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Abstract 

We analyze the dynamics of banks’ regulatory capital ratios. Using monthly data of regula-

tory capital ratios for a subset of large German banks, we estimate the target level and the 

adjustment speed of the capital ratio for each bank separately. We find evidence that, first, 

there exists a target level for a substantial percentage of banks; second, that private banks and 

banks with liquid assets are more likely to adjust their capital ratio tightly; and third, that 

banks compensate for low target capital ratios with low asset volatilities and high adjustment 

speeds. Fourth, banks with a target capital ratio seem to use an internal lower limit for their 

current ratios that is just above the regulatory minimum of 8%. 
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Introduction 

Banks’ capital ratios have received much attention because banks tend to have capital ratios 

by far lower than industrials, and a failure of a systemically relevant bank may threaten to 

derail the economy as a whole. Banks face a trade-off when choosing the appropriate level of 

their capital ratio. On the one hand, regulatory authorities and rating agencies force the banks 

to maintain a minimum capital ratio. The regulatory lower limit for the total-capital ratio is 8 

percent, while rating agencies and other market participants insist that a bank holds a certain 

ratio of Tier 1 capital if it wants to obtain a certain rating. On the other hand, banks try to 

maximize their return on capital to satisfy their investors; in contradiction to Modigliani/Mil-

ler’s irrelevance theorem (1958), it is believed that banks can increase their performance by 

substituting capital with debt.  

We pose the following three research questions: (1) Do banks adjust their capital ratios to a 

predefined target level or does the capital ratio fluctuate randomly, driven only by stochastic 

shocks without tendency to a mean? (2) Which bank characteristics determine whether banks 

adjust their capital ratio? (3) In our setting, the probability of failing to meet the regulatory 

requirements depends on three strategic parameters: the target capital ratio, the adjustment 

rate, and the asset volatility. Is there a compensating relationship between these three parame-

ters, for instance do we find that banks with a high capital cushion have volatile assets and 

low adjustment speeds? 

Our contribution to the literature is twofold. First, we are the first to estimate a partial adjust-

ment model for the capital ratio that determines the adjustment rate for each bank separately. 

Using monthly (instead of yearly or at best quarterly) data, we can apply the tools of time 

series analysis, especially those of stationarity analysis. Second, we provide insights into the 

strategic behavior of the capital management of German banks. 

Our results can be summarized in four statements: (1) For a significant percentage of the 

banks investigated, we can reject the hypothesis of capital ratios fluctuating randomly, i.e., 

there seems to be a certain capital ratio that management seeks to obtain. (2) We observe that 

the adjustment rates vary across banks. In an econometric analysis, we show that private 

banks and banks with liquid assets are more likely to adjust the capital ratio tightly. (3) Banks 

with a high target capital ratio tend to have a high asset volatility and/or a high adjustment 

speed to maintain a certain probability of meeting the regulatory requirements. (4) Assuming 
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perfect compensation among the three strategic parameters cited above, we can explain the 

interaction of asset volatility, target capital ratio, and adjustment speed with high power. We 

get the best fit to the data when we assume an internal lower limit for the banks capital ratios 

of just above the regulatory minimum of 8%. 

When analyzing the adjustment of capital ratios, most of the studies use a panel of firm data. 

Fama and French (1999) analyze a large panel of annual accounting and market data on non-

financial firms. They conduct panel regressions of the change of one-year-ahead book and 

market leverage on the mismatch between a target leverage and the current leverage. They 

find a much lower adjustment rate than we do, but the difference is not surprising, for several 

reasons. First, banks typically have more liquid assets than non-financials, allowing them to 

adjust leverage more quickly. Second, Fama and French’s target leverage is dynamic since it 

is specified as a firm-specific forecast, as opposed to the fixed target in our model. As such, 

mean reversion towards a moving target specifies the behavior in a much broader sense than 

that which we are testing for. Shyam-Sunder and Myers (1999) find similar results for a 

smaller sample of industrials. 

Flannery and Rangan (2006) analyze a sample of US firms to answer the questions of whether 

a target capital level for firms exists and how quickly firms close the gap between the current 

and the target debt ratio. They find that there does exist a target level and that the firms close 

approximately one third of the gap in one year. Lööf (2003) compares the adjustment rate in 

the USA, the UK and Sweden. He concludes that the speed of adjustment is higher in the eq-

uity-based economies (USA, UK) than in Sweden.  

Heid et al. (2004) analyze the capital ratios of German banks in a panel regression. They find 

that German savings banks try to maintain a certain capital buffer by adjusting their capital 

and their risk. Merkl and Stolz (2006) explore the banks’ capital buffers and their reaction to 

changes in the monetary policy. Using quarterly data of banks’ regulatory capital buffer, they 

can show that the capital buffer of a bank influences its sensitivity to a tightening of the 

monetary policy. Banks with a low capital buffer shrink their lending more strongly than 

banks with a high capital buffer. 

Our study is related to the studies cited above. However, the difference is that we can work 

with data of relatively high frequency (monthly data vs. yearly or at best quarterly data in the 

literature), enabling us to estimate the partial adjustment parameter for each bank separately.  



