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Abstract

We study the dependence between the downside risk of European
banks and insurers. Since the downside risk of banks and insurers
di¤ers, an interesting question from a supervisory point of view is
the risk reduction that derives from diversi�cation within large banks
and �nancial conglomerates. We discuss the limited value of the nor-
mal distribution based correlation concept, and propose an alternative
measure which better captures the downside dependence given the fat
tail property of the risk distribution. This measure is estimated and
indicates better diversi�cation bene�ts for conglomerates versus large
banks.

1 Introduction

Since the lifting of the regulatory barriers for mergers between banks and
insurers in the US, there has been an ongoing discussion on the appropriate
regulatory framework for �nancial conglomerates. If the risk pro�le of in-
surance activities of a newly formed conglomerate is di¤erent from the risk
pro�le of banking activities, this gives scope for diversi�cation. Regulators
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might then allow lower capital requirements for a conglomerate than for its
individual constituent parts. If lower capital requirements are allowed, this
reduces the cost of capital and hence increases pro�tability.
As an input for this discussion we investigate the dependence between the

downside risk of European banks and insurers. If the downside dependence
between a bank and an insurer is distinctly di¤erent from the dependence
structure between two banks or between two insurers, �nancial conglomerates
might require less capital charges than large banks or insurance companies.
Since we analyze risk from the perspective of a supervisor, we focus primarily
on a measure of downside risk and do not use global risk measures like the
variance. In the banking sector this focus on downside risk is evidenced by
the emphasis on the Value at Risk (VaR) methodology. This perspective
complements other research which takes the perspective from shareholders,
investigating possible economies of scale and scope (e.g. Carow, 2001).
It is a stylized fact that the return series of �nancial assets are fat tailed

distributed (Jansen and De Vries, 1991). The commonly maintained as-
sumption that returns are normally distributed therefore underestimates the
downside risk. Hence, given the focus on downside risk, we will not start
from this premise and allow for fat tails to capture the univariate risk prop-
erties. For the multivariate question of downside risk diversi�cation bene�ts,
the normal distribution based correlation concept is also of limited value.
For example, one can have multivariate Student-t distributed random vari-
ables, which exhibit fat tails, are dependent, but which are nevertheless un-
correlated. Research based on the correlation concept, to investigate the
diversi�cation bene�ts of banks into insurance activities, appears therefore
inappropriate. To answer the question whether the capital requirements for
conglomerates can be lower than the sum of requirements for large banks, we
employ a downside risk measure which directly evaluates the systemic down-
side risk in terms of failure probabilities and losses. This measure is derived
from Extreme Value Theory (EVT), and easily allows for the non-normality.
Financial conglomerates may exploit diversi�cation possibilities between

balance sheet items of banks and insurers. However, current regulation does
not allow for cross hedging. The di¤erent entities of a conglomerate are su-
pervised separately according to sector speci�c regulation. Since there is no
common regulatory framework, capital has a distinct function in both bank-
ing and insurance. EU solvency requirements for insurers do e.g. not depend
on credit risk. This makes it di¢ cult to examine cross-sector risk transfers
and may induce regulatory arbitrage. The current supervisory framework in
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banking is based on the Basle 1988 Capital Accord for the credit book and on
the "Amendment to the capital accord to incorporate market risks" of 1996.
The insurance regulation is based on the insurance directives in the EU and
on the Risk Based Capital framework in the US. For the supervision of �nan-
cial groups the �nancial conglomerates directive is in place. New regulation
based on internal risk models for the banking sector is being implemented
(Basle II Capital Accord). For the insurance sector the European Commis-
sion is working on a new regulatory framework, the so-called Solvency 2
project. The tendency is to tie regulatory capital more closely to Economic
Capital models (e.g. Bikker and Lelyveld, 2002). These models enable �nan-
cial institutions to allocate capital optimally, based on an economic concept
of risk. If �nancial conglomerates face a lower risk, this validates lower capital
requirements, which would boost return on investments.
The objective of supervision is to protect depositors and policyholders and

more broadly to foster �nancial stability. To this end regulators promote
the soundness of individual institutions and the stability of the �nancial
system. Regulators are especially interested in the frequency and magnitude
of extreme shocks to the system, which threaten the continuity of banks
and insurers. Statistically speaking regulators are interested in the lower
quantiles of the distribution of returns.
Most of the research on the stability of the �nancial system has a primary

focus on the stability of the banking sector, due to the importance of the
payment and clearing functions for the real economy. This activity comes as a
joint product from the other banking activities and is a positive externality to
the economy. A similar service does not derive from the insurance activities.
Moreover, the type of contracts like a deposit makes that the banking sector is
more fragile than the insurance sector. A survey of the issue of systemic risk
can be found in De Bandt and Hartmann (2002). The Basel Committee on
Banking Supervision (1999) provides a good overview of the empirical impact
of banking regulation, speci�cally the 1988 Accord. The systemic aspects and
the potential threat to the �nancial stability of insurers has not gained that
much interest. One of the �rst studies raising this question was written by the
Group of Thirty (1997). More recently Swiss Re (2003) concluded that there
is ample systemic risk in the reinsurance sector. Even though the stability of
the insurance sector is perhaps of a lesser public concern than the fragility
of the banking sector, the presence of �nancial conglomerates, nevertheless
requires an assessment of the downside risk derived from both activities.
In the empirical section we begin by measuring the riskiness of individual
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banks and insurers. We use the reduced form approach of the risk of �nancial
institutions as analyzed by De Vries (2005) and employed in De Nicolo and
Kwast (2002) and Hartmann, Straetmans and De Vries (2004). This involves
estimating the probability of a crash by using daily stock price data. We
employ estimators from statistical extreme value theory and avoid correla-
tion based techniques which focus primarily on the central order statistics.
The estimation results for individual �rms provide information on the risk of
individual institutions and allows for a cross-sector comparison of individual
�rm risk. Our main research question concerns whether the downside risk in
the banking sector di¤ers from the downside risk in the insurance sector. To
this end we estimate the dependence between combinations of �rms, both
within a sector and across sectors. If the risk pro�le of both sectors is di¤er-
ent, this creates risk diversi�cation possibilities for �nancial conglomerates.
To understand the possible di¤erences in cross-sector risk, we develop an an-
alytical model which helps us to interpret the tail dependence. This model
provides an explanation for the di¤erences in dependence between banks and
insurers, compared to the dependence within the same sector.
The early work on the bene�ts of mergers between banks and insurers

was done in light of the discussion on the abolishment of the Glass-Steagall
act in the US (which forbid bank holding companies to perform insurance
activities). For a literature overview see Laderman (1999) or Estrella (2001).
Estrella (2001) applies option pricing theory to create a measure of failure for
a �rm and �nds that banks and insurers are likely to experience diversi�cation
gains. The literature review of Berger (2000) suggests that most e¢ ciency
gains of mergers appear to be linked to bene�ts from risk diversi�cation. A
study by Oliver, Wyman & Company (2001) argues that there is scope for a
reduction of 5-10% in capital requirements for a combined bank and insurance
company. Carow (2001) analyses the Citicorp-Travelers Group merger by
an event study approach and �nds that investors expect signi�cant bene�ts
from the removal of regulatory barriers to bancassurance. However, in the
meantime this merger is in the process of breaking up. Laderman (1999)
�nds that substantial investments in life insurance underwriting are optimal
for reducing the risk of the return on assets for bank holding companies.
Except for Gully et al. (2001) and Bikker and Lelyveld (2002), most studies
focus on U.S. data, as in De Nicolo and Kwast (2002), and assume that the
returns are normally distributed. Our research is focused on European data
and applies extreme value theory, allowing for fat tails.
In the remainder of this paper we �rst describe the limited value of the
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correlation concept and provide another dependence measure. Next we pro-
vide an economic rationale for dependence, between di¤erent �nancial insti-
tutions. Thereafter, we explain the empirical methodology, give a description
of the data and present the results. Finally, we summarize our �ndings and
draw some policy conclusions.
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Figure 1: Normal distribution underestimates risk

