasury Bond Yield, 10 years
Term Structure Spread
Corporate Yield Spread
30 year Mortgage Rate
Bank Prime Loan Rate

10

Cost of resources
PPI All Commodities
PPI Interm. Energy Goods
PPI Finished Goods
PPI Crude Energy Materials

PPI Industrial Commodities
PPI Fuels and Related Products
PPI Intermediate materials 7

Equity market conditions

Equity Indexes
and respective volatilities

S&P 500
Nasdaq 100
S&P Small Cap Index

Dow Jones Industrial Average
Russell 2000 10
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Table 2: Panel Information Criteria by Bai and Ng (2002)
The table reports three different information criteria for both the balanced subset of the data as well as the
full panel. We calculate ICp1(r), ICp2(r), and ICp3(r), r = 1, . . . , 5. Bold print indicates minimal reported
values.

ICp1(r) r = 1 r = 2 r = 3 r = 4 r = 5
Bal. Subset −0.0344 −0.0429 −0.0306 −0.0101 0.0073
Full Panel −0.2860 −0.2892 −0.2795 −0.2669 −0.2630
ICp2(r) r = 1 r = 2 r = 3 r = 4 r = 5
Bal. Subset −0.0004 0.0252 0.0716 0.1261 0.1777
Full Panel −0.2725 −0.2621 −0.2388 −0.2127 −0.1852
ICp3(r) r = 1 r = 2 r = 3 r = 4 r = 5
Bal. Subset −0.0938 −0.1616 −0.2086 −0.2476 −0.2894
Full Panel −0.3180 −0.3531 −0.3753 −0.3946 −0.4127
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Table 3: Estimation results
Note: The factor sensitivity parameters β pertain to the unobserved component and depend on the firm’s
industry specification. The sensitivity parameters γ of the common macro factors depend on the firm’s
current rating class. Numbers in bold print are significant at a 5% significance level. The groups mnemonics
are given by fin: financial, tra: transport and aviation, lei: leisure, utl: utilities, hte: high tech and telecom,
hea: health care. The consumer goods industry constitutes the reference group. The results are calculated
using 1000 importance samples. Estimation period is 1981:1 to 2005:2.

Model 1: Only Ft Model 2: Only fuc
t Model 3: All Factors

par
λ0

λ1,fin

λ1,tra

λ1,lei

λ1,utl

λ1,hte

λ1,hea

λ2,0−3

λ2,4−5

λ2,6−12

λ3,IG

λ3,BB

λ3,B

val se t-val
−1.47 0.13 11.47
−0.47 0.13 3.57
−0.11 0.09 1.26
−0.48 0.11 4.30
−0.37 0.10 3.58
−0.20 0.11 1.84
−0.34 0.13 2.70
−0.73 0.12 6.24
−0.33 0.12 2.77
−0.43 0.12 3.49
−6.22 0.21 29.81
−3.96 0.13 29.52
−2.37 0.08 30.50

val se t-val
−1.50 0.19 8.10
−0.38 0.15 2.43
−0.18 0.09 1.95
−0.51 0.10 4.98
−0.39 0.11 3.58
−0.46 0.14 3.20
−0.44 0.13 3.35
−0.64 0.12 5.46
−0.36 0.13 2.85
−0.36 0.13 2.82
−6.35 0.26 24.24
−4.15 0.19 22.20
−2.51 0.12 20.51

val se t-val
−1.50 0.17 8.91
−0.40 0.14 2.84
−0.12 0.09 1.39
−0.67 0.17 3.98
−0.43 0.10 4.34
−0.34 0.12 2.75
−0.55 0.17 3.28
−0.68 0.13 5.35
−0.38 0.13 2.94
−0.39 0.13 3.13
−6.40 0.26 24.80
−4.21 0.21 19.88
−2.63 0.18 14.72