The paper is structured as follows. In Section 2 we introduce the model, and in Section 3 we 

put forward hypotheses on the adjustment dynamics and on the bank characteristics that influ-

ence the dynamics. In Section 4, we present the data and give some descriptive statistics. Sec-

tion 5 gives the results of the empirical study, and Section 6 concludes. 

 

1 Model 

Our model is a discrete-time version of Collin-Dufresne/Goldstein’s (2001) partial-adjustment 

model. Unlike in the Merton (1974) model, the amount of debt is not exogenous, but depends 

on a target debt ratio and the ability of the management to adjust that ratio. The dynamics of 

our setup are exactly the same as in Collin-Dufresne/Goldstein (2001), yet we observe the 

process at discrete times only.  

We assume that the bank’s assets tA  follow a geometric Brownian motion, 

 t
t

t

dA dt dW
A

μ σ= + , (1) 

where  is a standard Wiener process, tW μ  is the drift, and σ  is the volatility of the asset 

return. The process is observed at discrete times of step size Δ , so we set :n nA A Δ= . Note that 

with :μ μ= Δ  one immediately gets ( )1 expn

n

A
A

μ+⎛ ⎞
=⎜ ⎟

⎝ ⎠
E  from the solution of (1) in exponen-

tial form. The bank’s debt nD  increases in the course of time at the same constant expected 

te ra μ . In addition to this deterministic (or planned) growth of debt, the bank’s management 

tries to adjust the current debt /n nAratio nL D := , i.e. the complement of the capital ratio, to-

wards a predefined targe level t L . Following Collin-Dufresne and Goldstein (2001), we spec-

ify the dynamics of adjustment such that it will be convenient to switch to the logs of assets 

and debt: 

 ( )1 1: en n n n

n n

D L A L
D L A L

κ κ

xp μ
− −

+ +⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

E  (2) 

 4 



 5 

aking the logs of Equations (1) and (2) and using low

ables, we can rewrite (1) and (2) as 

 

T er-case letters to denote the log vari-

1 1n n na a μ ε+ += + + , (3) 

with i.i.d.  and ( )2
1 ~ 0,n Nε σ+ Δ

( ) ( )( ) 1n n n n n nd d l l d d a lμ κ+ = + + ⋅ − = + − ⋅ − + . (4) 

The right part of 

μ κ

 the log debt “pursues” lo(4) illustrates how g assets: If log debt exceeds log 

assets minus a buffer of size l− , its growth rate falls below the mean growth of log assets,

and vice versa. The coefficient 0κ ≥  is a m

 

easure of the speed of adjustment: The higher the 

value of , the quicker debt is adjusted. If κ κ  equals zero, then the bank management does 

n-not adjust its debt after random shocks of the asset value but follows a simple strategy of co

stantly raising debt at a deterministic rate. 

Remark In Collin-Dufresne and Goldstein’s counterpart to Equation (4), there is no μ  

on the right side, which, at first glance, decreases the debt growth compared to our notation. 

But notation is the only difference in the end: What Collin-Dufresne and Goldstein call a tar-

1a+ + +− , we 

derive the following empirical implication: If the param

get leverage is a bit lower than mean leverage in the long run. In our notation, target and long-

term mean leverage coincide. 

Taking the difference of Equations (4) and (3) and using the definition l d=1 1n n n

eter κ  is greater than zero, then the 

log debt ratio  follows a stationary autoregressi (1)): 

 n

nl ve process of order 1 (AR

1 1n nl lα β η+ += + ⋅ +  (5) 

with Gaussian 1nη +  and 

 lα κ= ⋅  (6) 

 1β κ= − . (7) 

The standard deviation of nη  equals the asset volatility :εσ σ= Δ .  
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eck

als e negative capital ratio ; using this approximation and Equations 

) to (7), we see that the bank management is assumed to par

to the predefined 

Again, this model fits precisely in Collin-Dufresne and Goldstein’s framework: Our AR(1) 

process is the observation of an Ornstein-Uhlenb  process at discrete times.  

As banks’ capital ratios tend to be low compared to those of non-financials, the log debt ratio 

approximately equ  th nCR

(5 tially adjust the capital ratio CR 

CR : 

 ( )1 1n n nCR CR CRκ ε+ +Δ ≈ ⋅ − +   (8) 

Remark Equation (8) appears to be a natural starting point of modeling adjusted capital 

ratios. However, we don not use it by two reasons. First, Equation (8) generates nonsensical 

capital ratios above one with positive probability. Second, there is no simple stochastic differ-

o

e m

ential equation for the capital ratio, the discrete-time observation of which would follow (8); 

the same applies to the asset value pr cess. 