2 Dependence and correlation

To understand the dependence between two random variables which follow a
normal distribution it is su¢ cient to know the mean, variance and correlation
coe¢ cient to characterize their joint behavior. The correlation measure itself,
however, is often not an useful statistic for �nancial data for various reasons.
First, economists are interested in the risk-return trade-o¤, to which the cor-
relation measure is only an intermediate step. Boyer, Gibson and Loretan
(1997), moreover, noticed that even if the normal model applies, verifying
the market speak of increased correlation coe¢ cients in times of crisis can
be illusory. Forbes and Rigobon (2002) show that not much of a correla-
tion change can be identi�ed around crisis times, by taking into account the
simultaneous increase in variance of the return series.
A second reason for the failure of the normal based correlation measure

is that the return series are clearly non-normal distributed. In Figure 1a we
have depicted the daily stock returns of ABN AMRO Bank and AXA since
1992. We estimated the mean, variance and correlation of these returns and
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randomly generated returns with the same parameters assuming a bivariate
normal distribution (Figure 1b). Project the observations along the two
axes to obtain the univariate properties of the return series. The di¤erence
between the returns and the arti�cial returns is that in the latter sample
there are no observations larger than 10 percent. The normal model, in fact,
predicts that returns above the 10 per cent occur with a very low probability,
while such returns are in reality quite common. Thus the return distributions
exhibit fat tails. Since regulators are concerned with the extreme losses of
value for banks and insurers, the assumption of normality therefore appears
inappropriate.

a) No correlation and no dependence
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Figure 2: Two student-t distributed variables

The third reason as to why the multivariate normal based correlation
measure is inappropriate for our analysis, is that it does not capture very
well the dependency which one observes in the above plots. The true data
have most of the extreme outcomes realized close to the diagonal, and thus
occur jointly. In the normal remake, this is much less the case. To explain
how this could be, we provide an example which is somewhat of an exaggera-
tion, but which provides the key insight very well. The example builds on the
fact that if two random variables are dependent, the correlation between the
variables may nevertheless be zero. In Figure 2a, two uncorrelated and in-
dependent random variables, qi and ri are shown (based on 10,000 randomly
generated Student-t variables with 3 degrees of freedom). In contrast to Fig-
ure 2a, where two independent variables are plotted, the variables ai and bi
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in Figure 2b are made dependent. We formed two portfolio�s, ai = qi + ri
and bi = qi � ri. On the x-axis on �nds the sum (ai = qi + ri) of the two
Student-t variables, on the y-axis one �nds the di¤erence (bi = qi � ri) be-
tween the two random variables; one can think of the second portfolio being
short in the asset with return ri. The correlation between a and b is zero,
but note that there is dependence between the portfolios in Figure 2b as all
extremes occur jointly along the two diagonals. In contrast, if qi and ri are
drawn from a normal distribution, ai and bi are surely independent as they
are uncorrelated. In that case a cross plot of ai and bi would generate a neat
circle around zero. This illustrates that the characteristics of variables which
are in the domain of the fat tailed Frechet extreme value distribution di¤er
considerably from e.g. variables which follow a normal distribution. The
sample maxima of these distributions all converge to the Frechet limit, when
appropriately scaled. A typical feature of the Student-t distribution, which
is in the domain of the Frechet, are the extremely high and low observations
far away from the centre. In a sample of heavy tailed random variables, the
maximum observation dominates all others (in such a way that the sum and
the maximum over a large threshold have approximately the same probabil-
ity 1). This shows in Figure 2a as the larger observations appear along the
two axes. In this �gure the extreme observations are located alongside the
axes since the probability of a pair of two large variables is so low. Therefore
combinations ai = qi + ri and bi = qi � ri in Figure 2b far from the origin
are almost entirely driven by either the qi or the ri, placing the largest ob-
servations on the two diagonals (which are essentially a rotation of the two
axes from Figure 2a). In other words, the largest observation really domi-
nates over the others and determines the scale and the dependence. Because
of the shortcomings of the correlation measure, we want to use a measure
that provides us with the probability of multiple extreme losses, taking into
account that return series of stock prices are fat tailed.

1One way to characterize heavy tails is by the fact that for a sample of n i.i.d. draws

lim
s!1

P fmax(X1; :::; Xn) > sg

P (
nP
i=1

Xi > s)
= 1:

Thus the sum is almost entirely driven by the maximum of the observations.
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2.1 The linkage measure

Instead of using the correlation measure to capture the dependence between
two variables, we will directly study the probability of an extreme loss of a
variable, conditional on the loss of another variable. Our indicator is there-
fore a conditional probability measure. The concern of regulators and risk
managers is a simultaneous loss at the banking division and the insurance
division of a �nancial conglomerate. More speci�cally, suppose a regulator
wants to know the probability that B > t, given that A > t and the prob-
ability that A < t given that B < t, where A and B are the stochastic loss
returns of the two divisions, and t is the common high loss level. Since we
are interested in a crash of the banking division given the crash of the insur-
ance division and vice versa, we will condition on either event. Let � be the
number of divisions which crash. We propose to use the linkage measure as
the measure of systemic risk

E[�j� � 1] = P (A > t) + P (B > t)

1� P (A � t; B � t) : (1)

This measure gives the expected number of divisions which crash, given that
one division crashes. Hartmann et. al. (2004) provide further motivation for
this measure. Note that

E[�j� � 1]� 1 = P (A > t;B > t)

1� P (A � t; B � t)

is the conditional probability that both divisions fail, given that there is a
failure of at least one of the divisions. We will use either interpretation,
depending on the context.
Unless one is willing to make further assumptions, as in the options based

distance to default literature, it is impossible to pin down the exact level
at which a division fails, or at which supervisors consider the institution
�nancially unsound. For this reason we do take limits and consider

lim
t�!1

E[�j� � 1]:

Extreme value theory then shows that even though the measure is evaluated
in the limit, it nevertheless provides a useful benchmark for the dependency
at high but �nite levels of t. We also like to note that the measure can be
easily adapted in case failure levels at the divisions are di¤erent, in which
case the measure is evaluated along a non 45o line, in the A, B space.
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3 An economic rationale for dependence

To give a theoretical rationale for dependence between banks and insurers,
we give a stylized representation of the insurance and banking risks, using an
elementary factor model. The factors are assumed to follow a distribution
with non-normal heavy tails. This provides us with a characterization of
the level and degree of dependence. New �nancial products enhance the
possibilities to transfer risk between and within �nancial institutions. We
show this may lead to a convergence of the investment portfolios of banks
and insurers. First, we will give examples of this convergence, followed by a
short exposition on the approach taken by �nancial institutions to manage
this risk. We conclude by capturing the characteristics in a theoretical model.
The investments of banks and insurers are to a certain degree similar.

