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Abstract

This paper presents a stress test for corporate exposures of UK banks. The default
process is modelled viaa Merton model and several macroeconomic as well market
factors are identified as systematic risk factors. We then simulate the expected loss
distribution for UK banks conditional on drawings of macroeconomic risk factors.
The overall conclusion of our simulation is quite reassuring as even in the worst
macroeconomic conditions expected losses of banks corporate exposures are not high
enough to cause a bank failure. A key finding of our work is that systematic factors
have a non-linear and non-symmetric impact on credit risk and that these effects are
most important for highly adverse scenarios which are the main interest from a stress
testing perspective. We also argue that this model can be a step towards an integrated
approach of stress testing market and credit risk.
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1. Introduction

In recent years stress tests have become awell established risk management tool.
They are frequently used by banks to assess the impact of severe but plausible events
on their exposures. For market risk, stresstests are generally undertaken by banks
and are used to complement VVaR measures (see BIS 2005). However, quantitative
stress tests for credit risk are not yet as far developed even though alot of banks
undertake stress tests on amostly qualitative basis extensively. In the future, thisis
likely to change as stress tests have to be undertaken for banks to be eligible for the
internal ratings approach under Basel I1.

In the last few years stress tests al so gained increased prominence as atool to assess
the financia stability of banking systems. To date, more than 90 * stress tests’ have
been completed/are on the way to being completed as part of IMF s Financial
Stability Assessment Programmes, so called FSAPs.

Sorge (2004) provides an excellent overview of the current state of literature of stress
tests for financial systems. Simple models are often based on time series or panel-
analysis which link write-offs or provisions to macroeconomic factors. These reduced
form equations are then used to assess how severe macro scenarios impact on
provisions or write-offs of banks. Pain (2004) constructs such a model for the UK and
shows that in particular real GDP growth, real interest rates and lagged aggregate

lending growth have a strong impact on banks' provisioning.

Another class of models which is extensively used is based on the idea of
CreditPortfolioView (see Wilson, 1997a and1997b). Here, the default process it
modelled as a probit process which relates macroeconomic factors to the probability
of default of companies. In this spirit Boss (2002) devel ops a stress testing model for
the aggregate Austrian banking sector, whereas Virolainen (2004) applies such a
model to the Finnish banking system.

So far, few structural models for stress testing have been developed. Such amodel is
at the core of the Bank of England’ s stress testing agenda. Hoggarth and Whitley
(2003) describe an earlier version of this model, which feeds shocks to the

macroeconomy through the Bank’ s structural macroeconomic model, a structural



satellite model linking macroeconomic variablesto arrears and liquidation rates and
finally areduced form model assessing the impact of liquidations rates and arrears on
banks' write-offs. A later version includes areduced form relation between profits
and shocks to the macroeconomic environment. DeBandt and Oung (2004) describe
such amodel for France. These models are very useful from a central bank’s
perspective as they are tractable and conform to the way central bankers are used to
communicate. Hence, they provide an ideal framework to discuss risks. In general,
these discussions form an important part of the actual assessment how a severe but
plausible scenario would impact on banks as residual adjustments have to be
undertaken in any model to accommodate possible structural breaks and/or poorly
estimated equations.

But, structural models also have limitations. They are by design restricted as
equations are generally estimated in log-linear form. Therefore, the impact of shocks
will be linear and symmetric. However, credit risk® is inherently non-linear - a
company is either in default or not. Furthermore, some defaults will always occur
because of idiosyncratic risk factors even in the best macro conditions. Hence, the up-
side of a very benign macro environment might not be as large as the downside of
very severe shocks. This might imply anon-symmetric distribution.

By explicitly modelling the non-linearity of the default process via the Merton model,
this paper highlights that the impact of shocks on expected losses of banks is neither
linear nor symmetric. Hence, ignoring this might lead to an underestimation of the

impact of a severe, but plausible risk scenario on the financial stability of a country.

Figure 1 provides a schematic overview of the general structure of stresstests. First, a
meaningful and interesting initial shock to some specific risk factors has to be
selected and second, it has to be understood how changes in these risk factors
interact/correlate with other systematic risk factors and across time. Third, it has then
to be assessed how the overall scenario —ietheinitia risk factor change and all
systematic risk factor changes following from this— affects PDs of borrowers, as well

as fourth their LGD which gives the impact of the scenario on banks' capital.

1 Credit risk in this paper is used to describe the risk of a company defaulting or not. We do not
discuss spread-risk or migration risk.



The overview is presented as a chain, but clearly there may be feedbacks at al stages.

For example, were banks to incur material losses they might cut back lending or

restructure their risk profile with attendant consequences for household and corporate

bal ance sheets and ultimately for macroeconomic variables. Furthermore, in case of a

bank failure this may spread through the banking system viainterbank linkages.

However, if theinitial shock does not have significant effect on bank balance sheets

asit isthe case in our ssmulation we might not expect any feedbacksto prove

material. In line with most other stress tests we, therefore, do not incorporate themin

our analysis.

Figure 1. A schematic overview of stresstests
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The key building block of this stresstest isaMerton model to capture the default

process of banks' borrowers. In his seminal paper, Merton (1974) showed that the

probability of default can be determined ex ante. Hisideais based on the observation

that conditional on some assumptions — most importantly that markets are complete

and efficient — the equity value of the firmis equivalent to a call option on the value

of the assets with the level of debt as the strike price. By inverting the well known

option pricing formula one can therefore derive the value of the underlying assets,

their drift and their volatility based on observables (ie the equity price and the level of




liabilities). Given this information, one can easily calculate the probability of default,
which is equivalent to calculating the probability that the value of assetsfall below
liabilities. One assumption in Merton’s original work isthat default can only occur at
the maturity of the debt. Thisimplies that the probability of default and, hence, credit
risk will be understated as default can occur at any time before maturity. Therefore,
we use a Merton type model as developed by Tudelaand Y oung (2003). Thismodel is
based on a barrier option pricing approach that takes into account that default occurs

at the moment when the default barrier is hit.

This approach to modelling the default process has a benefit as well as a drawback
which are both linked to the fact that the key input into the Merton is the equity price.
As abenefit it implies by construction the underlying value of assetsis measuredin a
market-to-market fashion. Hence, credit risk is measured with the same frequency as
market risk. Furthermore, the systematic factors we identify in the paper are partially
identical with factorstypically used to stress test market risk in the trading book such
as for example interest rates or exchange rates. Thisimpliesthat one could easily
integrate both stress tests which is one of the key challenges for stress tests (see BIS
2005). Unfortunately, there is not enough publicly available data as we do not have
any information about the exposures in the trading book of banks or any idea about
the magnitude of interest rate risk in the banking book. Hence, we focus on credit risk
—and especially default risk - for corporate exposures of banks for the moment. This
isin essence the drawback of this method. Equity prices are needed to calculate
probability of defaults viaaMerton model. Hence, industry PDs/recovery rates are
based on data from (relatively) large listed coporates. Implicitly, we, therefore,
assume that the average industry PDs are representative for the risk in the overall
sector including smaller companies, to which banks are heavily exposed. It is unclear,
how valid this assumptionis.

The mapping from equity pricesinto asset values implies that determining the
systematic risk driversfor equity returnsis equivaent to determining the systematic
risk drivers of asset values. We do the former by using the multifactor model as
described by Drehmann and Manning (2004) which identifies a set of macroeconomic

and market factors as systemic drivers of equity returns. It also shows that the impact



of changes in the underlying risk factors differs across industries, the business cycle
and whether the Bank of England followed an inflation targeting regime or not.