Equation (5) is central for testing th odel. If a bank manages to keep the capital ratio rela-

tively constant at a predefined level l , then the parameter κ  is greater than zero and, accord-

ing to Equation (7), the parameter β  in the autoregressive process (5) is less than one. That is 

agement is unable or unwilling to adjust the capital ratio, there will be no mean reversion and 

the bank’s capital ratio is just a unit root proc 1

exactly the necessary condition fo  stationarity of the AR( ) process. In contrast, if the man-

ess, i.e.

r 1

 β =  and, equivalently, 0κ = . There-

fore, the question of whether the anagement adjusts the capital ratio to a predefined 

level is equivalent to testing the hypothesis 0 : 0H

 bank m

κ = , i.e. purely random behavior of the 

capital ratio, against hypothesis 1 : 0H κ > , i.e. adjustment of the capital ratio to a target level. 

In econometric terms, the test is a unit-root test for which we will use the Augmented Dickey-

Fuller (ADF) test. If we can reject the null hypothesis according to which the capital ratio 

pr e

follows a unit root process, we find support for the claim that the capital ratio is stationary and 

tends to return to a ed fined level. 

Having established whether a certain bank adjusts its level of capital ratios to a predefined 

level, we estimate α , β  and 2
ησ  with an ordinary least squares (OLS) regression. From their 

estimation and with the help of the delta method, we get point estimates of the relevant pa-
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meters  and κ lra  and determine the asymptotic joint distri

asymptotic theory we know that 

bution of these estimates. From 

 ( )ˆ
ˆT Nα α ( )0,d

ββ
⎛ ⎞⎛ ⎞ − ⎯⎯→ Σ
⎝ ⎠⎝ ⎠

. (9) 

et

⎜ ⎟⎜ ⎟

L  ( , )lθ κ ′=  be the parameter vector and let ( )ˆ ˆ ˆˆ1 , /(1 ) ′θ β α β= −

lowing expression is then asymptotically normally distributed: 

 

−  be its estimate. The fol-

( ) ( )ˆ 0;dT Nθ θ− ⎯⎯→ Ω  (10) 

with  

2 2

1
1

1
1 (1 ) (1 )

00 1
1

β
α α

β β β

−

− − −

⎛ ⎞−⎛ ⎞Ω = Σ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠
  (11) 

wo ways. They can extend their business volume or they 

can reduce capital, for instance by repurchasing their own shares or by paying large divi-

 subsample comprises the banks with the highest values 

2 Hypotheses 

Banks can lower the capital ratio in t

dends. Correspondingly, banks can increase their capital ratio by shrinking the business vol-

ume or by raising additional capital. 

In the empirical study, we analyze the behavior of the bank management concerning the capi-

tal ratio. We formulate three different hypotheses.  

From the ability to take action as described above we derive our first hypothesis: Banks which 

are active in highly liquid markets, such as investment banks, can extend and shrink their 

business volume more easily than traditional commercial banks, which mainly hold illiquid 

loans. Banks with liquid assets are therefore more likely to adjust their capital ratio than other 

banks. We measure the degree of the assets’ liquidity by the ratio market, which corresponds 

to the market price risk over risk-weighted assets, including market price risk; i.e. market is 

trading book risk as a share of the entire risk of the bank. We break down our sample of banks 

into three subsamples of equal size. The first subsample consists of the banks with the lowest 

values of the variable market, the third
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es the ROE, albeit at a 

rising cost of harming their external rating. In contrast, public sector banks have excellent 

otivates banks to adjust their capital ratios, contra zero 

capital is the relevant threshold banks care for. The alte

probab

t ratio, the more volatile the assets or the lower the adjustment rate, the more likely it 

is that regulatory failure will occur. To keep this probability constant in the event of increased 

sset volatility, one has to decrease the target debt ratio or to incr

of the variable market, i.e. the banks with a large portion of trading book risk. If our hypothe-

sis is true, the share of banks that adjust their capital ratio will be higher in the third subsam-

ple than in the other two subsamples. 

Not only the ability to adjust the capital ratio matters, but the incentive to actively control the 

capital ratio is important as well. Our second hypothesis is based on the assumption that re-

turn on equity, or ROE (without adjustment for risk) is still an important performance meas-

ure. If ROE is the common measure of profit, banks with a strong orientation towards share-

holder value are more likely to keep the capital ratio in relatively narrow intervals. Ceteris 

paribus, a decrease in the capital ratio seems desirable, as it increas

external ratings due to explicit state guarantees until July 2005, whereas maximum profit is 

not their primary business objective. Our second hypothesis is therefore that private banks are 

more likely to adjust their capital ratio than public sector banks.  

Our third hypothesis is about the probability that a bank’s capital ratio will drop below the 

regulatory limit, called probability of insufficient regulatory capital ( PIRC ). Out hypothesis 

is that this probability does not vary much across banks, because there seem to be compensat-

ing effects: banks with a low target capital ratio tend to invest in assets of low volatility and 

those banks seem to be able to adjust their capital ratios quickly. There may be wide differ-

ences across banks concerning target capital ratios, adjustment rates and asset volatilities; 

however, the variation in the probabilities of failing to meet the regulatory requirements is 

assumed to be much lower. Furthermore, we assume that it is the regulatory limit of capital 

that m sting with the hypothesis that 

rnative hypothesis would be that the 

ility of zero capital does not vary much across banks. We denote the state of zero capi-

tal by technical insolvency; the corresponding probability of technical insolvency is denoted 

by POTI . 

