Comments by Rafael Repullo on

Financing Choices of Banks: The Role of Non-Binding Capital Requirements

by

Jie Gan

Basel Committee Workshop

17 May 2004
Introduction

• Empirical observation

 Banks hold more capital than required by regulation

• Question

 Why banks hold excess capital?

• Relevance

 Discussion of Basel II focused on minimum requirements

 Perhaps more important is what will happen with total capital
Introduction

• Existing explanations
 • Supervisory interference: Prompt corrective action
 • Market discipline: Keep good ratings
 • Preservation of future rents

• Gan’s explanation
 • Limited profitable investment opportunities
The model

• Bank’s balance sheet
 • Fixed capital $c > 0$
 • Endogenous (insured) deposits $d \geq 0 \rightarrow$ deposit rate = 0
 • Endogenous assets $a = c + d \rightarrow$ gross return = R

• Assumptions

 A1 Lognormal returns
 \[
 \log R = \mu - \frac{\sigma^2}{2} + \sigma z, \quad \text{with } z \sim N(0,1) \rightarrow E(R) = e^\mu
 \]

 A2 Shareholders are risk neutral and have zero discount rate

 A3 Capital requirement: $c \geq ka \iff a \leq c / k = \bar{a}$
Bank’s objective function

\[\max V(a) = E[\max(\langle aR - (a - c), 0 \rangle)] + \pi \Pr[aR - (a - c) \geq 0] \]

profits future rents

By the properties of the normal distribution

\[V(a) = ae^\mu N(x) - (a - c)N(x - \sigma) + \pi N(x - \sigma) \]

\[\rightarrow x = \frac{1}{\sigma} \log \frac{ae^\mu}{a - c} + \frac{\sigma}{2} \]
Three cases

- Investment in securities: $\mu = 0$
- Investment in loans: $\mu(a) > 0$, with $\mu'(a) < 0$
- Investment in both loans and securities

- Functional forms and parameter values

 $\mu(a) = 1 - \frac{a}{20}$ and $\sigma = 0.35$
Investment in securities

\[\pi = 0 \quad \text{and} \quad \pi = 4 \]
Investment in loans

\[V \]

\[\pi = 4 \]

\[\pi = 0 \]
Investment in loans and securities

- Return of a portfolio invested in loans (λ) and securities ($1-\lambda$)

\[R = \lambda R_l + (1-\lambda) R_s \]

- Problem: sum of two lognormal variables is not lognormal

- Solution: assume

\[\log R_l = \mu_l - \frac{\sigma^2}{2} + \sigma z \quad \text{and} \quad \log R_s = -\frac{\sigma^2}{2} + \sigma z \]

with the same σ and the same $z \sim N(0,1)$ for both returns

- Then \[\log R = \mu - \frac{\sigma^2}{2} + \sigma z \quad \text{with} \quad \mu = \log[\lambda e^{\mu_l} + (1-\lambda)] \]
Investment in loans and securities

\[
\begin{align*}
\max V(a, \lambda) &= ae^{\mu} N(x) - (a - c)N(x - \sigma) + \pi N(x - \sigma) \\
\rightarrow x &= \frac{1}{\sigma} \log \frac{ae^{\mu}}{a - c} + \frac{\sigma}{2} \\
\rightarrow \mu &= \log[\lambda e^{\mu(\lambda a)} + (1 - \lambda)]
\end{align*}
\]
Investment in loans and securities

\[\pi = 12 \]

Interior solution

\[\pi = 0 \]

Corner solution
Main comment

• If $c > ka$ shareholders may prefer to pay excess capital

• For $\pi = 0$ we have corner solution (i.e. binding requirements)

$$V(a, d) = ae^\mu N(x) - [a - (c - d)]N(x - \sigma) + d$$

$$\rightarrow \frac{\partial V}{\partial d} = 1 - N(x - \sigma) > 0$$

• For $\pi > 0$ we may have interior solution
Other comments

• For low a shareholders would like to short-sell securities ($\lambda > 1$)
 → Intuition: same risk factor for both loans and securities

• Future rents should be endogenized
 → Bellman equation

$$V^* = \max_a [ae^{\mu N(x)} - (a - c)N(x - \sigma) + V^*N(x - \sigma)]$$
Concluding remarks

• Explanation of non-binding requirements is not convincing
 → Requires special distributional assumptions
 → Requires to rule out dividend payments

• Fall back to existing explanations

• Need to understand costs of raising (and reducing) bank equity