The Merton model is based on an efficient market assumption and we carry this
through to the estimation of the multifactor model. In its simplest form, the efficient
markets assumption implies that in arisk neutral world the response of equity returns
to a shock should be equivalent to the total impact of the shock on al future
discounted profits. In this sense, the key determinant for equity returns should be
innovations in systematic risk factors and returns should not be predictable as
otherwise arbitrage should be possible. There is an active debate in finance whether
returns are indeed predictable or not (eg see Campbell et al, 1997). However, thereis
no consensus, so far, and it isalso clear that the key impact on returns will be the
actual innovationsin systematic risk factors. Therefore, we consider only innovations
of our systematic risk factors as independent variables in the multifactor model.

It is known that recovery rates fluctuate over the business cycle (e.g. see Altman et a
2002). To our knowledge recovery rates are either assumed to be fixed or follow
draws from an independent distribution in all stresstestsin the literature. But,
expected recovery rates are nothing else than the expected value of assets, conditional
on default. Given the assumption of the Merton model the value of assets, their
volatility and drift is known and, hence, the expected asset values conditional on
default can be calculated. Unfortunately, in reality some frictions exist as there are
some deadweight costs from bankruptcy, such as eg lawyer fees, loss of expertise
with respect to handling certain machines and so forth. A mechanical application of
the model can not incorporate this. Therefore, we have to calibrate the mean expected

recovery rate to the average observed recovery rate.

To derive the distribution of |osses conditional on macro factors we simulate the risk
factorsidentified by the state and industry dependent multifactor model over aone
year horizon. The efficient market assumption implies that we only consider
innovations of macro factors as systematic risk factors. This has the benefit that these
innovations are not correlated across time. Hence, the interdependence between risk
drivers can be fully captured by the variance covariance matrix of systematic factors.

The multivariate normal isthen used to draw the scenarios. We then assume that once
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ascenario isdrawn it is announce to the market. Again, we impose an efficient market
view as assume that the market incorporates the effects of the scenario immediately.
Based on the stressed equity prices, industry PDs and LGDs are then derived.

To assess the impact of the stress on capital we are restricted by the data. We only
know the aggregate industry exposure of UK banks but neither their individual
components nor their quality distribution®. Given these data limitations, we have to
assume that all banks hold afully diversified portfolio in each industry with an
average PD/recovery rate equal to the average industry PD/recovery rate as observed
for stocks traded on the London Stock Exchange in thisindustry. We show that this
assumption might be on average not too bad as the unconditional expected PD in our

model isonly dlightly higher to the PD of an average portfolio of G10 banks.

The focus of our simulation isto derive the distribution of expected |osses conditional
on the underlying distribution of the macro environment. Hence, we do not calculate
the full distribution of losses which would take account of idiosyncratic risk factors.
The rationale for doing so is that from afinancial stability perspective the key risks
are not idiosyncratic risk factors of individual obligorsin banks' portfolios. For well
diversified large banks, |et aone the banking system as awhole, idiosyncratic factors
should not have a significant impact. A good example of this are the large corporate
defaultsin recent years like the defaults of Enron or WorldcCom, which clearly hit
banks' profits but did not threaten the financial stability of the whole system. What
matters for financial stability are large shocks hitting all obligorsin al banks
simultaneously (see Elsinger et a 2002)

So far, no stresstest uses a Merton model to model the default process. But, our paper
isvery closely related to Pesaran et a (2004) in that they follow asimilar 4 stage
approach. Their focusis on a portfolio of international active firms. To capture
correlations amongst systematic factors and across time they use aglobal VAR
(GVAR) asthe model describing the interrelations of systematic macroeconomic
factors. They include output, inflation, stock market indexes, real exchange rates,

interest rates and money balances for 11 countries/regions. As a second step they

2 With more detail information the presented framework could be easily extended to accommodate a
more disaggregated portfolio, even down to individual exposures.



estimate a multifactor model for 119 large international active firms. Originaly, al
factors from the GVAR are included, ie. for each firm they include the differenced
series of 6 domestic and 5 foreign variables, which are the trade weighted average of
all foreign variables. Some variables turn out to be insignificant or have the wrong
sign. Thefinal factor selection is, therefore, based on the significance of the mean
group estimator, but the coefficients used in driving defaults are firm specific.
Coefficientsin the final specification include the home or the foreign stock market
index (given multicolliniarity problems only oneisincluded), the dollar real exchange
rates, the domestic interest rate, domestic inflation and the oil price. A crucial
assumption in their model is that default occursif the equity price falls below a
certain threshold. They assume that the threshold is the same for firms with the same

rating and derive it by using historically observed transition matrixes.

Our paper differsin several aspects. First of all, we use afully fledged Merton model
to derive PDs, which assumes that default occurs once the value of asset falls below
the default point — not the level of equities by a certain percent. Secondly, we use the
insight from the Merton model to model recovery rates. Hence, recovery rates are
driven by the same systematic factors as defaults, whereas Pesearn et a assume that
recovery rates follow an independent distribution. Thirdly, in the Pesaran et al. work
much emphasisis given to the GVAR. Thisimplies that the actual impul se response
functions, not the innovations in macro variables, are an important determinant of

returnsin their stresstest. This contrasts to our efficient market set-up.

The overall conclusion from our paper isthat the UK banking system seems robust
with respect to macroeconomic shocks affecting the credit risk of corporate lending.
This confirms previous analysis of the UK banking system (see Hoggarth and
Whitley, 2003) and is similar to the results of stresstests discussed in the literature
(see Sorge, 2004). More importantly, severa interesting observations are highlighted
with our approach. First of all, the impact of systematic factors on PDs and to alesser
extent recovery ratesis neither linear nor symmetric. Secondly, we show that timeis
an important dimension for credit risk. Expected losses over a 1 year horizon are
much more than twice the expected losses over a 1/2 year horizon. Again, the
difference is not symmetric around the mean. In the most adverse macroeconomic

conditions the increase from the 1/2 to 1 year PD is much greater than for the mean
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which in turn is greater than for the most benign conditions. Thisis an important
result from a stress testing perspective. It also reinforces results from earlier stress
tests in the literature which also explicitly model the underlying discontinuity of
default/non-default like models based on CreditPortfolioView (eg see Virolainen,
2004) . Asthe essence of astresstest is highly adverse events which occur in the tail
of the distribution basing stress tests on symmetric and linear distributions might lead

to a severe underestimation of the risk associated with the stress scenario.

The remainder of the paper is structured as follows. In Section 2, we discuss the
Merton-type model we use to model borrower defaults and explain how we derive
expected recovery rates conditional on macroeconomic factors. Section 3 describes
our approach to identify systematic factors of borrower defaults and recovery rates
and Section 4 derives the correlation of systematic factors across time and each other.
Section 5 describes the mapping from PDs and expected recovery rates to expected

losses and Section 6 shows the simulation results. Section 7 concludes.
2 The Merton model

We follow Tudelaand Y oung (2003), henceforth TY, in modelling corporate defaults
by a Merton type barrier option approach. The intuition behind a Merton model is
straight forward and Figure 2 illustrates it graphically. It assumes that the value of
assets A of afirmi follows a stochastic process with the trend | and volatility o;

dA=pAdt+oiAdz Q)

where dz=¢+/dt and €~N(0,1). As dz follows a Brownian motion one can easily
calculate the probability PD; that the value of assets A falls below the default point D;
and company i goes bankrupt. Often PDs are also expressed in terms of the distance
to default DD. Thisisthe number of standard deviations the value of assetsis away

from the default point taking the trend into account.
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Unfortunately, neither the value of assets, their trend nor their volatility are
observable. However, assuming efficient markets Merton (1974) showed that the
value of afirm’s equity is equivalent to the value of an option on its assets with the
default point as strike price. Using the well known options formula, one can therefore
derive the unknowns from observable equity data by either maximum likelihood (see
Duan 1994, 2000) or using theoretical restrictions from the Merton model (see Hull,
2000). TY do not follow the original set up of Merton as he assumed that default
occurs only at maturity T. This underestimated credit risk. A company will go
bankrupt at the point in time when its assets fall below the default point independent
of whether thisis at or before maturity. To account for this, TY use abarrier option
approach. The formulafor the probability of default is described in the Appendix A.
For atechnical derivation, the reader should go directly to TY'.