PIRC , the probability of failing the regulatory requirements, depends on three strategic pa-

rameters: the target debt ratio, the asset volatility, and the adjustment rate. The higher the tar-

get deb

a ease the adjustment rate. We 
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f owrun the oll ing cross-sectional regression to test whether this compensatory behavior really 

exists: 

 ( ) ( )l l 1 2 ,i i i iε εβ κ κ β σ σ ν− = − + − + , (12) 

where l , κ , and εσ  denote averages over the sample of banks. If there is relatively little 

fluctuation in the probability of regulatory failure, one will see compensatory effects leading 

to a positive sign for 1β  and a negative sign for 2β . Note that w her associate causality 

with putting the target debt r tio t side of (12) nor do we hope to find something out 

about causality this way.  

We more specifically investigate whether the relationship betw hree stra

e neit

a  on the lef

een the t tegic parame-

ters can be explained by a global  for all banks. A unique  establishes a determi-PIRC PIRC

lnistic relationship between , κ , and εσ  that no bank will follow to perfectly; some banks 

will not at all. By “explaining” we mean that the deterministic relationship fits with the 3-

dimensional scatterplot of the banks’ parameter choices in the ( ), ,l εκ σ -space. 

As we consider a bank’s parameter triplet as a s ategic long-term choice, the definition of 

PIRC  is correspondingly chosen as the prob

tr

ability of falling below the minimal regulatory 

capital under the stationary distribution. Intuitively, that is the distribution after a long time 

 now. Mathematically, we require strict stationar ( )nlfr ity, meaning that the process om
n∈

follows a distribution that is independent of time . The AR(1) process of (5) with Gaussian 

 

 

n

increments is strictly stationary if and only if 

2

0 2~ ,
1

l N l εσ
β

⎛ ⎞
⎜ ⎟ , (13) 

−⎝ ⎠

for which β  must be smaller than one. Even if the distribution of 0l  is not identical with (13), 

it will be approxim e values of n  under mild assumptions.4ated by that of  for larg   

                                                

nl

 

4 A finite second moment fo  is sufficient. r 
0l
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A certain regulatory capital ratio must never fall below some critical threshold ; the own-

funds ratio, for instance, is always to be kept above . It means f

that  with 

*CR

8% or the log leverage ratio 
*

nl l≤ ( )* *ln 1 0.08338l CR= − ≈ −  must hold for all . We fix a certain  and de-

fine  as the probability of the event 

n n

PIRC { }*
n

 

l l> . With (13) and strict stationarity, we obtain 

a probability that is independent of time :  n

( ) ( )
2

* *1
: Pr nPIRC l l l l

ε

β
σ

⎛ ⎞−
⎜ ⎟= > = Φ −
⎜ ⎟
⎝ ⎠

, (14) 

d rd norma l

fine

where Φ enotes the standa l cumu ative distribution function. Note that PIRC  de-

d this way is not the probability of migrating from *
nl l

 

<  to *
1nl l+ ≥  but equal to the ex-

pected share of the sojourn time that  will spend above , that the c ital 

ill spend below . 

Our assumption that  be the same for all banks establishes a deterministic relationship 

 nl
*l  or, equivalently ap

 *CRratio w

 PIRC

between β  (being equal to 1 κ− ), σ , and l . To make it comparable to (12), we denote by 

 the standard normal quantile function and transform (14) to an equation that takes the 

le of a regression forecast: 

1−Φ

ro

( )* 1

21
l l PIRC εσ

β
−= +Φ

The full nonlinear regression model is obtained by adding a noise term

−
 . (15) 

iχ :  

 ( ) ,* 1

21
i

i i

i

l l PIRC εσ χ
β

−= +Φ +
−

. (16) 

Associating the s with the targets  error il  is somewhat arbitrary. We also  have rear-

ranged (15) with 

could

εσ  or β  on the left-hand side or even stay with (14), adding errors to 

. While the last option would rule out a comparison with the linear model, we prefer PIRC il  

on the left-hand side of  since only this version has a plain additive constant ( ) on the 

right-hand side, which makes it easier to be compared with the linear model. 

