Comments on Hauswald and Marquez, 2004

Urs Birchler
SNB

BC-CEPR-JFI workshop
Basel
May 17-18, 2004
The HM paper analyzes:

• banks' incentive for innovation in credit risk management
• the (ambiguous) influence of regulators on innovation incentives
Two basic components

- **Innovation Game**: Bank 1 – Regulator
- **Credit Market Game**: Bank 1 – Bank 2
The innovation game

innovate

Bank

Regulator

not innovate

diffusion

protect
The innovation game

innovate

not innovate

diffusion

protect
The innovation game

innovate

not innovate

diffusion

protect

equilibrium 1
The innovation game

- Innovate
- Not innovate

Diffusion:
- Protect

Equilibrium 1
The innovation game

innovate

not innovate

diffusion

protect

equilibrium 1

equilibrium 2
The innovation game

innovate

not innovate

diffusion

protect

ranking

social

bank

1

3

equilibrium 1

2

1

equilibrium 2

3

2
The credit market game
The credit market game

- banks offer credit contracts
 - bank 1: contingent on debtor quality signal
 - bank 2: non-contingent
- semi-common value auction (Klemperer)
 - information differential
 - winner's curse for bank 2
 - profits of bank 1 increase in $\Phi_1 - \Phi_2$
 - profits of bank 2 increase in Φ_2
The credit market game

Profit of Bank 1 (Innovator)

no diffusion

full diffusion

Φ_1

Φ_2

1

1/2

1/2

1
The credit market game

Profit of Bank 1 (Innovator)

No diffusion

Increase

Increase

Full diffusion

Increase

>0
The credit market game

Profit of Bank 1 (Innovator)

\[\phi_1 \]

- no diffusion
- full diffusion

\[\phi_2 \]
The credit market game

The regulator's dilemma

Hirshleifer & Riley 1991
underutilization
underproduction
Proposal 1: show profits for all \((\Phi_1, \Phi_2)\)
Proposal 2: generalize diffusion

- paper: Φ_2 is either 0 or Φ_1 (prob=λ)
- better: $\Phi_2 = \Phi_2(\Phi_1)$ (von Thadden, 2001)
 or: $\Phi_2 = \Phi_2(\Phi_1,\lambda)$

allows partial (not only stochastic) diffusion

"it would ... be desirable to introduce various degrees of effectiveness of the patent system" (Tirole 1988, 400)
Proposal 3: drop innovation cost

- paper: Φ has direct cost $c = (\Phi^2 - 0.5)$
- better: $c(\Phi) = 0$
- model is driven by indirect cost of innovation (diffusion plus competition)
- direct cost distract from the essentials
Proposal 4: be more explicit about limitations of a simultaneous game

- game is *simultaneous* in two dimensions
 - all creditors must get simultaneous (private) offers.
 - both banks decide simultaneously

- reality is *sequential*
 - sequential offers: learning effects (Tirole, 1988, 215)
 (mixed strategy Bertrand equilibria fragile)
Proposal 5: let bank 2 innovate

- HM: R&D race would not change results!
- however:
 - their focus: public good nature of innovation
 (imperfect right in fish caught)
 - alternative: commons effect
 (right to fish) (Hirshleifer & Riley, 1991, 260)
 - diffusion may lead to too little innovation, but:
 patent protection may lead to too much innovation
 (business stealing effect; patent races)
 - does HM claim really hold if both banks can innovate??
 - test question:
 how much would bank 2 pay for right to innovate?
Proposal 6: specify innovation

- academic risk management research: public
 - CAPM, VaR, etc.
- private research partially public:
 - e.g., RiskMetrics (J.P. Morgan) was made quasi-public in 1994
- internal implementation know-how: private but non-portable
- data used for PD, LGD estimation
 - private knowledge of banks; no diffusion
 - averages: some diffusion, but:
 little information for *individual* creditor rating
Practical comments

- need for "overlapping innovations" model
- diffusion of *systems* not a concern for banks
- diffusion of *standards* is a concern
 - but: complaint that standards *reduce* competition!
 - examples: IRB-approach, money laundering
- how to stimulate innovation?
 - BC: lower capital requirements for IRB banks
 - HM: less supervision for innovators
 - alternative: government sponsored public innovation
Conclusion

- interesting paper with nice model
- HM may not address a problem in „BC top 10“
- but:
 HM highlight importance of interaction of regulatory policy and innovation incentives