A problem of Merton modelsin general isthat the debt structure of companiesis
more complex than simply one liability D with maturity T. In reality, companies have
several different debts outstanding with different maturity dates. Furthermore, afirm
must not necessarily default, when the value of assets falls below the value of debt as
long asit is able to pay the required interest rate. Therefore, TY assume that the
default point is al the short term debt plus half the amount of long term debt

outstanding, which isin line with commercial models such as Moody’s KMV.
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In their paper, TY show that their PDs are strong predictors of firms' default one year
ahead. The average PD of defaulted firmsis nearly 50% whereas of nondefaulted
onesit isjust around 5%. Furthermore, the model predicts the right rank ordering of
firms and captures turning points in the market well. However, in contrast to
commercialy available models TY do not calibrate the PDs or DDs to observed
default data. This may induce some bias. Research for the US (see Kamakura, 2004)
indicates that the mapping from PDs derived by a pure Merton model to actual PDsis
not one-to-one. It rather seems that Merton model PDs are too low in comparison with
actual PDs when Merton-model PDs are low and that they are too high at the other
end. Unfortunately, we can, therefore, expect that our results are biased to an
unknown degree when we compute an industry average. However, as this paper is
concerned about periods of stress, ie when PDs are high, we expect that the resultsin
general are up-ward biased, which is a desirable feature from a stress testing

perspective.

2.1 Recovery rates

From the Merton model we can derive the value of assets at default (see Figure 2).
Therefore, we can also cal cul ate the expected recovery rates which are nothing else
than the expected value of assets conditional on default — aslong as the bankruptcy
process isfrictionless. The underlying distributional assumption of the Brownian
motion in Equation 1 implies that changes in asset values and, hence, the level of
future asset values are normally distributed. To calcul ate expected recovery rates we
can apply the known formula for the mean of a normal distribution, conditional on
assets being less than liabilities (see Appendix 2). We restrict the analysis to
measuring the expected recovery rate at the horizon over which we compute the PD?,
By doing this, we implicitly assume that the asset values are realised at the end of the
computation period. Thisisnot in line with the observation that the recovery process
might take years. However, it is not clear which horizon should be picked a-priori and
restricting the calculation of recovery rates to the same horizon as PDs makes the

analysis computational more easily”.

3 Another restriction is that we assume that, once default occurred, the firm will stay bankrupt for ever
and the maximum recovery rateis 1.

4 Simulating recovering rates for an extra two year horizon would imply further 10.000 x 24
simulations for al of the 10.000 scenario considered. Aswe need to track the business cycle, thisis
computational very intensive.
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The biggest problem for the computation is that in reality, bankruptcy is costly and
not frictionless. It is not clear how to incorporate thisin a consistent fashion. To
overcome thiswe will calibrate the average recovery rate to observed average

recovery rates as will be explained in Section 6.2.

3 Systematic risk factors

In this section, we determine the systematic factors driving PDs and recovery rates.
Thisis equivalent to determining the systematic risk factors of asset returns. As
discussed above, assets are unobservable but can be derived from observabl e equity
prices. Hence, by understanding systematic components of equity returns we can

derive responses of asset returns to shocks of systematic factors.

Looking at systematic components of equity returnsis along standing question going
back to the 1970s (eg Nelson, 1976, or Fama and Schwert, 1977). More recently,
much of this work was undertaken within the APT literature and in particular in the
context of tests for multifactor models of stock-valuations. Much of thiswork goes
back to the seminal study by Chen, Ross and Roll (1986). Drehmann and Manning
(2004) (henceforth DM) look at afirst stage of an APT for UK equity returns. This

section is based on their work.

The starting point in finance is always the fundamental pricing equation

p=E(mx)

stating that the price of an asset isits future discounted income stream, with discount
factor m. Cochrane (2001) shows how this discount factor model can be mapped into
the APT framework aslong as the law of one price holds — ie that markets are
efficient and complete — and the variance of the discount factor is finite. However, it
is not clear what factors should drive the APT process. Empirically, the APT

trandates into the basic regression:

Ri=aism+ BismdXi+ & (2
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where R;; is the period-t return on a stock, and X; is a vector of factors purported to
impact upon its dividend expectations or the discount factor. The constant term, «,
may be interpreted as the risk-free return. It can be shown that thisis also equivalent
to the drift of assetsin equation (1).

The approach of DM constitutes something of a departure from other research
undertaken in thisfield. First, while researchers have tended to work with returns on
stock market aggregates (market indices) or composite portfolios, they adopt a panel
estimation methodology. Clearly, the overall explanatory power of the regression is
lower, given that the left-hand side returns comprise both systematic and idiosyncratic
risk, but greater precision in coefficient estimates could be expected, especially as
coefficients are state and time dependent as will discussed later.

Second, the focusis on the UK market, whereas much of the literature has examined
US stock returns. The core of the dataset is an unbalanced panel of monthly
observations of total returnindices (i.e. taking into account, not only theincreasein
stock pricesin agiven period, but also dividend income received) for each of the 556
firms (excluding banks and investment trusts) currently in the FTSE All Share index,
with at least 12 observations during the period January 1980 - October 2003 inclusive.
Due to data constraints for certain explanatory factors (and given that we work with a
six-month lead of our activity factor), however, the effective sample period for the
empirical work becomes April 1982 — December 2002. Although the noise-to-
information ratio in stock returns may be higher at a monthly than quarterly frequency
(as observed by Schwert, 1990), the advantage is that it introduces greater variability
in the systematic factors and increase the within-groups degrees of freedom which are
needed to be able to recognise.

Third, in general the fs are assumed to be constant over the estimation period, which
islikely to be too restrictive especially from a stress testing perspective. Therefore,
after statistically testing for it, DM allow coefficientsto differ across monetary
regimes (M), industries (1) and states of the business cycle (S). Theintuition why
these changes should be allowed is relatively straight forward.
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There are strong economic priors, why the regime change in the monetary regime
needs to be taken into account. After the UK adopted inflation targeting in October
1992 both the level and volatility of inflation as well as the volatility of other macro
factors dropped sharply. DM show that macro factors have a significantly different
impact pre and post inflation targeting. Therefore, we only take the coefficients post

October 1992 for our simulation.

Taking industry differences into account is beneficial from the stress testing
perspective as we have information on banks' industry exposures. However,
intuitively one would also expect responses to vary across industry groups, dueto
possible differencesin cyclicality, international orientation and dependence on factors
such as oil inputs. The data are therefore split into six industry groups, broadly
defined according to their SIC codes.” The groups ultimately employed in the analysis
and the stress testing application are as detailed in Table 1.