(15) *l
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Similar to the , we define the probability of technical insolvency ( ) under the 

stationary distribution as the probability of negative capital at one

PIRC POTI

 fixed point of time 

 ( )
21

: Pr 0nPOTI l l
ε

β
σ

⎛ ⎞−
⎜ ⎟= > = Φ
⎜ ⎟
⎝ ⎠

 (17) 

and notice that POTI  should be interpreted with care: It is the mean share of the sojourn time 

the bank “spends in technical insolvency”, which is unrealistic in that a bank would hardly 

return from  Yet our definition of  is closely related to the probability that the 

se all capital in the next period conditional on positiv 5

ear regression corresponding to the assumption of a unique  is  

 this state. POTI

bank will lo e capital today.  The nonlin-

POTI

( ) ,1

21
i

i

POTI ε i il
σ

χ
β

− +
−

. (18) 

Returning to the calibration of PIRC , we minimize the squared errors in 

= Φ

e-

ter, as opposed to three coefficients of the linear regression; equal power of both models 

o

We finally check which value the critical threshold  is calibrated to if also used for least-

 the hypot  a unique . If 

the  picture were to fit nicel at an implied threshold 

han to , for the example of the own-funds ratio.  

subset of large German banks. Data on all German banks are available. However, we confine 

                                                

(16) and compare its 

explanatory power with that of the linear regression. Note that (16) has only one free param

would thus be evidence in favor of the nonlinear m del. We compare the models with the 

Schwarz information criterion, which balances goodness of fit and simplicity. 

squares optimization of (16). With the implied threshold, we can measure whether the data 

possibly fit better with hesis of a unique POTI  rather than that of

*l

PIRC

POTI y, the calibration should end *l  

 ( )ln 1 8%−closer to zero t

3 Data 

Our data consist of monthly observations of regulatory capital and risk-weighted assets for a 

 

5 Under the stationary distribution, the probability of technical insolvency in the next period, conditional on 
positive capital this period, is a function of POTI and mean reversion. It is strictly increasing in POTI for practi-
cally relevant values. 
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hen retained earn-

ings or losses abruptly change the capital ratio. To mitigate the problem of jumping capital 

ratios, we consider only those banks 

sk-weighted assets. 

rative sector. Nine banks cannot be assigned to any of the above three sec-

tors.6 As the sample is biased towards the large banks, it is not representative of the German 

g book. The denominator consists of the risk-weighted assets in the banking book and, 

additionally, of those in the trading book. Also the own-funds ratio must not fall below 8 per-

                                                

ourselves to a subset of these banks, because small banks show very little variation in their 

capital ratios most of the time but substantial jumps at the end of the year w

which meet the following two criteria: 

1. The bank reports consolidated figures for regulatory capital and ri

2. Average Risk-weighted assets exceed one billion euros. 

In addition, we only include banks for which there are at least fifty monthly observations. 

After applying the criteria, the whole sample consists of 81 banks. 25 of these banks belong to 

the first pillar of the German banking system, the private banks; 32 banks are part of the pub-

lic sector, which is composed of the savings banks and the Landesbanken, and 15 banks be-

long to the coope

banking sector.  

For each bank and each point in time we calculate three different capital ratios: the Tier 1 ra-

tio, the total-capital ratio, and the own-funds ratio. The first one—the Tier 1 ratio—is Tier 1 

capital over risk-weighted assets. Risk-weighted assets are obtained by allocating the assets of 

the banking book to different risk buckets. The Basel Accord implicitly stipulates that the Tier 

1 ratio exceeds 4 percent. The second and widest-spread ratio is the total-capital ratio. It is 

defined as total capital over risk-weighted assets. In addition to the Tier 1 capital, the total 

capital includes supplementary capital, such as parts of undisclosed reserves and subordinated 

debt with a long maturity. The Basel I Accord fixes 8 percent as the lower limit for the total-

capital ratio. Among the three capital ratios considered, the own-funds ratio is based on the 

most comprehensive definition of capital and assets. In addition to total capital, the own funds 

comprises subordinated debt with a relatively short residual term and unrealized profits in the 

tradin

cent. 

 

6 These nine banks include special-purpose banks (Förderbanken) and building associations. 
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pproximately corre-

spond to the negative capital ratios) and the trading book risk, given as a percentage of total 

bank risk. Note that there are two dimensions, the cross-sectional dim nsion consisting of 81 

units (banks) and the time dimension consisting of up to 99 observations. 

Observa- Mean Stand. 10% low- Median 10% 

The German regulatory authorities have monthly data on equity ratios from October 1998 to 

December 2006, which means that we have a maximum of 99 observations for one bank. In 

Table 1 we give summary statistics of the three log debt ratios (which a

e

Variable tions dev. est largest 

Negative log debt ratio 7081 8.90% 7.25% 5.46% 7.44% 12.26% (Tier 1 capital) 

Negative log debt ratio 7081 13.52% 11.23% 9.64% 11.58% 16.72% (total capital) 

Negative log debt ratio 
(own funds) 7081 12.02% 3.60% 9.41% 11.13% 15.26% 

Share of market risk 7081 5.54% 10.05% 0.00% 1.81% 14.50% (market) 

Table 1: Summary statistics of negative log debt ratios and of the variable market, measured by trading book risk 

over total bank risk 

For each bank we calculate the time seri n of each of the four variables. The results are 

displayed in Table 2. 