Both invest in syndicated loans, have proprietary investments in equity and
both hold mortgage portfolios. This may cause similarities in the risk pro�le
of banks and insurers. Moreover, the costs arising out of liabilities for banks
and insurers are to some degree similar. Both, for example, sell products with
a guaranteed interest rate. New �nancial instruments can transform insur-
ance risk to �nancial investments (e.g. catastrophe bonds) or can transform
default risk to insurance risk, via credit default swaps. Via securitization of
bank loan portfolios, the scope of investments for insurers is widened.
There are also di¤erences. The interest rate exposure for banks and

insurers di¤ers. Banks hold relatively short term liabilities compared to
their assets, while insurers hold relatively short term assets compared to
their liabilities. On the liability side of banks balance sheets, the deposit
contract exposes the banks to the risk of immediate callability, while insurers
do not have such a risk. Thus there are similarities and di¤erences in the
risk pro�les of banks and insurers, but we cannot say a priori which feature
dominates. The empirical investigation addresses this latter issue. If we �nd
that cross-sector dependence is lower than dependence within the two sectors,
this may provide an argument for cross-sector mergers. However mergers are
not always necessary to exploit those advantages, since risks can be traded
between �rms. For some risks this might be di¢ cult, since the seller of
protection has less information about the risk it receives than the buyer
possesses. As a starting point for the discussion on the bene�ts of cross-
sector mergers, we model cross-sector dependence.
Banks and insurers develop risk management models to identify the risk

of their institution. A study by the Basel Committee on Banking Supervision
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(2001) gives an overview of the di¤erent risk types that can be found in a
�nancial conglomerate. Once the aggregate risk by risk type is known, one
can investigate the dependence between risk types. The concept of economic
capital makes it possible to measure the degree of risk taking. Although the
distribution function of the risk types di¤er, the economic capital framework
sets a common standard in terms of a con�dence interval in the cumulative
loss distribution within a speci�c time horizon.
Findings by Oliver, Wyman & Company (2001) suggest that the largest

bene�ts of diversi�cation are obtained within a speci�c risk type, are smaller
at the business line level and are even smaller across business lines. The cur-
rent regulatory framework, which is designed for speci�c (sectoral) business
lines, does not re�ect possible diversi�cation opportunities between banks
and insurers. The predominant risk is often the primary focus of the cur-
rent regulation. Internal risk models, which are increasingly used in modern
regulation, are better �t to allow for diversi�cation possibilities.
We focus on a semi-reduced form approach at the risk level of an in-

stitution. This implies that we do not form a complete structural model
explaining the full strategy of agents, since we are primarily interested in the
resulting risk. Of importance is the interdependency between institutions.
We �rst model dependence theoretically and subsequently turn to an em-
pirical evaluation. The model is related to the Arbitrage Pricing Theorem
of Ross (1976). Suppose the risk of all �rms in the �nancial sector can be
decomposed into three elements. Firms face a common component of risk
(macro risk), an insurance or bank sector speci�c risk (sector risk) and �rm
speci�c risk. We therefore assume total �rm risk to be the sum of the �nan-
cial market risk, F ; risk within a sector, A and B; and �rm speci�c risks, Yi
and Zj. A high realization of a variable should be interpreted as a large loss,
so we can focus on positive random variables for the study of our downside
risk. This way we can turn the study of minima into the study of maxima,
which permits a more expedient presentation.
The fat tail assumption for the loss distribution boils down to the assump-

tion that the tails exhibit power like behavior, as in the case of the Pareto
distribution. For ease of presentation we assume that the entire loss distri-
bution is Pareto distributed. But we emphasize that the results carry over
to all distributions which exhibit regular varying tails, such as the Student-
t distribution. Assume that the downside risk of the individual stochastic
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portfolio items (A;B; F; Yi; Zj) are (unit scale) Pareto distributed on [1;1)

P (F > t) = P (A > t) = P (B > t) = P (Yi > t) = P (Zj > t) = t
��; (2)

where t is the threshold loss level in which we are interested. In the follow-
ing we investigate the dependence between two �nancial �rms or divisions,
depending on the interpretation. We distinguish two cases, investigating de-
pendence within a sector and across sectors. The analysis of the theoretical
risk exposures helps us to interpret the dependence between the tail risk of
the di¤erent �rms. Understanding this downside risk is desirable from a pol-
icy perspective, since it points to the bene�ts and limits of cross-sector risk
sharing.

3.1 Same sector dependence

Before we can proceed, we need to introduce some theoretical tools. The
probability of a large loss for a combination of risk factors when these exhibit
a power like distribution, is given by Feller�s convolution theorem (1971,
VIII.8). This theorem holds that if two independent random variables A and
B satisfy (2), then for large t the convolution has probability

P (A+B > t) = 2t��L(t);

and where L(t) is slowly varying (i.e. lim
t�!1

L(at)=L(t) = 1, for any a > 0).

The theorem implies that for large failure levels t, the convolution of A and B
can be approximated by the sum of the univariate distributions of A and B.
All that counts for the probability of the sum is the (univariate) probability
mass which is located along the two axes from the points onward where the
line A+B = t cuts the axes. The probability that the convolution of A and
B is larger than t, for large t, is therefore

P (A+B > t) = 2t�� + o(t��): (3)

Consider the dependency between two �nancials within the same sector.
We use a stylized model of the downside risk of banks and insurers to analyze
the tail dependence between two companies. To this end de�ne the equity
returns of a company in the banking sector Gi or the insurance sector Hj as
a portfolio of risk factors consisting of the following elements:

Gi = F +B + Yi and Hj = F + A+ Zj;
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where F is broad �nancial market risk and A and B are the sector risks,
which are similar for all �rms within a sector. Bank and insurance speci�c
risk is de�ned by Yi and Zj. Using Feller (1971, VIII.8), for su¢ ciently large
t the probability that �rm i has a return larger than t; P (Gi > t); is the
sum of the probabilities that the individual portfolio factors are larger than
t. Since the portfolio consists of three items, the probability of a crash of an
individual company therefore reads

P (F +B + Yi > t) = 3t
�� + o(t��): (4)

Suppose one is interested in the probability that two banks crash, simulta-
neously. The joint probability of a crash between two banks is equal to

P (G1 > t;G2 > t) = P (F +B+Y1 > t; F +B+Y2 > t) = 2t
��+o(t��): (5)

This result can again be obtained from Feller�s convolution theorem by the
following argument. Note that the two portfolio inequalities F +B + Y1 > t
and F + B + Y2 > t, when satis�ed simultaneously, only have the points
above t along the F +B axis in the portfolio in common2, but not any point
along the Y1 or the Y2 axes. This implies that for large t

P (F +B + Y1 > t; F +B + Y2 > t) � P (F +B > t) = 2t�� + o(t��) (6)

where the last equality directly follows from Feller�s theorem. The probability
of a joint crash among two insurers is similar, P (H1 > t;H2 > t) � 2t��.
The relative magnitudes of these probabilities become clear in the empirical
section, where we calculate the risk for cross-sector dependence.

3.2 Cross-sector dependence

In this paragraph we investigate the probability of a simultaneous crash in
two di¤erent sectors. Since the sector risk for the two companies is di¤erent,
there are less common components (factors) in the portfolio of the two �rms.
The probability of a joint crash of an insurer and a bank is lower, by the
assumption that the sector speci�c portfolio items are independent,

P (G1 > t;H1 > t) = P (F +B + Y1 > t; F + A+ Z1 > t) � t�� + o(t��):
2Note that the sum of F and B can be treated as a single random variable.
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This probability can also be derived using Feller�s convolution theorem.
When the portfolio inequalities F + B + Y1 > t and F + A + Z1 > t hold
simultaneously, there is only probability mass of order t�� above t along the
F axis in common, and no mass of this order along the (B+Y1) and (A+Z1)
axes. This implies that for large t

P (F +B + Y1 > t; F + A+ Z1 > t) � P (F > t) = t�� + o(t��): (7)