Table 1. Industry groups employed in the analysis

Industry group

Manufacturing; electricity gas and hot water
Construction; real estate

Wholesale and retail trade; hotels and restaurants
Transport, storage and communication (TSC)
Mining and quarrying

Other business activities; education; community

Finally, DM alow coefficients to vary according to the state of the business cycle.
Thisis especially important from a stress testing perspective asit is not clear whether
the response of equity returns to systematic shocks is the same for severe periods of
stress — the periods we care most about in a stress test — and normal times. If
differences are not allowed for but exist in reality, then the latter will dominate the
sample and results for the stress test will be biased. McQueen and Roley (1993) were

® To the extent possible, MD have sought to match FT industry classifications to SIC codes, upon
which UK bank exposures are based, and then amalgamated certain SIC groups. This procedure
necessarily entails a trade-off between homogeneity and degrees of freedom; i.e. greater disaggregation
to alow for greater heterogeneity reduces the degrees of freedom within each group.
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the first to explore state dependent coefficients. They argued that a* positive surprise
to industrial production in arecession could indicate the end of the depression and
higher forecasts for firms' cash flows....” However in amore favourable state, “with
low unemployment and factories running near full capacity, a positive surprisein
industrial production may result in fears of an overheating economy, inflation and
possible efforts of policy makersto increase thereal interest rate....” (p. 684,
McQueen and Roley, 1993).

DM define ‘ states of the economy’ in terms of the extent of deviation from atrend
growth path as measured by the Hodrick Prescott filtered path of In(GDP). Following
McQueen and Roley (1993), the ‘low state’ comprises observations below the 25th
percentile of the distribution of deviations from trend —i.e. thosein which the
deviation from trend is large and negative — and the ‘high state’ comprises
observations above the 75th percentile.

3.1. Seection of factors
DM do not follow atheoretical model to derive the factors for their analysis but rather
derive a set of factors by general-to-specific. Tables 2 shows the final selection of

macro factors which are economically intuitive.

Table 2. Macroeconomic factorsincluded in the specification

M acr oeconomic factor Calculation and transformation Exp. Pt [ Sd. - Std'n
sign Devi= Devi-,
Innovation in Monthly observations are residuals from 0074  0.003
expected GDP GDP* | regression of 6 month forward changein + (d 40) (O' 97) 0.002 0.001
growth™ log real GDP on two lags of itself ) )
. Nominal T-Bill rate less preceding 12
Changein red TB3 | month log difference in RPI index. . 0030 -0083 475, g3
3mth T-Bill rate S (0.73)  (0.48)
1 month percentage point difference
Changein Difference between 2 year gilt spot rate 0045  0.097
2yr/3mth yield SPR | and 3mth T-Bill rate. - (d 61) (O' 28) 0.470 0.262
spread 1 month percentage point difference ) ’
Innovation in Monthly observations are residuals from 0032 -0034
current RPI RPI regression of 1 month log first difference - (0' 72) (O' 70) 0.005 0.004
inflation”™” of RPI on two lags of itself ) )
Changeinreal .
f Real (deflated by RPI) 1 month log first _ 0.332  0.097
£ effective EER difference (000)  (0.28) 0.017 0.017
exchange rate
Nominal 1 month log first difference of
Changein monthly average of unweighted 0414 0111
US$ ol price oIL composite of WTI, Brent Crude and B (0.000 (0.22) 0.091 0.076
Dubai Light

"First-order autocorrelation coefficient for transformed series. t=1 isthe period April 1982 — Sep. 1992 (126 observations); t=2
isthe period Oct. 1992- Dec. 2002 (123 observations). P-value from Q-test in parentheses.

" Standard deviation calculated over the period April 1982 — Sep. 1992 (t=1), and the period Oct. 1992- Dec. 2002 (t=2).

" We generate the innovations by regressing each differenced series on two lags of itself. Given that our later empirical tests
exploit astructural break in the series at October 1992, we allow for thisalso in these regressions. In each case, we find
significant differencesin the autoregressive properties of the series pre- and post-October 1992.
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Asdiscussed in the introduction, DM work with the strong assumption that markets
are efficient and that asset prices are not predictable. Therefore, highly autocorrelated
macroeconomic factors are transformed so as to capture only surprises, or
innovations. Following Chen, Roll and Ross (1986), however, it is argued that factors
originating in market prices (such as interest rates, commodity prices and exchange

rates) are “sufficiently uncorrelated that one can treat [them] as unanticipated.”®.

Some studies (e.g. Pesaran et al., 2003) include a broad market index as a systematic
factor. However, the ‘market’ returnis merely aweighted average of individual equity
returns and in the panel context DM are essentially working with an unweighted
average of individual equity returns on the left-hand side. Thus, although each
individual company might be considered small relative to the market as awhole, this

might be expected to introduce endogeneity into the specification.

Although this argues against the inclusion of the market index itself, some market
proxies should be included in the specification. Thisisintuitive, as stock prices reflect
long-horizon expectations for dividends to shareholders, which are likely to embody
expectations for systematic macroeconomic factors extending beyond the horizon that
can be captured by our short-term proxies. Furthermore, the market will embody
information about time-varying risk premia, liquidity and capital flows that constitute
common factors, but cannot be captured by macroeconomic proxies. Market factors
are presented in Table 3, below.

Table 3. Market factors included in our specification

. . Exp. . . Std. Std.
Market factor Calculation and transformation sign Pr=1 Pr=2 Dev,”  Devi”
. 24-day annualised standard deviation
\C/:(;}a;l?ﬁ In VOL of FT All Share price index. (%%g (g%?ﬁ 7.038 5629
Y 1 month percentage point difference ) )
A Implied equity risk premium for FTSE ]
Change in risk ERP 100 index, applying a 1-stage DDM. - 0.035 0.098 0.269 0.189
premium oS (0.69) (0.27)
1 month percentage point difference
. Price/Earnings ratio for US S& P 500
S;‘ﬂgg%r']n PE-US | composite. + (%(11657) (ggggl 0.965 1737
1 month percentage point difference ) )

"First-order autocorrelation coefficient for transformed series. t=1isthe period April 1982 — Sept. 1992 (126 observations); t=2
isthe period Oct. 1992- Dec. 2002 (123 observations). P-value from Q-test in parentheses.
“Calculated over the full sample period.

® Chen, Roll and Ross (1986) argue (p.386) that there is a trade-off between the introduction of an
errors-in-variables problem if the autocorrelated factor isincluded directly, and error introduced by
misspecification of the estimated equation for determining the expected movement.
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3.2 Results for the multifactor model

All results are estimated by GL S, correcting for heteroscedasticity. DM undertake a
battery of teststo see whether coefficients are different across industries, states of the
business cycle and monetary regimes. Thisisindeed the case. It can also be seenin
Table A3 in the Appendix 3 which shows the estimation results used in the stress test.
Overall, the predictions of the impact of market as well as macroeconomic factors
seem to be confirmed. Especially pre October 1992 coefficients in extreme states

tend to be larger and more significant.

The majority of coefficients (approximately three-quarters) are statistically significant
at conventional levels, the bulk of those measured imprecisely may be found in the
second sub-period; and disproportionately in extreme states of the economy.’
Unfortunately, this most likely reflects the much greater incidence of extreme states
of the economy in the first sub-period. Only athird of observationsfell in the
‘normal’ state in the pre-October 1992 period, while in the second sub-period GDP
remained much closer to trend, with more than 60% of observationsin the normal
state. Furthermore, extreme observations in the second sub-period are concentrated
early in the period. Most of the low state observations are located at the tail-end of the
1990-1992 recession and in the early stages of the recovery; the high state
observations occur almost exclusively in the 1994/95 period, as activity gathered pace

following sterling’'s ERM exit and the associated monetary easing.