Variable Ob-
servations Mean Stand. 

dev. 
10% low-

est Median 

es mea

10% 

largest 

Negative Log debt ratio 81 8.93% 5.71% 5.97% 7.53% 12.61% (Tier 1 capital) 

Negative Log debt ratio 81 13.55% 7.93% 10.09% 11.77% 15.82% (total capital) 

Negative Log debt ratio 8% 11.38% 15.20% (own funds) 81 12.03% 2.56% 9.9

Share of market risk  
(market) 81 5.34% 9.45% 0.11% 1.60% 12.79% 

Table 2: Summary statistics of the time series means for the relevant variables 

The total variance of a variable (as displayed by standard deviations in the fourth column of 

Table 1) is the sum of the serial variation around the banks’ means and the variation of the 
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 between 

the banks (51%); the time series variation accounts for about 49% of the total variation. This 

ng into cross-sectional and serial variation can be found for the other log 

debt ratios as well; for the variable market the cross-sectional variation is dominant.  

In ber othesis 

of a unit root process. 

Number of banks with unit root process rejected for 

banks’ means itself (as displayed by standard deviations in the fourth column of Table 2). For 

instance, as the total variance of the log debt ratio (own funds) is 12.98E–04 ( = (3.60%)²) and 

the variation of the banks’ time series means (own funds) is 6.57E–04 ( = (2.56%)²), the 

variation of log debt ratio (own funds) around the banks’ means must then be 6.41E–04. For 

this variable, about half of the total variation is due to the cross-sectional differences

almost equal splitti

4 Results 

Table 3, we report the num  of banks for which we are able to reject the null hyp

Signifi-
cance level 

# of 
banks Tier 1 ratio Total-capital r. Own-funds r. 

1% 81 6 14 12 

5% 81 12 22 24 

10% 81 17 27 31 

Table 3: Summary results of the Augmented Dickey-Fuller (ADF) Test for the three different capital ratios. We 

include a constant but no trend term in the estimation. The number of lags is determined with the Schwarz in-

formation criterion. 

We see that we can reject the hypothesis of a unit root process, i.e. of unadjusted capital ra-

tios, in 31 out of 81 cases for the own-funds ratio at the 10% level. It is not justified to con-

clude that the other 50 banks do not adjust their capital ratio. Rather, it may be that there is a 

mean reversion, but that the mean reversion is not strong enough to make the test reject the 

hypothesis of a unit root process. For the following analyses, we split the sample of 81 banks 

into those banks for which we can reject the null hypothesis of a unit root process at the 10%-

level (adjusting banks) and into the rest of the banks. Depending on the capital ratio under 

. 

consideration, the sample comprises 17 (Tier 1 ratio), 27 (total-capital ratio), or 31 banks 

(own funds ratio)



Table 4 gives an overview of the estimated parameters, i.e. the adjustment coefficient κ , the 

target debt ratio l  and the asset volatility εσ . We include only those banks for which we can 

reject the null hypothesis of a unit root vel. To e 

run regression ( ch b then we calculate the parameters according to the Equations 

(6) and (7). The s rd err the ee s in  E (1

ma ic te rd

process at the 10% le  obtain the estimates, w

5) for ea

tanda

ank; 

ors in  last thr  column are obta ed from quation 1). 

Esti ted coeff ient Estima d standa  errors 

Parameter Capital # of 
banks 

lowest largest lowest Median largest 
ratio 10% Median 10% 10% 10% 

Tier 1  17 7.16% 19.4  15.5  8% 48.89% 3.27% 7.65% 7%

total-cap. 27 12.0  24.3 20.3  8% 0% 54.05% 4.57% 8.08% 7%

Adjustment  
coefficient 

 

(per 
month) own-funds 31 9.47% 20.18% 51.09% 4.17% 7.80% 15.24%

Tier 1  17 5.67% 8.08% 12.66% 0.07% 0.31% 1.68% 

total-cap. 27 9.69% 10.87% 15.87% 0.12% 0.30% 0.72% 
Negative 

debt ratio 
0.12% 0.27% 0.65% 

log target 

own-funds 31 9.82% 10.55% 13.29% 

Tier 1  17 0.12% 0.42% 2.01% - - - 
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total-cap. 27 0.24% 0.73% 2.39% - - - 

Asset  
volatility 

(per 
month) own funds 31 0.25% 0.59% 1.47% - - - 

Table 4: Summary statistics of the relevant estimated parameters. 

We see that the adjustment coefficients vary greatly across banks, but the adjustment coeffi-

cient is significantly different from zero for most of the banks in the subsamples. For the own 

funds ratio we observe a median adjustment coefficient of 20.18% per month. This value 

nt and the median target values for the total 

capital and the own-funds ratio are a bit less than 11 percent. Seemingly, the target capital 

buffer of the median bank is about 4 percentage points for the Tier 1 ratio and 3 percentage 

points for total-capital ratio and own funds ratio. 

means that the average bank closes the gap between the current and the target own funds ratio 

by some 20 percent per month. If there were no further random shocks, the bank would halve 

the gap in a bit more than three months.  

As stated before, the negative log target debt ratio is approximately equal to the capital ratio 

and, in the following, we will keep this interpretation in mind. We see that the target Tier 1 

capital ratio for the median bank is about 8 perce



The implicit asset volatility is a bit more than one-half percent per month or just above 2% per 

year. Using the Tier 1 ratio, we get slightly lower estimates for the asset volatility than using 

the two other capital ratios. 