In Table 1 the probabilities of cross-sector and same sector risk are sum-
marized. It is interesting to note that the probability of a joint crash of two
companies di¤ers considerably depending on cross-sector or within sector
combinations.
To evaluate cross-sector dependence and dependence within the same

sector with the linkage measure, we need to substitute for the probabilities
in the numerator and denominator of (1). The probabilities for the numerator
are given in (4). By using our previous assumptions on the risk components
of individual banks and insurers, we can calculate the denominator. The
probability that both banks face a return smaller than or equal to t, i.e.
P (G1 � t; G2 � t) can be calculated by using the complement 1 � P (G1 �
t; G2 � t). If we examine the complement, for su¢ ciently large t, we have the
probability that at least one bank has a return larger than t. A company has
a return larger than t if F;A;B; Yi or Zj is larger than t. The complement
1� P (G1 � t; G2 � t) is therefore equal to the sum of the probabilities that
an individual portfolio component is larger than t, minus the probability of
a joint failure. The complement 1 � P (G1 � t; G2 � t) is approximately
equal to 4t��, since 4 di¤erent portfolio items (F;B; Y1 and Y2) each have
the probability of order t�� to be larger than t. In Table 1 the complement
1�P (G1 � t; G2 � t) for two �rms from a similar sector and two �rms from
a di¤erent sectors are given.
The conditional expectation of a crash of two �rms in the same sector is

given in (8)

lim
t�!1

E[�j� � 1] = lim
t�!1

P (Gi > t) + P (Gj > t)

1� P (Gi � t; Gj � t)
=
6

4
. (8)

The conditional expectation is much higher in the case of same sector depen-
dence than in the case of cross sector dependence. The conditional expecta-
tion of a crash of two �rms in di¤erent sectors is only

lim
t�!1

E[�j� � 1] = lim
t�!1

P (Gi > t) + P (Hj > t)

1� P (Gi � t;Hj � t)
=
6

5
. (9)
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P (Gi > t;Gj > t) 1� P (Gi � t; Gj � t)
Gi = F +B + Yi
Gj = F +B + Yj

� 2t�� � 4t��

P (Gi > t;Hj > t) 1� P (Gi � t;Hj � t)
Gi = F +B + Yi
Hj = F + A+ Zj

� t�� � 5t��

A;B; F; Yi and Z are Pareto distributed

Table 1: Cross sector dependence

The dependence within a sector is higher than across sectors, because the
banks and insurers have di¤erent sectoral speci�c risks A and B.

3.3 Dependence and the normal distribution

It is interesting to note that the dependence in the tail disappears if we as-
sume that the factors, A;B; F; Yi and Zj are standard (independently) nor-
mally distributed. Note that normality immediately implies that Gi; Gj; Hi
and Hj are all correlated. Even though there is positive correlation, if the
returns of both Gi and Hi follow a bivariate normal distribution there is no
dependence between �rms for large values of t, or

lim
t�!1

E[�j� � 1] = lim
t�!1

P (Gi > t) + P (Gj > t)

1� P (Gi � t; Gj � t)

= lim
t�!1

P (Gi > t) + P (Hj > t)

1� P (Gi � t;Hj � t)
= 1:

The proof for this result is similar to the proof of proposition 2 in De Vries
(2005) and follows directly from the general result by Sibuya (1960). There-
fore, under the assumption of normality, there is asymptotic independence
between all possible combinations of �rms, being banks or insurers. This
explains why Figure 1a di¤ers so much from Figure 1b, especially in the
North-East and South-West corner, since the remake in Figure 1b is based
on the assumption of normality. The disappearance of the dependency in the
tail area is not unique for the normal distribution. The same holds for the
assumption of exponentially distributed portfolio items.
To study whether there is dependence in the limit, we will compare our

dependence estimates with estimation results of a bivariate normal model.
First we present the univariate and bivariate estimators.
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4 Estimators

4.1 Univariate estimators

Extreme value theory studies the limit distribution of the (joint) maxima or
minima of (return) series, as the sample size increases without bound. To
study the minimum, we change the sign of the returns. Suppose that Xi is
an independent and identically distributed random variable with cumulative
distribution function F (x). This variable exhibits heavy tails if F (x) far
into the tails has a �rst order term identical to the Pareto distribution (see
Appendix). We want to determine the probability that the daily stock return
of a bank or insurer is lower than a prespeci�ed loss level xvar, where the
subscript refers to Value at Risk. To estimate this probability, we use the
inverse quantile estimator from De Haan et al. (1994)

bp = m

n

�
Xm+1

xvar

�d�(m)
; b�(m) = 1

m

mX
j=0

ln

�
Xj

Xm+1

�
: (10)

This probability estimate depends on the tail index � estimator (based on
the m highest order statistics), the number of excesses m, the m + 1-th
order statistic Xm+1, the sample size n and the threshold level xvar. This
threshold level is where the Pareto approximation to the tail probabilities is
appropriate. In our case xvar is determined at 25%. Details for this choice and
further explanation of the estimation procedures are given in the Appendix.
For the con�dence interval of the quantile estimator we use the property that
in the limit the estimator is normally distributed.

4.2 Multivariate estimation

In this paragraph we explain the estimator of the linkage measure (5). To
develop an estimator for the linkage measure, note that

E[�j� � 1] = P (X1 > t) + P (X2 > t)

1� P (X1 � t;X2 � t)
= 1 +

P (min[X1; X2] > t)

P (max[X1; X2] > t)
; (11)

where P (min[X1; X2] > t) is the probability that the minimum of X1 and
X2 is above the threshold t, and P (max[X1; X2] > t) is the probability that
the maximum of both random variables exceeds t. Both probabilities can be
easily estimated using (10). In the Appendix we show that this can be done in
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Probability Probability
(Xi  <  0.25) * 260 (Xi  <  0.25) * 260

Banks Insurers
HSBC 0.0037 ROYAL & SUN 0.0482
RBS 0.0064 AEGON 0.0584
UBS 0.0142 AVIVA 0.0161
BARCLAYS 0.0068 PRUDENTIAL 0.0237
BSCH 0.0081 LEGAL & GENERAL 0.0020
BBVA 0.0186 ALLEANZA 0.0070
DEUTSCHE BANK 0.0089 SKANDIA 0.0501
ABN AMRO 0.0072 GENERALI 0.0121
UNICREDITO 0.0150 AXA 0.0153
STD CHARTERED 0.0168 ZFS 0.1073

Average 0.0106 0.0340
Median 0.0085 0.0199

Table 2: Univariate loss probabilities

one swap and that this estimator captures the limiting dependence between
two heavy tailed random variables. Since we evaluate the limit behavior of
(11), we take t close to the boundary of the sample and use t = 0:075. We
obtain a con�dence band by the Jackknife resampling procedure and show
that our results do not change much if we omit a large number of observations
(see Appendix).

4.3 Data

Our sample consists of the ten largest European banks and the ten largest
European insurers. These �rms were selected on the basis of balance sheet
criteria such as the amount of customer deposits and life and non-life pre-
mium income. Insurers can provide both life insurance and non-life insurance
(e.g. property and casualty insurance). We use daily data from January 1992
until December 2003. A precise description of the dataset is given in the Ap-
pendix.