It is also interesting to assess the explanatory power of the specification (see Table 4).
For a comparison we report the R? of an alternative specification where the excess
returns are regressed on a series of time dummies, which will capture the average
variation across firmsin each period. The R%s of the above specification are generally
lower than those from regressions on time dummies only. However, thisisto be
expected as the time dummy regressions capture the maximal systematic variation,
but without specifying the driving factors. Hence, given that our R?s are generally
between half and two-thirds of these values, the relatively parsimonious specification

" Some 151 of the 189 coefficient estimatesis statistically significant at conventional levelsin the pre-
October 1992 period, compared with 125 in the second sub-period. Of the 64 coefficients estimated
imprecisely in the second sub-period, 56 occur in extreme states of the economy.
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appears to be very successful and to include the most important systematic

determinants.

Table 4. Explanatory power of industry-level regressions, with state- and time-
dependent coefficients

Pre Oct. 1992 Post Oct. 1992

Basig Timg Basig Timg

reg. dummies reg. dummies
MANUF. 0.174 0.244 0.059 0.096
CONSTR. 0.206 0.353 0.112 0.225
RETAIL 0.127 0.216 0.081 0.148
TSC 0.175 0.264 0.077 0.142
MINING 0.145 0.249 0.125 0.230
BUS. SERV 0.171 0.249 0.090 0.152

“Within-group Rs reported. Rsin columns (1) and (3) relate to the regressions reported in the Annex. The R?sin columns (2)
Sr;(r:ii éé) relate to regressions on a series of time dummies, one for each month, which capture all systematic variation in each
Overall, Table 4 indicates that most risk is not driven by systematic factors but rather
by idiosyncratic factors. Thisisimportant for our stress test aswe will only simulate
on the impact of systematic factors but do not look at idiosyncratic ones. Hence, alot
of variation is not picked up in our simulations, where we only look at the impact of

systematic factors on expected |osses.

4 Correlation of systematicrisk factors

The third important building block for a stress tests is an understanding how
systematic factors are correlated between each other and across time.

DM’ s approach to identify systematic factorsin an efficient markets context is hel pful
at this stage as they only analyse the impact of innovations of macroeconomic and
market variables on equity returns. Theoretically, these innovations should not be
autocorrelated and there should be no correlation between factors across time.
Autocorrelation coefficientsin Table 2 and 3 show that thisis indeed the case for
nearly all variables we look at. Exceptions are the trade weighted exchange rate and
the ail pricein thefirst period and volatility across both samples. DM investigate
whether coefficients would change alot if these variables would be transformed into
innovations as well. However, thisis not the case except for the oil factor in the

mining industry pre-October 1992. Given that the oil industry is not the main focus
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and transforming variables into innovations might add more noise, we think that these
factors are the right onesto use in the stress test. Furthermore, looking at correlations
across factors between different periods we al so observe some weakly significant
correlations. However, the relationship is only very weak and not consistently
significant across different monetary regimes. Given this weak evidence we do not

model them in the current paper.

Hence, given no correlation across time we only need to model correlation between
systematic factors at each period. We do this by ssmply using the variance /
covariance matrix of the factors when there is significant correlation. Table 5 shows
the correlation coefficients used for the stress test.

Table 5. Correlation matrix — post-October 1992

GDP® TB3 SPR RPI EER OlL VOL ERP PE-US
GDP® 1.000
TB3 0.055 1.000
SPR 0.062 -0.041 1.000
RPI 0.019 -0.136 -0.050 1.000
EER 0.027 0.287" 0.002 -0.327" 1.00
OolL -0.008 -0.077 0.026 0.197” -0.166" 1.000
VOL -0.135 0.027 -0.191" -0.085 0.157 0.064 1.000
ERP -0.180"  -0.251""  -0.444™ 0.036 -0.199™ -0.001 0.183" 1.000
PE-US 0.029 -0.005 0.245™ -0.044 0.052 -0.129 -0.212"  -0.361" 1.000

Correlations estimated on a pairwise basis over the period over the period April 1982-September 1992 (Table 5a) and October
1992-December 2002 (Table 5b). ““=pairwise correlation coefficient significant at 1%; ““=pairwise correlation coefficient
significant at 5%; "=pairwise correlation coefficient significant at 10%.

We also undertook some preliminary investigation whether modelling dependency
structures via copulas would improve the results. However, it turns out no significant
changes are observed. Thisis mainly due to the fact that actual correlations are
relatively weak and so the approximation by the multivariate normal works quite well.

Therefore, we do not report these resullts.
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5 The Simulation

Figure 2: A schematic overview of the set up of the ssmulation

Multifactor model Aggregation of firm PDs Derive expected losses
* state dependent into industry PDs 10 largest UK owned banks
« industry dependent * un-weighted average *banks’ industry exposures,
« significant coeff., post 92 * 6 industries Oct. 2004
i ' v
Risk | Cond. Cond. firm | Cond. Cond.
scenario |_',| equity |-| PDs || industry |, expected
prices | a PDs losses
' — i
———— : Cond.
Monte Carlo simulation of Merton model
systematic risk factors « conditional equity recovery
» normal distribution prices as input rates
* Var/Cov matrix, post 1992 « unconditional drift / *
* 12 months horizon volatility Exp. asset value, cond. on default
* 10.000 draws * all companies listed « cond. equity, uncond. drift/vol.
on the LSE, Oct 2004 « un-weighted industry average

Integrating the three building blocks enables usto stress test UK banks' portfolios.
Figure 2 provides a schematic overview of the simulation set-up. The simulation starts
by taking a random drawing of systematic factors based on the assumption that factors
are jointly normally distributed with N(O, X) where X is the observed
variance/covariance matrix post October 1992. A scenario consists of 12 independent
random drawings of the nine factorsfor 1 to 12 months. During each scenario we
track the output gap and apply the state depended multifactor model to calculate
equity returns conditional on the scenario. In line with general stress test practices, we
assume that the development of each scenario is known at the starting period of the
stress test. Keeping with the assumption of efficient markets asset prices are,
therefore, assumed to react immediately to incorporate the effect of the whole
scenario. The equity prices, conditional on the scenario are then fed into the TY
Merton model, which generates asset values. Using the TY model also generates the
drift and volatility of assets, which we use to calculate PDs. Based on the conditional
asset prices, we also calculate conditional expected recovery rates. We do thisfor all
stocks on the London stock exchange taking October 2004 as a starting point.
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To derive expected losses for banks we assume that expected |osses on banks
industry exposures behave in line with the average expected losses in this industry,
conditional on the scenario. This assumption is mainly driven by data limitations.
Only the total value, but not the quality distribution, of exposures of banks to a certain
industry is known to the Bank of England. We look at the exposures of the ten largest
UK banks® as of October 2004. Thisis repeated 10,000 times.