Our first hypothesis is that banks with a large share of liquid assets can more easily adjust 

their capital ratio to a target level. To check this hypothesis we break down our sample of 81 

banks into three subsamples of 27 banks each. As stated before, the first subsample contains 

the 27 banks with the most illiquid assets (as measured by the variable market, i.e. the trading 

book risk as a share of the entire risk), the second and third subsample contain the banks with 

medium and highly liquid assets, respectively.  

Number of banks with unit root process rejected for (10%-level) Liquidity of 

assets (market) 

# of banks  

Tier 1 ratio total-capital r. own-funds r. 

Bottom third 27 4 8 8 

Medium third 27 6 8 8 

Top third 27 7 11 15 

All 81 17 27 31 

Table 5: Number of banks with unit root process rejected for at the 10% level, broken down into three subsam-

ples according to the liquidity of the assets. The liquidity of a bank’s assets is measured by the variable market, 

the trading book risk as a share of the entire risk of the bank. 

Table 5 shows that the number of banks with unit root process rejected for is the highest for 

the third of banks with the most liquid assets. Applying Pearson’s 2χ -test of equal numbers 

in the three thirds, we can reject this hypothesis for the own funds ratio ( ( )2 5.12, 2 7.7%χ = ). 

It is not surprising that we find the most supporting result for the own-funds ratio because 

market risk is a direct component of the own-funds ratio.  

We do not place too much weight on the above results, because they may be driven by hidden 

covariates. For instance, the sector affiliation may be such a hidden covariate: private banks 

tend to have a high share of market risk and—at the same time—private banks tend to adjust 

their capital ratio (see Table 6). 
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Our second hypothesis is that privately owned banks adjust their capital ratio more rapidly 

than public sector banks. In Table 6, we display the results of the Augmented Dickey-Fuller 

(ADF) Test for the own-funds ratio broken down into the different banking sectors.  

Sector Private Public 
sector 

Coopera-
tive Other All 

Not significant 9 28 9 4 50 

Significant at the 10% 
level 16 4 6 5 31 

All 25 32 15 9 81 

Share of significant banks 64% 13% 40% 56% 38% 

Table 6: Summary results of the ADF Test for the own-funds ratio, broken down into the banking sectors. 

Whereas it is possible to reject the unit root process hypothesis for 64% of the private banks 

(16 out of 25 private banks), the corresponding share for the public sector banks is 13% (4 out 

of 32 public sector banks). This result supports our second hypothesis, i.e. that privately 

owned banks are more likely to adjust their capital ratio than public sector banks. The 2χ  test 

of equality of all four shares is rejected at the 1% level ( ( )2 17.16,3 0.1%χ = ). For the other 

two ratio, the results are similar. 

Our third hypothesis is about compensatory effects with respect to the three strategic variables 

target debt ratio, adjustment rate and asset volatility. To analyze these effects we run regres-

sion (12) for the banks for which we can reject the unit root hypothesis at the 10%-level (We 

removed one outlying bank because its estimated target log debt ratio was above  

for the own funds ratio and the total-capital ratio).  

( )ln 1 8%−

Explanatory variables Tier 1 ratio Total-capital r. Own-funds r. 

Adjustment rate -0.067 
(-4.10)*** 

-0.014 
(-0.75) 

0.047 
(3.67)*** 

Asset volatility -0.620 
(-8.56)*** 

-0.549 
(-8.86)*** 

-3.030 
(-7.76)*** 

R² 0.8829 0.7865 0.6938 

Observations 17 26 30 

Table 7: Results for the regression (12). Dependent variables: log target debt ratios. ***, ** and * denote signifi-

cance at the 1%, 5% and 10% level, respectively. t-values in brackets. Outliers, i.e.  

log (target debt ratio) > –0.083 (for total-capital ratio and own-funds ratio), are removed. 
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For the own-funds ratio, we find compensatory behavior concerning the three strategic vari-

ables: Banks with high target log debt ratios (i.e., low capital) tend to have high adjustment 

rates and low asset volatilities. For the Tier 1 ratio and the total-capital ratio the coefficient for 

the adjustment rate has the wrong sign. 

In order to see if a unique  being striven for by all banks can explain the compensatory 

effects in the strategic variables, we estimate Equation 

PIRC

(16) and (18) for the own-funds ratio. 

The sample is again restricted to the 30 banks with rejected unit root tests, except for the same 

outlier.  