5 Empirical results

In this section we present the estimates of the downside risk of individual
�rms and the dependence between �rms. First we present the univariate
risk for banks and insurers, next we present the estimates of the dependency
between �rms.
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5.1 Univariate results

Suppose one is interested in the probability of a loss of market value of 25%
or more in a single day. Since these probabilities are very small, we scaled
these up by a factor of 260, so that the probabilities can be interpreted
as the probability that in a year there is a day with a loss of 25%. The
estimated probabilities are given in Table 2. From the averages of the di¤erent
sectors it is clear that insurers are more risky than banks. The average in
the banking sector is 0.0106, in the insurance sector the average probability
is 0.034. In other words, about once per thirty years there is a day on which
an insurer loses 25% of its equity value. For banks this is only once per
century. Within the di¤erent groups there are, however, large deviations from
the sector means. The results for the banking sector range from 0.0037 to
0.0186. The results for the insurance sector are between 0.0020 and 0.1073.
We formally test our null-hypothesis that both groups have the same loss
probability by using the Wilcoxon/Mann-Whitney signed ranks test. The
probability that the equality hypothesis is valid is 0:064. This implies that at
the 90% signi�cance level this equality is rejected. But clearly the di¤erences
are not large.
Using (14) from the Appendix, one can calculate a con�dence band around

the loss probabilities. Results are given in Table 3. In this table we use a
threshold loss of 15%.3 Given the limited amount of data, even at this loss
level several upper bounds of the con�dence bands are equal to 1. The dif-
ference between the point estimator and the upper bound of the interval is
larger than the di¤erence between the point estimator and the lower bound.
This is also a result of the relatively small sample size (n).
The estimates are derived by assuming that the tails of the return distri-

butions are heavy tailed. Since we study events that have a high impact, but
which materialize at a very low frequency, our estimated probabilities may
at �rst sight appear very small. To put these probabilities in perspective,
recall the Figures (1a) and (1b), which showed a huge discrepancy between
the normal distribution and the empirical distribution. Suppose one calcu-
lated the loss probabilities for HSBC and ZFS (respectively the �rst and
last company) from Table 3 under the assumption of normality. This gives
1:5 � 10�15 and 8:6 � 10�11 for respectively HSBC and ZFS. These �gures are
much lower than 0:00012 and 0:00148. The entire Table 3 is recalculated

3Here we do not scale up the probabilites with 260, so as to guarantee that the proba-
bilities are between 0 and 1.
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Lower Probability Upper
Firms Bound Xi  <  0.15 Bound Hill

HSBC 0.00005 0.00012 1.00000 4.14
RBS 0.00010 0.00020 1.00000 4.06
UBS 0.00015 0.00028 0.00478 3.23
BARCLAYS 0.00009 0.00019 1.00000 3.89
BSCH 0.00012 0.00024 0.01360 3.98
BBVA 0.00020 0.00037 0.00304 3.23
DEUTSCHE BANK 0.00012 0.00023 0.01908 3.75
ABN AMRO 0.00011 0.00023 0.04766 4.09
UNICREDITO 0.00018 0.00033 0.00346 3.43
STD CHARTERED 0.00020 0.00038 0.00297 3.49
ROYAL & SUN 0.00055 0.00092 0.00276 3.14
AEGON 0.00059 0.00097 0.00281 2.86
AVIVA 0.00021 0.00038 0.00297 3.57
PRUDENTIAL 0.00027 0.00049 0.00263 3.28
LEGAL & GENERAL 0.00004 0.00009 1.00000 4.85
ALLEANZA 0.00010 0.00019 1.00000 3.87
SKANDIA 0.00078 0.00125 0.00309 3.66
GENERALI 0.00012 0.00024 0.01274 3.21
AXA 0.00022 0.00042 0.00281 3.82
ZFS 0.00095 0.00148 0.00334 2.50

Table 3: Loss probabilities and con�dence bands

Mean Median
Bank Insurer Bank Insurer

Bank 1.1038 1.0744 1.095 1.069
Insurer 1.0744 1.1170 1.069 1.107

E[�j� � 1]

Table 4: Summary estimation results

under the assumption of normality and is given in the Appendix in Table
A.2.

5.2 Multivariate results

Is cross-sector dependence between banks and insurers lower than dependence
between two �rms within the same sector? Since we have 10 banks and
10 insurers in our dataset, we have results for 45 possible combinations of
banks, 45 possible combinations of insurers and 100 possible combinations
between banks and insurers. In Table 4 the estimation results for the 190
possible combinations are summarized. The results for all 190 combinations
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are given in the Tables A.3, A.4 and A.5, in the Appendix. The results of
the multivariate estimation in Table 4 indicate that cross-sector dependence
between banks and insurers is lower than dependence between two �rms
within the same sector. The average probability that two banks crash, given
that one crashes is 10:3% (The linkage estimator returns 1:103, we subtract
1 and multiply with 100%.). For insurers this probability is 11:7%, which
is not very di¤erent. The probability that an insurer crashes given that a
bank crashes or that a bank crashes, given that an insurer crashes is 7:4%.
It is much lower than the 10:3% in the banking sector. This indicates that in
general dependence is lower for cross-sector combinations. We formally test
the null-hypothesis that cross-sector dependence and dependence within the
banking sector is the same, by using the Wilcoxon/Mann-Whitney signed
ranks test. The probability that the hypothesis is not rejected is 0:004% if
we test whether dependence among banks is similar to dependence between
banks and insurers. We conclude that the risk pro�le of the two groups is
di¤erent. Using the same test procedure, we can also �nd that the probability
that the risk for combinations of insurers is equal to combinations of insurers
and banks is only 0:003%. Thus the dependence between banks and insurers
is also lower than the combinations of insurers.
On the �rm level, there are sizable deviations from the average risk within

the sector. Results for speci�c combinations of �rms given in the Tables A.3,
A.4 and A.5. The largest conditional probability of a crash of two �rms is
37:5% and it involves two Spanish banks (Table A.3). Since 37:5% is much
higher than the sector average of 10:3%, it makes considerable di¤erence
which �rms merge. A possible explanation for this high probability are the
common exposure of the two Spanish banks to risks in Spain and Latin
America.
To illustrate the scope of the result of 37:5% conditional crash probability,

we calculate the conditional expected number of failures � in (1) under the
assumption of independence. Under independence we get that

E[�j� � 1] = P (F1 > t) + P (F2 > t)

1� (P (F1 � t) � P (F2 � t))
= 1+

1
1

0:0038
+ 1

0:0035
� 1

= 1:0018:

The number 1:0018 is considerably smaller than 1:375. It is therefore clear
that there is quite a bit of dependence in the tails. This exercise delivers
similar results for other combinations of �rms.
To provide yet another perspective for the 37:5% result which does recog-

nize the correlation, we have also calculated (1) assuming a multivariate
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ROYAL & SUN  AEGON
1.194 1.225 1.257

AEGON  AVIVA
1.097 1.111 1.125

RBS  STD CHARTERED
1.056 1.091 1.100

RBS  LEGAL & GENERAL
1.000 1.000 1.000

BSCH  BBVA
1.357 1.375 1.400

BSCH  LEGAL & GENERAL
1.063 1.063 1.071

Left and right the bounds of the 90% confidence interval are given,
in the central column the point estimator.

Table 5: Multivariate results and 90% con�dence bands

normal distribution function for the returns. Under the bivariate normality
assumption, the dependence measure for the two Spanish banks is still only
a paltry 7:9% (compared to the 37:5% under the fat tail assumption). The
results are given in the Tables A.6, A.7 and A.8. From the Tables it is once
again clear that the assumption of a normal distribution function for the
returns underestimates the downside risk. The conditional expected number
of failures � for the combination of HSBC and RBS is 1:083, while estima-
tion based on normality gives 1:0044. Our measure therefore predicts that
the conditional probability of a simultaneous crash is approximately 20 times
higher for this combination than the normality based measure. For the pair
Aviva and Aegon, the estimate of the linkage measure based on normality
gives 1:0134. This is a factor 10 lower than 1:111 (if we subtract 1). Thus
the normal based measure gives a completely di¤erent view on the tail de-
pendence and essentially rules out the possibility of a joint crash. Estimates
taking into account the fat tails are of an entirely di¤erent order and appear
to be more in line with the facts, since we do observe joint failures repeatedly.

Table 5 reports the con�dence bands for a number of the linkage measure
estimates. The bounds of the con�dence interval do not deviate considerably
from the point estimator and are of the same order. The Jackknife procedure
behind the con�dence bands is given in the Appendix. In the central column
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one �nds the point estimate from (15). In the left and right column one �nds
the 90% con�dence interval. In the case of the combination of BSCH and
Legal and General, the point estimator of (15) hits the lower bound. This is
the result of the quite limited sample, of only 12 years of daily data, which is
small if one studies bivariate dependence. Another interesting observation is
that the conditional expectation of a combined crash for the combination of
RBS and Legal and General is zero. This stems from the fact that there are
no joint losses of 7:5% or larger for these companies. In this case the point
estimator defaults to the lower bound and the resampling based construction
of the con�dence bands collapses.