φ
β0

β1,fin

β1,tra

β1,lei

β1,utl

β1,hte

β1,hea

β2,IG

β2,BB

β2,CCC

γIG
1

γBB
1

γB
1

γCCC
1

γIG
2

γBB
2

γB
2

γCCC
2

0.76 0.17 4.59
0.73 0.12 5.97
0.44 0.06 7.14
0.42 0.06 6.74
0.28 0.16 1.74

−0.05 0.12 0.43
0.21 0.06 3.77

−0.02 0.06 0.26

0.87 0.08 11.70
0.70 0.18 3.72

−0.20 0.17 1.19
0.06 0.11 0.53
0.00 0.13 0.01
0.02 0.14 0.16
0.27 0.16 1.70
0.10 0.16 0.63
0.28 0.22 1.27
0.14 0.15 0.95

−0.32 0.12 2.72

0.85 0.08 10.40
0.64 0.17 3.81

−0.14 0.19 0.78
0.01 0.11 0.05
0.24 0.17 1.43
0.09 0.15 0.61
0.18 0.16 1.12
0.26 0.19 1.40

−0.14 0.26 0.55
0.00 0.19 0.02

−0.43 0.15 2.94
0.57 0.18 3.10
0.38 0.15 2.59
0.07 0.12 0.56
0.24 0.07 3.30
0.37 0.17 2.19
0.12 0.14 0.89
0.40 0.09 4.28
0.05 0.06 0.78

LogLik −2994.74 −2942.64 −2929.52
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Table 5: Changes in MAE
The table reports changes in mean absolute error for out of sample forecasting of the years 1997-2004 (left)
and the year 2000 forecast of the recession year 2001.

Reduction in MAE, years 1997 - 2004 Reduction in MAE, year 2001

M0a M0b M0a M0b
”no factors” ”observables” ”no factors” ”observables”

M1, only F̂t IG -1.8% -0.7% -5.1% -2.8%
SG -6.4% -4.6% -6.0% -4.0%

M2, only f̂uc
t IG -9.9% -8.9% -14.9% -12.8%

SG -14.4% -12.8% -20.0% -18.3%
M3, F̂t and f̂uc

t IG -11.1% -10.1% -38.2% -36.7%
SG -17.2% -15.6% -27.1% -25.6%

M4, Ft and fuc
t IG -26.0% -25.1% -68.0% -67.2%

SG -26.8% -25.4% -49.4% -48.3%
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Figure 1: Aggregated Default Data and Default Fractions
The graph exhibits total default counts, the total number of firms, and total default fractions after aggrega-
tion over all cells in the cross section.
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Figure 2: Default Fractions Scatterplot
The graph shows the full cross section of default fractions yjt/kjt over time t (where observed). The second
figure shows disaggregated default fractions for rating groups AAA−BBB, BB, B, and CCC.
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Figure 3: Principal components from unbalanced macro data
The first four principal components are calculated from unbalanced macro data (N=1,..,120) using the EM
algorithm of Stock and Watson (2002b).
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Figure 4: Factor loadings pertaining to the first two principal components
Each macroeconomic and financial variable from Table 1 is regressed on F1,t and F1,t, respectively. The
R-squared from these regressions are presented in the figures. The mnemonics are Bank: Bank lending
conditions, PrLn: Extent of problematic loan business; Macro&Empl: Macro indicators and labor market
conditions; BCInd: Leading and coinciding business cycle indicators; MP: monetary policy indicators; Intl:
Balance of Payments and Terms of Trade variables; Wag: Wages and Salaries data; IR&CR: Interest rates
and cost of intermediate goods and resources; Stocks: Equity indices and respective volatilities.
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Figure 5: Economic Significance of Common Factors
The figure indicates how the time variation of the total signal can be decomposed into variation of fuc

t and
of the first two principal components F1,t, F2,t. All factor sensitivities depend only on a firm’s current rating
class. The first figure shows the signal for investment grade firms. The second figure plots the three series
scaled by their respective factor standard deviations (sensitivity coefficients).

UC = (β0 + β1,IG)fuc (14)
UCF1 = (β0 + β1,IG)fuc + γ1,IGF1 (15)

UCF12 = (β0 + β1,IG)fuc + γ1,IGF1 + γ2,IGF2 (16)
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