Model 
Implicit/fixed 
threshold (re-
ported: ) *CR

Implicit 
probability 

Errors 
( MSE , 

mean) 

Schwarz In-
formation Cri-

terion 
2R  

Regulatory 
threshold 

(  ) PIRC
fixed at 8% 0.93% 1.20% 

–0.18% –8.701 64.7% 

Optimized 
threshold 

calibrated to 
8.52% 2.14% 1.16% 

0 –8.659 67.1% 

Threshold 
zero 

(  ) POTI
fixed at 0% 0.00% 5.04% 

–2.79% –5.828 –525.0%7

Linear model  
(see Table 7) — — 1.10% 

0 –8.651 69.4% 

Table 8: Results for the estimation of the nonlinear equations (16) and (18) and corresponding results of the 

linear regression (12), all based on own-funds ratios. Dependent variable of all models: estimated target log debt 

ratios. The nonlinear model is calibrated to least squared errors (1) by PIRC only (capital threshold fixed at 8%); 

(2) both by PIRC and capital threshold CR*, and (3) by the POTI only (threshold fixed at 0%). Errors in Line 2 

and 4 have nonzero mean for lack of a free constant. The sample is restricted to observations with rejected unit 

root hypothesis at a significance level of 10%, after elimination of one outlier with an estimated target capital 

ratio far less than 8%. 

First, only the  is calibrated towards least squared errors; the critical own-funds ratio 

 is fixed at the regulatory level of 8%, which corresponds to . We obtain an 

implicit stationary probability of insufficient capital of 0.93%, which means that, on average, 

PIRC
*CR * 0.0834l = −

                                                 

7 Models without a free constant can actually generate negative R2 
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a bank lacks regulatory capital 0.93% of the time.8 Note that we observed actions of rather 

healthy banks. For that, our implicit  is presumably higher than its physical counterpart 

since bank managers, facing a big danger of regulatory intervention, will put more effort into 

maintaining a proper capital ratio than linear mean reversion presumes. 

PIRC

Second, we optimize with respect to both the  and the threshold  using least-squares. 

The corresponding best-fitting critical own-funds ratio  is slightly above the regulatory 

8%, whereas the implied  more than doubles due to its convexity in . It is this strong 

sensitivity to  that suggests not to interpret the level of the best-fitting  directly. We 

put emphasis on the size of the threshold and on the ability to explain the interaction of the 

strategic parameters by a single background factor. 

PIRC *l
*CR

PIRC *l
*l PIRC

Third, to check whether the implied threshold of the second analysis is robust, we estimate 

(18) by calibrating the . The model does not fit at all, and the implicit  is physi-

cally zero.  

POTI POTI

Fourth, we compare the explanatory power of the models by the Schwarz information crite-

rion9 (SIC); the lower its value, the better the model. The SIC rewards both for small errors 

and for the parsimonious use of parameters. According to the SIC, the nonlinear model based 

on  fits best, while the two-parameter nonlinear model and the linear model are 

nearly on a par. 

* 8%CR =

Figure 1 summarizes the relationship of the models’ SIC. We let the (non-

optimized) capital threshold take values from 0% to 16% and plot the SIC of the correspond-

ing best-fitting nonlinear model. The SIC of the linear model gives a flat line, as it does not 

depend on ; the two-parameter nonlinear model is represented by a single point. The graph 

confirms the mild advantage of the one-parameter nonlinear model above the linear one and 

sharply disqualifies the zero-capital model. 

*l
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8 Recall that we calculate by PIRC the mean sojourn time of the state of insufficient regulatory capital under the 
stationary distribution. 

9 Also called Bayes information criterion in the Literature. 
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Figure 1: Schwarz information criterion (SIC) for the linear model and different versions of the nonlinear model. 

According to given critical capital thresholds (on the abscissa), the solid line plots the SIC value after optimiza-

tion of the probability to fail the given threshold; diamond: SIC of the nonlinear model when also the threshold is 

optimized; dotted line: SIC of the linear model (unaffected by threshold). 

In addition, we apply a log-likelihood test to see whether restricting  to –0.083 reduces the 

explanatory power, compared with optimizing . As 

*l
*l Figure 1 already suggests, the null hy-

potheses (no loss of explanation) is not rejected, contrasting the test of  against opti-

mized  with a clear rejection. 

* 0l =
*l

As a supplementary analysis, Figure 2 makes clear that the nonlinearity of our model is sub-

stantial. According to (15), the surface maps relevant values of εσ  and  to the predicted 

target log debt ratio. 

κ
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Figure 2: Target log debt ratio as a function of asset volatility and mean reversion, according to the estimated 

nonlinear regression forecast (15); estimation from Table 8, Line 2: capital threshold at 8%, PIRC = 0.93%; both 

variables between their lower and upper deciles of the sample. 

To sum up, we state that the “regulatory threshold story” fits better with our data than a linear 

model and much better than the “technical insolvency story”. 

5 Conclusion 

The aim of the paper is to obtain an insight into how German banks’ management adjusts 

capital ratios. Using relatively high-frequency data, we can analyze the capital ratio for each 

bank separately. It turns out that the capital ratio adjustment in private banks and banks with 

liquid assets tends to be more pronounced. Banks seem to choose a mix of adjustment rate, 

asset volatility and target debt ratio so as to maintain a certain probability to fulfill the regula-

tory requirements on the own-funds ratio. 

We expect that after introduction of Basel II, with an increased orientation to the capital mar-

ket and a stronger link between internal and regulatory risk management, the effects will be 

even more distinct. 
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