6 Conclusion

The downside risk dependence between insurance and banking risks investi-
gated in this paper is indicative for the risk of a �nancial conglomerate. A
�nancial conglomerate may provide scope for risk diversi�cation across the
banking and insurance books. This may lower capital requirements and en-
hance the e¢ ciency of the �nancial services sector. Alternatively, one could
also imagine that the downside risk of a conglomerate is actually larger, due
to diseconomies of scope.
To measure the scope for diversi�cation, we �rst investigated the uses of

the normal distribution. We showed that the normal distribution strongly
underestimates the downside risk, since the return series of �nancial assets are
fat tailed distributed. Given the focus on downside risk, we therefore allow for
fat tails. Both for the univariate risks and the multivariate downside risks
this gives a much better description of the downside risk than the normal
approximation.
To understand the possible di¤erences in cross-sector risk, we developed

an analytical model in the theory section, which helps to interpret the tail
dependence between banking and insurance risks. It provides an explanation
for the dependence structure between banking and insurers. Given this struc-
ture, the model explains the di¤erences between the dependence among �rms
within an industry and the dependence among �rms from di¤erent sectors.
In the empirical section we �rst measure the riskiness of individual banks

and insurers. This involves estimating the probability of a crash by using
daily stock price data. The estimation results for individual �rms provide
information on the risk of individual institutions and allows for a cross-sector
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comparison of individual �rm risk. The estimation results for individual �rms
point to the conclusion that banks are less risky than insurers. If we take
into account the low probability of a crash, both banks and insurers may be
considered as safe.
The main research question concerns whether the downside risk in the

banking sector di¤ers from the downside risk in the insurance sector. To this
end we examine the dependence between combinations of �rms, both within
a sector and across sectors. We �nd that risk dependence between a bank and
an insurer is signi�cantly di¤erent from the dependence structure between
two banks or between two insurers. The average probability that two banks
crash, given that one crashes is 10:3%. For insurers this probability is 11:7%,
which is not very di¤erent. The probability that an insurer crashes given
that a bank crashes or that a bank crashes, given that an insurer crashes is
7:4%. This is much lower than the 10:3% in the banking sector. It indicates
that in general dependence is lower for cross-sector combinations.
The theoretical model gives an explanation for the lower dependence be-

tween banks and insurers. Apparently, there is a di¤erent downside risk
for the sector speci�c risks for insurance and banking. This relatively low
cross-sector dependence implies a smaller impact of �nancial conglomerates
on systemic risk. It follows that capital requirements for �nancial conglom-
erates could be set below the sum of the capital requirements for the banking
and insurance parts.
The Basle II capital framework does not take into account these diversi-

�cation bene�ts. We recommend to explore the properties of risk diversi�-
cation by �nancial conglomerates in future work on capital requirements. If
lower capital requirements can be justi�ed from a prudential point of view,
this may enhance social welfare.
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A Appendix

A.1 Data selection

Since it is common for �nancial companies in Europe to exploit a broad
portfolio of activities in banking and insurance, it is di¢ cult to construct a
dataset of companies pursuing pure banking or insurance strategies. More-
over, some activities as for example the provision of mortgages, are common
for all companies in both banking and insurance. In this section we will
explain when we de�ne a company being a bank or an insurer.
We distinguish three di¤erent categories: banks, insurers (combining

property&casualty and life insurance business) and �nancial conglomerates.
The dataset contains companies from Europe (the EU and Switzerland).
First, we have taken the largest �rms by market capitalization in the follow-
ing sectors from Datastream: banking, life insurance, insurance and other
�nancial. We classi�ed these companies on the basis of their annual accounts
over 2002.
To be able to make a distinction between insurers and banks, we collected

the following balance sheet items: �customer deposits�, �technical provisions�
and �life-insurance risk born by the policy holder�. We suppose that those
broad items are unique for speci�c sectors. The item �customer deposits�
is typical for banks, since they borrow money from the public. The item
�technical provisions� is typical for insurers, since it represents the size of
provisions for future insurance claims. Another item typical for life insurance
is �life-insurance risk born by the policy holder�, which represents provisions
for future claims of life insurance policies. The three items were added up and
we represented the customer deposits as a percentage of this sum of balance
sheet items. When the percentage of deposits is larger than 90% we de�ne
a �rm as a bank. When the sum of �technical provisions�and �life-insurance
risk born by the policy holder�represented as a percentage of the sum of all
three items is larger than 90%, we de�ne a �rm as an insurer.
Furthermore we want to get an indication of the main activity of the in-

surers. We made a distinction between property and casualty insurers and
life insurers and collected data on the net premium income of insurers. The
net premiums are the gross premiums written minus the reinsurance cover.
Since an insurer might choose to buy reinsurance cover for some lines of
business, we argue that the net premium income gives the best information
about whether an insurer is active in life insurance or in property and ca-
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Ban
k (

%)

Insu
rer

 (%
)

Life
 (%

)

Nonlif
e (

%)

Bank
HSBC 0.98 0.02
RBS 0.96 0.04
UBS 1.00 0.00
BARCLAYS 0.95 0.05
BSCH 1.00 0.00
BBVA 1.00 0.00
DEUTSCHE BANK 0.98 0.02
ABN AMRO 0.97 0.03 0.78 0.22
UNICREDITO 1.00 0.00
STD CHARTERED 1.00 0.00

Insurer
GENERALI 0.00 1.00 0.65 0.35
AXA 0.00 1.00 0.70 0.30
AEGON 0.03 0.97 0.96 0.04
AVIVA 0.00 1.00 0.75 0.25
PRUDENTIAL 0.06 0.94 0.98 0.02
ZFS 0.00 1.00 0.30 0.70
LEGAL & GENERAL 0.00 1.00 0.94 0.06
ALLEANZA 0.00 1.00 1.00 0.00
ROYAL & SUN 0.00 1.00 0.82 0.18
SKANDIA 0.08 0.92 0.99 0.01

Table A.1: Selected data
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P(Xi<0.15) P(Xi<0.15)*260
HSBC 0.00000000000000 0.00000000000040
RBS 0.00000000000113 0.00000000029305
UBS 0.00000000000000 0.00000000000000
BARCLAYS 0.00000000000030 0.00000000007759
BSCH 0.00000000000041 0.00000000010585
BBVA 0.00000000000002 0.00000000000468
DEUTSCHE BANK 0.00000000000001 0.00000000000167
ABN AMRO 0.00000000000001 0.00000000000277
UNICREDITO 0.00000000004858 0.00000001263127
STD CHARTERED 0.00000000006859 0.00000001783248
ROYAL & SUN 0.00000000503413 0.00000130887418
AEGON 0.00000000003063 0.00000000796488
AVIVA 0.00000000000205 0.00000000053240
PRUDENTIAL 0.00000000000330 0.00000000085795
LEGAL & GENERAL 0.00000000000096 0.00000000024929
ALLEANZA 0.00000000000434 0.00000000112779
SKANDIA 0.00000116611496 0.00030318989027
GENERALI 0.00000000000000 0.00000000000000
AXA 0.00000000004009 0.00000001042234
ZFS 0.00000000008602 0.00000002236395

Table A.2: Univariate probability assuming normal cdf

sualty insurance. The life-insurance premium income was represented as a
percentage of the total premium income.
We use data from 1992-2003, since in 1992 Basle I came into e¤ect and

because of data availability. Data is on a daily basis. Firms which are part
of a larger conglomerate, like Winterthur which is a holding of Credit Suisse,
are excluded. Some �rms are omitted because the available data series is too
short.