In the simulation, we do not stress the drift or the volatility of assets but take them
from the unconditional TY model. As discussed above, the drift is theoretically
equivalent to the estimated constant in equation (2), adjusted for dividend payouts
which we however not include in the prediction of equity returns. Using unconditional
volatilities should induce some up-ward biasin PDs as well as adownward biasin
recovery rates. Thisisthe case as we actually simulate already part of the volatility of
asset returns by simulating systematic risk factors. Hence, the variance we use to
calculate PDs as well as recovery rates istoo high but not massively so asthe
explanatory power, especially post October 1992, of the multifactor model is quite
low. Given, that the variance might increase in a stress environment in the first place,
this assumption might not induce a massive distortion. Using the unconditional
variance is also beneficial asit capture idiosyncratic risk factors of obligors which are

not ssimulated in our analysis.

6 Results

6.1 PDs

The simulated median PD over aone year horizon is over 8%, which is above the
average probability of default for BB bonds as observed from Moody’ s default
data(see Table 6). Thisimpliesthat the average PD of our hypothetical portfoliois
higher than the average PD of a portfolio of an average G10 bank which issimilar to a
BB rating (see Catarineu-Rabell et al, 2003). Thiswas to be expected. As discussed in
Section 2 the Merton model employed does not map measured PDs into actual PDs

8 The banks are Abbey, Alliance and Leicester, Bradford and Bingley, Barclays, HSBC, HBOS,
Lloyds, Northern Rock, RBS, Standard and Charters.
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and this introduces some up-ward bias. As we are not concerned about pricing but
downward risk in stress environments, the up-ward biasin PDsis a desirable feature”.

Table 6: Average PD for different ratings and average portfolio distributions of credit
quality for corporate exposures for G10 banks.

Average PD’ Quality distribution of average
(%) G10 bank™™ (%)
AAA 0.00 4
AA 0.02 6
A 0.01 27
BBB 0.15 30
BB 1.21 29
B 6.53 4
CCC 24.73 1

" reported by Moody's for all defaulted bonds between 1970-2001
" reported by Catarineu-Rabell et al (2003)

Chart 1 shows the evolution of the distribution of PDs over different horizons. A
pattern which will be seen in all simulated results emerges: The distribution is neither
symmetric nor linear. It is clear that for all forecast horizons the PDs in the best
macroeconomic environment (ie the 1% percentile) are closer to the median PD than
the PDs in the worst macroeconomic conditions (ie the 99" percentile). Furthermore,
Chart 1 shows that time is an important dimension as the one year ahead PD is greater
than twice the 6 month PD. Again, the difference is not symmetric around the median.
In the most adverse macroeconomic conditions the increase from the 1/2 to 1 year PD
is much greater than for the median which in turn is greater than for the most benign
conditions. Thisis an important observation as most other stress testing models are
based on linear approximations, where such effects can not occur.

Industry probabilities of default show similar characteristics, even though non-
symmetry and non-linearity is far more pronounced for some industries (see Charts
2-7). To acertain degree, this might be an artefact as there are much fewer companies
in some industries and hence the distribution is more prone to outliers. Interestingly,

Industry 5 (see Chart 6) seemsto show an inverse relation to other industries. Thisis

® As arobustness check we artificially restricted the maximum PD to 50% in the spirit of KMV'’s
restriction to PDs to 20%. Even though this changes the shape of the distribution of some industry PDs
it hardly influences the aggregate results.
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mainly driven by the fact that PDs in mining and quarrying are extremely low and that
there are only few companies in thisindustry.

6.2 Expected Recovery rates

Asdiscussed in Section 2.1 the assumption of normality allows usto calculate the
expected recovery rate, conditional on default. The distribution of simulated expected
recovery rates for aone year horizon is shown in Chart 8. Unfortunately, the
simulated results show quite a poor fit with actual data. The observed historical
average expected recovery rate (for the US) is around 40.34%'° whereas the
unconditional average expected recovery rate over aone year horizon isjust under
90% in our simulation. Thisis clearly a significant difference, which might be
explained by several factors. Firstly, looking at expected recovery rates over the 1
year horizon (see Chart 9) it can be seen that expected recovery rates decline over
time. Given that recovery can take years, it might be the case that the market already
anticipates this and looks at the expected recovery rate say 3 years ahead. However,
this can also not explain our high recovery rates. In another simulation based on the
same model but without changing coefficients in the multifactor model and with data
from December 2003 we simulated recovery rates over a 24 month horizon. Even then
the lowest percentile of the simulated recovery rate across al companiesis only
around 80%. Another explanation might be the most plausible one, in that default
implies some form of bankruptcy costs and hence a step change in the value of assets
is observed once there is a default. The market clearly incorporates thisinto its
assessment of recovery rates, whereas our simulations do not. To accommodate this,
we calibrate the mean expected recovery rate over aone year horizon to equal
40.34%, which is equivalent to assume that bankruptcy costs are around 58% of the
asset value. Informal discussion with UK banks revealed that this restriction might be
too severe and that actual recovery rates lie between bond recovery rates (which are
unsecured) and our initial simulations. However, by imposing a severe recovery rate

we increase expected losses which isjustified from a standpoint of conservatism. This

19 Generally, data on recovery rates is poor and the most commonly used proxies are prices of bonds
three months after default. These can be seen as expected recovery rates as the market is forward
looking. The reported recovery rateis based on Moody’s data of all US bonds defaulted between 1982
and 2003. Including UK bonds does not change this, as only 66 bonds defaulted in the UK in this
period.
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might also capture some liquidity problems which may arise if several banks would
need to liquidate assets simultaneoudly.

Chart 9 shows the simulated aggregate expected recovery rate over time. Itis
interesting to note that the dispersion of recovery ratesis far less pronounced than on
PDs and the impact of shocks does not seem to be strongly non-linear and non-
symmetric. Furthermore, recovery rates do not fall as much over time as PDs increase

over time.

6.3 Distribution of expected losses conditional on macroeconomic factors

Chart 10 shows the distribution of total expected losses of UK banks corporate
exposures, conditional on macroeconomic scenarios. It isworth stressing again that
we do not simulate idiosyncratic risk factors. Our main interest liesin the impact of
systematic risk factors driving correlated losses. However, it should be noted that
idiosyncratic risk is captured in the general PD. The chart, therefore, does not ook at
the whole distribution of losses but only at expected losses, conditional on macro
stresses as macro risk is the important aspect from afinancial stability perspective.
The 99" percentile, for example, in Chart 10 shows the amount of expected |osses,
given the worst macroeconomic outlook. Looking at the 1 year horizon expected
losses conditional on the worst macroeconomic environment would be less than 20%
of capital (Chart 11).

The underlying non-linearity of the default processisthe driver for the non-symmetric
shape of the expected loss distribution. It is clear that the difference between normal
conditions and the most benign ones is not that pronounced whereas thereisa
significant increase in expected losses for the most adverse macro scenario. It is clear
that dueto idiosyncratic risk implicitly captured in PDs, there are always some
expected losses, even in the best macro conditions. But, macro factorsreally kick in
when general conditions are severe. Unsurprisingly, thisimplies that thereislittle up-
side from good macro conditions but a severe down-side from highly adverse
conditions in the systematic factors.

Overall, this stress test indicates that the UK banking system is rather robust. This

conclusion is strengthened when looking at expected |osses relative to past profits as
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they are the fist buffer against losses. Even the most adverse conditions total
expected losses do not exceed total profits. Hence, it would not be necessary for
banks to use up some of their capital to cover unexpected losses (Chart 12) in the first

place.