A.2 Assuming normality

To highlight the limits of the assumption of normality for the return distri-
bution, we have calculated the risk of a loss of more than 15% on a given
day for the di¤erent �rms by using the normal distribution. The results can
be found in Table A.2. These normal based probabilities are way below the
corresponding extreme value distribution based fat tail hypothesis estimates
from Table 3.
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B Univariate estimation

Extreme value theory studies the limit distribution of the maximum or min-
imum of a single return series. To study the minimum, we change the sign of
the returns (focus on losses). Let Xi be an independent and identically dis-
tributed random variable with cumulative distribution function F (x). This
variable exhibits heavy tails if F (x) far into the tails has a �rst order term
identical to the Pareto distribution, i.e.

F (x) = 1� x��L(x) as x!1;
where L(x) is a slowly varying function such that

Lim
t�!1

L(tx)

L(t)
= 1; x > 0:

It can be shown that the two previous conditions are equivalent with

Lim
t�!1

1� F (tx)
1� F (t) = x

��, � > 0, t > 0:

The coe¢ cient � is known as the tail index and gives the number of bounded
moments of the distribution. When a distribution has �nite endpoints or
exponentially decaying tails (like the normal and lognormal distributions), it
fails the property of regular variation and all moments are bounded.
We estimate � with the Hill (1975) estimator:

b = 1=b� = 1

m

mX
j=0

ln

�
Xj

Xm+1

�
; (12)

where the parameter m equals the number of highest order statistics. The
number m has to be selected such that the Pareto approximation of the tail
is appropriate. We select the threshold by the bootstrap method proposed in
Danielsson et al. (2001). In Figure 3 the Hill plots for four �rms are given.
In a Hill plot one varies the threshold Xm+1 or alternatively m, and plots b
from (12) against m. In the Hill plots of Figure 3, where b is plotted against
m, one sees considerable variation if one uses only the very top order sta-
tistics. Subsequently using more order statistics one notices some plateaus.
Increasing m even further, the Hill plots all appear to be moving down. This
is a result of the bias which kicks in when one uses too many central order
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Figure 3: Hill plots for 4 �rms

statistics. Using too few order statistics causes the variance to dominate.
Somehow one has to sail between these two vices.
The next question is which threshold m should be selected? We choose m

in such a way as to minimize the mean square error (mse), following Daniels-
son et al. (2001). This involves creating elaborate subsample bootstraps.
Mean square error plots for four �rms are given in Figure 4. The plots indi-
cate that a minimum is reached around m = 50. Since similar plots appear
for all the series, we �xed m at 50 for all our b estimates.
The objective of our investigation is to determine the probability that the

daily stock return of a bank or insurer is lower than a prespeci�ed probability
level, xvar. To estimate this probability, we use the inverse quantile estimator
from De Haan et al. (1994)

bp = m

n

�
Xm+1

xvar

�d(m)
: (13)

This estimator depends on the inverse tail index , the number of higher
order statistics m, the m+ 1-th order statistic Xm+1, the sample size n and
the level xvar. In our case xvar is chosen at 25%.
For the calculation of the con�dence interval of this estimator we use the

property of convergence of the estimator to normality in large samples. To
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calculate the 90% con�dence interval for equation (13), we use the following
from De Haan et al. (1994)

m1=2

log( xt
xp
)
(
bp
p
� 1) � N(0; �2): (14)

We rewrite this to obtain the lower bound and the upper bound of the 90%
con�dence interval for p

bp
1:65b�fp
M
+ 1

< p <
bp

�1:65b�fp
M
+ 1

where f = log(
xt
xp
):

The 90% con�dence intervals for xvar > 0:15 are given in Table 3, in the
main text.
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Figure 4: MSE 4 �rms

C Multivariate estimation

In this section we elaborate on the bivariate estimation technique employed
in the paper. We �rst rewrite the linkage measure, turn it into an estimator
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Figure 5: Conditional expectation, simulated data

and subsequently show how the estimator performs on simulated data en real
data.
From elementary probability theory we know that P (X1 � t;X2 � t) =

1�P (max[X1; X2] > t) and P (X1 > t)+P (X2 > t) = P (max[X1; X2] > t)+
P (min[X1; X2] > t). One can therefore rewrite the conditional expectation
as follows

E[�j� � 1] = P (X1 > t) + P (X2 > t)

1� P (X1 � t;X2 � t)
= 1 +

P (min[X1; X2] > t)

P (max[X1; X2] > t)
.

The estimation of the probability of multiple crashes can thus be reduced
to the estimation of two univariate probabilities. This greatly facilitates the
empirical analysis, since one can proceed on basis of the previously described
univariate estimation methods by using the minimum and maximum return
series. We use the notation Pmin for P (min[X1; X2] > t) and the correspond-
ing notation for the maximum. If the tail index � is identical for the mini-
mum (�i) and maximum (�a) series, we obtain the following non-parametric
estimator4

E[�j� � 1] = 1 +
bPminbPmax : (15)

4Using (13) and E[�j� � 1] = 1+
Mmin
n

�
XM+1
xp

� \�
i(m)

Mmax
n

�
XM+1
xp

� \�
a(m)

= 1+ Mmin

Mmax
, which shows that the

estimator reduces to a simple counting procedure for the minima and maxima.
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In the following we show that this estimator captures the low dependence
of a bivariate normal distribution, in comparison to the high dependence in
the tails of a bivariate Student-t distribution. To this end we generate two
times 5000 observations, based on the normal and Student-t distribution,
with 3 degrees of freedom. We draw q and z from a normal distribution and
de�ne a = q + 0:7z. The correlation between a and z is therefore 0:7. This
correlation pattern corresponds to the correlation which is present in Figure
1. However, from EVT it follows that the dependence in the tails between a
and z is non-existent. This is also what the estimator (15) indicates, as can
be seen in Figure 5a. The threshold t is depicted on the x-axis, the linkage
estimator is on the y-axis. High values for t are on the left side. On sees
that the dependence is low in the tails, i.e. for high values of t, but increases
while going into the center of the distribution, when t decreases.
Next, we generate q and z from a Student-t distribution, with 3 degrees

of freedom and de�ne a = q + 0:7z. The estimation results for the depen-
dence between a and z can be found in Figure 5b. Contrary to the normal
distribution, for large values of t (on the left side of the Figure), there is
dependence. This is exactly what one would expect on basis of the extreme
value theory.
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Figure 6: E[�j� � 1] for ABN AMRO Bank and AXA

In Figure 6 we show the estimation results for real empirical data. The
results of estimator (15) for the combination of ABN AMRO Bank and AXA
looks very similar to the results of the Student-t simulation in Figure 5.
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E[�j� � 1] is depicted at the y-axis. The threshold t is on the x-axis. Large
t are on the left, where t is taken from the sorted, joint set of returns of AXA
and ABN AMRO Bank. The value on the x-axis is the rank of t in this joint
sample. On the left side of the graph the variance is high, because there
are few extremely large returns. The other side of the graph is relatively
stable and there is not much variation. The interesting feature of this graph
is however that for large t, E[�j� � 1] is still bounded away from zero. This
is exactly what is the case in the generated graph for the bivariate Student-t
distribution. The conditional probability of a simultaneous crash in normal
distributed data is close to zero for large t.
The calculation of the con�dence interval is based on resampling. We

use a Jackknife procedure. To this end we divided the data in 20 blocks
of 156 observations. We then apply estimator (15) twenty times, each time
leaving one block of 156 observations out of the time series. To obtain the
con�dence band, the highest and lowest estimation results were removed,
the next highest and lowest provide the 90% con�dence interval. The point
estimator is estimated using the full sample.