However, the above graphs might be misleading in several aspects. First of all, so far
we only simulated losses for total UK corporate exposures of banks relative to total
capital. Clearly, banks capital holding is determined by their total exposures across all
different asset classes in the UK aswell asinternationally. To adjust for this, we
assume as a robustness check that banks capital holdings against risksin different
portfolios are proportional to their exposures in these portfolios. We call these capital
holdings ‘relative capital’. Thisis obviously avery simplistic approach asit ignores
potential diversification benefits between different asset classes. However, it seems
likely that these are less important than the fact that the risk in corporate lending is
generally much higher than for household and especially mortgage lending. For
example, over the period from 1993 to 2004 the average aggregate write-off rate for
corporate loans was 0.19 with a variance of 0.02 in contrast to the average aggregate
write-off rate of 0.09 with avariance of 0.001 for secured household lending.
Therefore, the mapping of expected losses to relative capital should overstate risks to
the financial system.

Whereas the aggregate might imply stability, it must not necessarily follow that all
banks are sufficiently profitable and well capitalised to withstand the shocks.
Therefore, we look at the 25% percentile of banks expected losses over relative
capital in the best macro conditions and the 75% percentile of banks expected losses
over relative capital in the worst state of the world. Chart 13 nicely illustrates the
difference between upside and downside risk. Overall, it indicates that even in the
worst macro conditions and for the worst affected bank expected |osses are only about
120% of capital. This overstates the true risks as the analysis does not take any future
profits into account which would be the first buffer against losses. More importantly,
banks where the worst scenario impacts more than a 100% relative to relative capital
have all very small corporate portfolios relative to their household lending activities.

Hence, the adjusting for relative capital is especially severe for these ingtitutions.
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The observation that the impact of shocks is neither linear nor symmetric can also be
summarized by looking at the mean?, the standard deviation and the skewness of the
distribution of returns, PDs, LGDs and total expected lossesasin Table 7.

Table 7: Summary statistics of the distribution of returns, PDs, LGDs and total UK
expect losses.

Average Returns PDs
horizon | Mean Std Skew | mean std skew
1| 0000 0.094 -0021 | 0.011 0.001 0.286
3| 0.000 0163 0.056 | 0.024 0.003 0.674
6| -0.000 0224 0.08 | 0.042 0.008 0.956
9| -0.000 0274 0.055 | 0.062 0.015 1.030
12| -0.002 0316 0.045 | 0.083 0.022 0.990

Recovery rates Total Expected Losses
horizon | mean std skew mean std skew
1| 0989 0.000 -0.211 | 293.91 18.0 0.29312
3| 0969 0002 -0.258 | 12544 1199 0.42855
6| 0944 0004 -0.259 | 34430 446.2 0.55481
9| 0920 0006 -0.288 | 6354.3 1015.1 0.67489
12| 0.899 0.009 -0.285 | 9869.8 1799.1 0.77066

As expected, average returns have a mean, which is not significantly different from 0

and the standard deviation increases linearly with square root of T=+/12 =3.5. Even
though, shocks to returns are normally distributed we observe some skewness, which
might be driven by the fact that coefficients change over the course of the simulation.
The picture of PDsisin stark contrast to this as the standard deviation increases by
around afactor 22 from 1 to 12 months instead of afactor 3.5. Furthermore,
significant skewness can be observed, with afat right tail*2. The distribution of LGDs
shows asimilar pattern but not so strongly. Skewness thistime is negative, which
impliesthat the left tail - ie low recovery rates - is more pronounced than for a normal
distribution. For total expected losses the increase in the standard deviation is aso
highly non-linear and the distribution shows significant skewness, which, however, is

not as pronounced as for the distribution of PDs.

™ When reading these results the reader should keep in mind that so far we focused on the median. In

case of positive skewness the mean will be higher than the median.

12 The skewness will be affected by the fact that Merton model PDs are too high relative to actual PDs
at the high end and too low at the low end. However, the skewness is so pronounced that adjusting for
this should not impact on the overall qualitative result.
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The insight from this table clearly indicates that back of the envelope stress tests
based on the normal distribution will produce wrong results. Take the mean and
standard deviation of expected losses as given and assume that the stress test would be
a plus/minus three standard deviation shock to expected losses. In this stress test
expected losses are 15,000 and 4,500 respectively. Especialy, in the negative scenario

expected losses are underestimated by around 20% which is quite significant.

Clearly, banks' stress tests are more sophisticated than this simple example. However,
the analysis above stresses the importance of modelling the underlying non-linearity
of credit risk which givesrisk to signficiant skewness and non-linearity in increases of

the standard deviation over time.

7 Conclusion

This paper presents a stress test for corporate exposures of UK banks. The overall
conclusion is quite reassuring as even in the worst macroeconomic conditions
expected losses of banks corporate exposures are not high enough to cause a bank

failure.

This stress test showed that systematic factors have a non-linear and non-symmetric
impact on credit risk and that these effects are most important for highly adverse
scenarios which are the main interest from a stress testing perspective. Insofar the
results are reassuring because in spite of modelling the non-linearity and upward
biasing our estimates at several stages the overall impact of severe macro conditions
on UK banksis limited.

However, one should also caveat this methodology. Both the Merton model and the
multifactor model are based on the assumption that markets are efficient. Therefore
we limit our attention to innovations of macro factors, which might underestimate
correlations of risk factors over time. As all market based models we also assume that
market prices always reflect true economic fundamentals - a statement some might
want to question especialy after the latest tech bubble. Furthermore, we implicitly

assume that no market disruptions can occur. Again, it is not clear whether thisis
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indeed the case especially when looking at times of severe stress which we do in the

tails of our simulation.

Not withstanding these arguments, the devel oped stress test can be an important
surveillance tool to analyse the financial stability of a banking system asit highlights
the impact of non-linear impacts of highly adverse scenarios which previously have
not been modelled. Furthermore, given that our model is based on market data, the
setup can be nicely integrated with stress tests for market risk in the trading book.
Thisisan important step into the direction of afully integrated approach to stress test
all risks faced by banks.
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Appendix 1
The Merton model of Tudela and Young (2003)

Assume that the value of assets A of afirm i (for clarity we omit theindex i for this

appendix) follows a stochastic process with the trend pa and volatility oa
dA=ppAdt+oaAdz (A2)

where dz=¢+/dt and €~N(0,1). Thelevel of liabilities L follows a deterministic
process with dL= Ldt. Thisimpliesthat the asset liability ratio k=A/L follows a
stochastic process with trend k= pa-pi and volatility ox=oa. TY derive the probability
density function for k, which enables the estimation of pk and ox. This enables them
to calculate the probability of afirmi defaulting before or at time T based on

information at time O

PD, o =1-{[1- N(w)] - a&[1- N(u,)]} (A2)
K - M—U'ZJT —K—[ i—"'ij
u, = { 2 u,= "o
o T 2 o NT
2K _O-IZJ
@ =exp (022 Kﬂ{lj
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Following Nickel and Perraudin (1999) they derive a mapping from the observable

equity-liability ratio, y=X/L, to the unobservable asset liability ratio which in the case

of asuitable default point isy=k-1.