33



H
S

B
C

R
B

S

U
B

S

B
A

R
C

LA
Y

S

BS
C

H

B
B

V
A

D
EU

TS
C

H
E

 B
AN

K

AB
N

 A
M

R
O

U
N

IC
R

E
D

IT
O

ST
D

 C
H

A
R

TE
R

ED

1 2 3 4 5 6 7 8 9 10
1 2.000 1.083 1.083 1.077 1.000 1.000 1.083 1.071 1.000 1.056
2 1.083 2.000 1.125 1.188 1.056 1.050 1.125 1.053 1.059 1.091
3 1.083 1.125 2.000 1.118 1.118 1.167 1.125 1.111 1.059 1.091
4 1.077 1.188 1.118 2.000 1.111 1.100 1.056 1.167 1.118 1.042
5 1.000 1.056 1.118 1.111 2.000 1.375 1.056 1.167 1.267 1.136
6 1.000 1.050 1.167 1.100 1.375 2.000 1.050 1.095 1.235 1.125
7 1.083 1.125 1.125 1.056 1.056 1.050 2.000 1.111 1.000 1.091
8 1.071 1.053 1.111 1.167 1.167 1.095 1.111 2.000 1.111 1.130
9 1.000 1.059 1.059 1.118 1.267 1.235 1.000 1.111 2.000 1.143

10 1.056 1.091 1.091 1.042 1.136 1.125 1.091 1.130 1.143 2.000

Table A.3: Banks vs Banks, t=0.075, Real data
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11 12 13 14 15 16 17 18 19 20
1 1.037 1.036 1.056 1.053 1.000 1.125 1.019 1.143 1.045 1.030
2 1.100 1.097 1.043 1.087 1.000 1.077 1.055 1.083 1.167 1.147
3 1.100 1.063 1.143 1.087 1.000 1.077 1.074 1.083 1.167 1.083
4 1.097 1.094 1.190 1.130 1.000 1.154 1.113 1.077 1.160 1.111
5 1.063 1.061 1.042 1.040 1.063 1.000 1.035 1.000 1.074 1.081
6 1.091 1.028 1.038 1.037 1.000 1.063 1.034 1.067 1.069 1.050
7 1.138 1.063 1.091 1.087 1.000 1.077 1.074 1.083 1.077 1.083
8 1.167 1.161 1.238 1.227 1.059 1.067 1.071 1.071 1.111 1.108
9 1.065 1.030 1.043 1.042 1.067 1.077 1.036 1.000 1.037 1.054

10 1.083 1.053 1.034 1.069 1.048 1.111 1.016 1.056 1.063 1.071

Table A.4: Banks vs Insurers, t=0.075, Real data
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11 12 13 14 15 16 17 18 19 20
11 2.000 1.225 1.182 1.143 1.107 1.074 1.106 1.037 1.229 1.125
12 1.225 2.000 1.111 1.242 1.032 1.034 1.138 1.036 1.333 1.196
13 1.182 1.111 2.000 1.192 1.100 1.111 1.143 1.056 1.097 1.154
14 1.143 1.242 1.192 2.000 1.150 1.105 1.140 1.053 1.207 1.122
15 1.107 1.032 1.100 1.150 2.000 1.000 1.018 1.000 1.040 1.057
16 1.074 1.034 1.111 1.105 1.000 2.000 1.038 1.286 1.091 1.061
17 1.106 1.138 1.143 1.140 1.018 1.038 2.000 1.019 1.172 1.179
18 1.037 1.036 1.056 1.053 1.000 1.286 1.019 2.000 1.095 1.030
19 1.229 1.333 1.097 1.207 1.040 1.091 1.172 1.095 2.000 1.195
20 1.125 1.196 1.154 1.122 1.057 1.061 1.179 1.030 1.195 2.000

Table A.5: Insurers vs Insurers, t=0.075, Real data
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1 2 3 4 5 6 7 8 9 10
1 2 1.0044 1.0032 1.0074 1.0039 1.0051 1.0036 1.0064 1.0012 1.0096
2 1.0044 2 1.0016 1.0241 1.0061 1.0045 1.0044 1.0069 1.0036 1.0088
3 1.0032 1.0016 2 1.0026 1.0033 1.0054 1.0086 1.0097 1.0010 1.0011
4 1.0074 1.0241 1.0026 2 1.0057 1.0054 1.0045 1.0083 1.0039 1.0105
5 1.0039 1.0061 1.0033 1.0057 2 1.0793 1.0098 1.0181 1.0057 1.0059
6 1.0051 1.0045 1.0054 1.0054 1.0793 2 1.0104 1.0188 1.0046 1.0037
7 1.0036 1.0044 1.0086 1.0045 1.0098 1.0104 2 1.0178 1.0032 1.0033
8 1.0064 1.0069 1.0097 1.0083 1.0181 1.0188 1.0178 2 1.0049 1.0042
9 1.0012 1.0036 1.0010 1.0039 1.0057 1.0046 1.0032 1.0049 2 1.0049

10 1.0096 1.0088 1.0011 1.0105 1.0059 1.0037 1.0033 1.0042 1.0049 2

Table A.6: Bank vs Banks, t=0.075, Bivariate normal
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11 12 13 14 15 16 17 18 19 20
1 1.0013 1.0023 1.0032 1.0033 1.0030 1.0014 1.0007 1.0013 1.0026 1.0024
2 1.0075 1.0073 1.0131 1.0100 1.0091 1.0033 1.0024 1.0012 1.0094 1.0093
3 1.0007 1.0025 1.0016 1.0019 1.0014 1.0012 1.0005 1.0024 1.0031 1.0038
4 1.0081 1.0079 1.0140 1.0139 1.0126 1.0032 1.0020 1.0017 1.0105 1.0082
5 1.0044 1.0130 1.0077 1.0072 1.0054 1.0063 1.0038 1.0024 1.0187 1.0126
6 1.0028 1.0100 1.0051 1.0052 1.0040 1.0051 1.0021 1.0046 1.0126 1.0083
7 1.0022 1.0081 1.0040 1.0049 1.0035 1.0036 1.0020 1.0028 1.0092 1.0073
8 1.0034 1.0204 1.0088 1.0087 1.0060 1.0053 1.0027 1.0045 1.0158 1.0105
9 1.0063 1.0081 1.0049 1.0052 1.0034 1.0183 1.0061 1.0036 1.0112 1.0095

10 1.0120 1.0084 1.0090 1.0098 1.0073 1.0034 1.0065 1.0007 1.0114 1.0096

Table A.7: Bank vs Insurers, t=0.075, Bivariate normal
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11 12 13 14 15 16 17 18 19 20
11 2 1.0175 1.0200 1.0175 1.0112 1.0047 1.0158 1.0007 1.0190 1.0249
12 1.0175 2 1.0134 1.0184 1.0095 1.0092 1.0117 1.0022 1.0465 1.0399
13 1.0200 1.0134 2 1.0317 1.0221 1.0050 1.0041 1.0016 1.0147 1.0128
14 1.0175 1.0184 1.0317 2 1.0321 1.0063 1.0048 1.0019 1.0214 1.0131
15 1.0112 1.0095 1.0221 1.0321 2 1.0030 1.0024 1.0012 1.0114 1.0091
16 1.0047 1.0092 1.0050 1.0063 1.0030 2 1.0033 1.0166 1.0119 1.0088
17 1.0158 1.0117 1.0041 1.0048 1.0024 1.0033 2 1.0004 1.0128 1.0146
18 1.0007 1.0022 1.0016 1.0019 1.0012 1.0166 1.0004 2 1.0027 1.0019
19 1.0190 1.0465 1.0147 1.0214 1.0114 1.0119 1.0128 1.0027 2 1.0442
20 1.0249 1.0399 1.0128 1.0131 1.0091 1.0088 1.0146 1.0019 1.0442 2

Table A.8: Insurers vs Insurers, t=0.075, Bivariate normal
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