Appendix 2

Moments of atruncated normal distribution

Assume that x~N(,6%) and C is a constant, then
E(X[x<C)=p+a f(y)
Var (x|x<C)=0(1-9(»))

with
y=(C-Wlo
f()=-0() (y)
g(n)=f() (t()-»)

where ¢/® are the normal distribution/cumulative normal distribution function.
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Appendix 3

Table A3(a). GLS by industry with state-dependent coefficients — pre-October 1992

State MANUF  CONSTR  RETAIL TsC MINING BUS
GDP* Low — 6.670%*  13.057**  4.653***  4.283* 1.263 10.140%*
Norma o580 1.979* 3.302%*  -1.074 2.230 0.978
High 2.726%*  3.312%*  2304** 1476 5.395%*  3.179%*
State diffs.  (p- 0.000 0.000 0.339 0.175 0.392 0.000
TB3 Low -0.032%*%  -0.057***  .0.035%*  -0.057**  -0.065%*  -0.027***
Normal .0 g5+ .0.039%***  -0.028%*  -0.035%*  -0.030**  -0.028**
High -0.042%*%  -0.044**  -0.037**  -0.047**  -0.033%*  -0.034***
State diffs (p-val) 0.000 0.013 0.088 0.024 0.005 0.256
SPR Low -0.051%*  -0.024**  -0.030%*  -0.061***  -0.042**  -0.036***
Normal g pgw+  -0.035%*  -0.022%*  -0.047**  -0.030**  -0.029**
High -0.039%*  -0.017**  -0.034**  -0.041%*  -0.011 -0.025%+
State diffs (p-val) 0.004 0.068 0.221 0.541 0.294 0.517
RPI Low 0.689 4.965%** 1.878% 1.098 -2.199 2.528%%*
Normal g 362 -1.161** 0.646 0.786 1.701* 1.201 %%
High 27635 -3.628%*  -2.055%  -2.060%*  -4.288**  -2.250%*
State diffs (p-val) 0.000 0.000 0.000 0.000 0.000 0.000
EER Low -0.566**  -0.598**  .0.289* -0.444 -0.078 -0.429%
Normal .9 717+ 0617+  -0.648%*  -0.612%*  -0.852%*  -0.744%*
High -0.730%*  -0.252* -0.029 -0.701%*  -0.884***  -0.305%**
State diffs (p-val) 0.519 0.162 0.001 0.760 0.191 0.015
olL Low 0.039** -0.024 0.029 0.018 0.048 0.057**
Normal . 76++  -0.127**  -0.050*  -0.120%*  0.055 -0.099%**
High 0.005 -0.102%*  0.006 -0.000 0.146"*  -0.040*
State diffs (p-val) 0.000 0.03 0.04 0.018 0.319 0.000
VoL Low -0.000 -0.002***  -0.001* -0.000 0.002* -0.002%
Norma 903+  -0.004%*  -0.002%*  -0.004***  -0.003**  -0.003***
High -0.002%*  -0.001*  -0.001 -0.003**  0.001 -0.001%**
State diffs (p-val) 0.000 0.000 0.009 0.000 0.000 0.000
ERP Low -0.053**  -0.076®*  -0.046**  -0.049%*  -0.095%*  -0.036***
Normal .0 g7+  -0.089%*  -0.100%*  -0.122%*  -0.001**  -0.114%*
High 01474 -0.131%*  -0.1209%*  -0.178*  -0.105%*  -0.169***
State diffs (p-val) 0.000 0.007 0.000 0.000 0.896 0.000
PE-US Low 0.007**  0.004 0.008**  0.001 -0.002 0.009%*
Normal g o21%*  0.021%*  0.015**  0.017%*  0.026%*  0.021**
High 0.015%*  0.010%*  0.019**  0.016"*  0.021%*  0.012*
State diffs (p-val) 0.000 0.000 0.006 0.002 0.000 0.000

The dependent variable in each case is the excess stock return over therisk freerate. Panels are unbalanced, with estimation
covering the period April 1982—December 2002. The ‘state-diffs’ row for each factor presents the p-value from ajoint Wald test

of coefficient equality across states of the world. Each regression includes a constant term (not reported). ™" =coefficient

significant at 1%; ~"=coefficient significant at 5%; “=coefficient significant at 10%.
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Table A3(b). GLS by industry with state-dependent coefficients — post-October 1992

State MANUF CONSTR RETAIL TSC MINING BUS
GDP* Low 5.578* 13.741%** -2.735 9.898* -6.161 3.916
Normal 8.017*** 5.862*** 8.351*** 9.211%** 1.423 9.150***
High -1.648 -10.892*** -9.058** -6.961 -27.932%** 10.098**
State diffs (p-val) 0.012 0.000 0.000 0.062 0.006 0.305
TB3 Low -0.013 -0.022** -0.009 -0.009 0.015 0.001
Normal -0.0214*** -0.035*** -0.0187*** -0.0256*** -0.0436*** -0.0254***
High 0.001 -0.009 0.015 -0.018 0.016 -0.008
State diffs (p-val) 0.014 0.027 0.008 0.646 0.003 0.019
SPR Low -0.009 0.002 -0.007 -0.009 -0.014 0.019
Normal -0.0227*** -0.0429*** -0.01074* -0.02968*** -0.0254** -0.0196***
High -0.0608*** -0.0355** -0.04314** -0.07899*** -0.046 -0.04537*+*
State diffs (p-val) 0.002 0.004 0.167 0.084 0.750 0.001
RPI Low -2.15161%* -2 47479%** -1.7008** -4.31328*+* -1.428 -3.62336***
Normal -0.59085** -0.95584*+* -0.61012* -3.43664*** 0.405 -1.45758***
High -1.62747*+* 0.502 0.940 -2.25523* 2.744 -3.03796***
State diffs (p-val) 0.025 0.030 0.092 0.514 0.216 0.009
EER Low -0.23943*** -0.196 -0.026 -0.311 -0.321 -0.49333***
Normal  -0.35529*** -0.18197* -0.32669*** -0.6065*** -0.33061* -0.83666***
High -0.64113*** -0.005 -0.245 0.552 0.277 -0.306
State diffs (p-val) 0.127 0.755 0.187 0.014 0.520 0.015
OolIL Low -0.003 0.014 -0.013 -0.015 0.166416* -0.06752*
Normal 0.010 0.0668*** 0.006 0.015 0.097729*** -0.017
High -0.11657*** -0.022 -0.076 -0.119 0.127 -0.15377***
State diffs (p-val) 0.016 0.173 0.412 0.333 0.752 0.031
VOL Low 0.001 0.002444** -0.00193* 0.001 -0.001 0.002335**
Normal  -0.00342*** -0.0029*** -0.00333**  -0.00462***  -0.00402*** -0.00419***
High -0.00429***  -0.00412*** -0.00487**  -0.00663***  -0.00405*** -0.00507*+*
State diffs (p-val) 0.000 0.000 0.009 0.000 0.448 0.000
ERP Low -0.07848***  -0.07017*** -0.10946*** -0.07563** -0.057 -0.07352*+*
Normal -0.077*** -0.07439*** -0.04977**  -0.12277**  -0.12621*** -0.08685***
High -0.027 -0.011 -0.027 -0.07697* -0.073 0.032
State diffs (p-val) 0.065 0.080 0.044 0.310 0.298 0.000
PE-US Low 0.010903*** 0.004 0.012324** 0.016175**  0.028416***  0.024238***
Norma  0.003922***  0.005092***  0.005597***  0.004696*** 0.000 0.005166***
High 0.003 0.002 -0.00737** 0.002 0.000 0.004
State diffs (p-val) 0.119 0.493 0.000 0.249 0.015 0.000

The dependent variable in each case is the excess stock return over therisk freerate. Panels are unbalanced, with estimation
covering the period April 1982—December 2002. The ‘state-diffs’ row for each factor presents the p-value from ajoint Wald test

of coefficient equality across states of the world. Each regression includes a constant term (not reported). ™" =coefficient

significant at 1%; ~"=coefficient significant at 5%; “=coefficient significant at 10%.
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