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based on var, if binding, is likely to be procyclical. The model suggests several ways of reducing
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capital flows than if it is applied to the total level of capital. Call report data suggest that U.S.
commercial bank behavior since 1984 is consistent with the model.
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1. Introduction
The main purpose of this paper is to investigate the extent to which bank capital

requirements based on value at risk (var) are likely to exacerbate an economic or financial cycle.

For instance, would such requirements be binding on banks in economic recessions, leading to a

reduction in lending as the economy is slowing down, and non-binding in economic expansions,

perhaps encouraging excessive lending? Earlier research has inquired whether the 1988 Basel

Accord, in which minimum capital requirements are somewhat responsive to risk, contributed to

an economic slowdown – a “credit crunch” – in the United States in the early 1990s.1

With the introduction of a new set of risk-sensitive Basel requirements in 2001 (Basel

Committee 2001a), concerns about the so-called procyclicality of capital requirements have

again surfaced. For instance, Bank for International Settlements General Manager Andrew

Crockett (2000) has warned that: “Indicators of risk tend to be at their lowest at or close to the

peak of the financial cycle, i.e., just at the point where, with hindsight, we can see that risk was

greatest.”

The new Basel requirements are not based on var. They rely on external or internal credit

ratings to assign risk weights to instruments in banks’ portfolios. Nevertheless, the Basel

Committee (2001b) “believes that improvements in risk measurement and management will pave

the way to an approach that uses full credit models as a basis for regulatory capital purposes.”

Therefore, it is not too early to consider the consequences of using credit risk models to

formulate capital requirements, and it is likely that those requirements would make use of model-

based var or some component thereof (see Basel Committee 1999).2

To examine the issue of the procyclicality of var-based requirements, the strategy of this

paper is to construct a formal model of how a forward-looking bank with rational expectations

would choose its optimal level of capital in a dynamic setting. It is important that the model be

dynamic because a cycle is a predictable pattern that unfolds over time. To the extent that this

pattern is anticipated, forward-looking banks and supervisors should factor it into their decision-

making about capital.

                                                
1 The conclusions of this research are mixed. See, e.g., Bernanke and Lown (1991), Lown and Peristiani (1996) and
Jackson et al. (1999).
2 Note also that Gordy (2000) argues that a mapping may be constructed between var and the minimum
requirements in the new Basel Accord (Basel Committee 2001a), and that the mapping reconciles the two
approaches under certain conditions. Thus, the analysis of this paper could be useful in the implementation of the
new Accord, though differences between the Accord and var must be carefully considered.
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The bank faces three types of capital-related costs. First, it is costly for the bank to hold

capital, and the cost is proportional to the level of capital of an operating bank. Second, the bank

faces a cost of failure, which is proportional to the absolute value of the negative net worth of a

bank that fails. This measure corresponds, for example, to the costs of bankruptcy, loss of charter

value, reputational loss, and legal costs.

The third type of cost facing the bank is associated with net changes in external capital.

In the model, it is costly to adjust the level of external capital in either direction, that is, whether

the bank raises new external capital or sheds external capital on net. The sources of these entry

and exit costs include asymmetric information, market signaling, taxes, and supervisory and

market pressure on the bank.

The objective of the bank is to minimize a function of the three types of costs over an

infinite horizon, given some dynamic identities. The bank is assumed to have rational

expectations, and it selects a stream of net external capital flows over the infinite horizon. The

solution allows for the expression of the current level of capital and the current external capital

flow as functions of current and expected future net losses to the bank.

To investigate cyclical behavior, losses are then assumed to follow a second-order

autoregressive process (AR(2)) with complex roots, so that expected future losses cycle around

the unconditional mean of the distribution of losses. This assumption makes it possible to

calculate all expected future losses and to solve explicitly for the current level and flow of capital

in terms of observable losses. The theoretical implications of these results are used to examine

the relationship between var-based requirements and the unconstrained optimum path of capital.

In addition, some theoretical implications of the model are used to test its empirical plausibility

when confronted with data for U.S. banks since 1984.

The findings show that, over the cycle, optimal flows of external capital are positively

correlated with the var measure, but optimal net changes in capital and the optimal level of total

capital are negatively correlated with var. These results suggest that a regulatory minimum

requirement based on var, if binding, is likely to be procyclical.

However, the model also suggests several ways of dealing with procyclicality. First, the

minimum requirement can be calibrated so as to minimize the conflict between var and optimum

capital in economic downturns. Second, supervisory review may be used to insure that banks

maintain sufficient capital above the minimum in economic expansions. Third, a var-based
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capital requirement may be applied to the flow of external capital. This approach is more in line

with optimal behavior in the model than if the minimum is applied to the total level of capital.

These results differ from the conventional wisdom regarding capital and risk because the

standard approach to optimal capital is essentially static and not sufficiently forward-looking.

The model of this paper takes explicit account of stocks and flows of capital over time and

incorporates dynamic adjustment costs that are likely to exist in practice.

Section 2 of the paper presents the model and its solution in general terms. Section 3

presents the central results of the paper. It introduces a cyclical process for losses and examines

its implications for the cyclical behavior of optimal capital levels and flows. In addition, Section

3 provides numerical examples to illustrate the properties of the model and the relationship

between var, net income, and capital stocks and flows. Some empirical evidence is provided in

section 4, based on call report data for FDIC-insured U.S. commercial banks, which suggests that

behavior since 1984 is consistent with the model. Section 5 discusses policy implications.

2. Model description and general solution

The question of this paper is dynamic in a very essential way. We would like to examine

the cyclical behavior of optimal capital for a bank, where a cycle is defined as a particular

predictable pattern that unfolds over time. The cycle has an expansion phase, in which the bank’s

profits are higher than the unconditional average, followed by a contraction phase, in which

profits are lower than average. Since the pattern is predictable, it can and should be anticipated in

the bank’s decision-making, in particular in those decisions affecting capital. A static model may

be able to identify some features of these optimal decisions, but it is necessarily myopic and any

conclusions about dynamics are bound to be ad hoc.

In making its decisions about capital, the bank in this paper faces three types of costs: the

cost of capital itself, the cost of bank failure, and the cost of adjusting the bank’s level of capital

by raising or shedding external capital. These types of costs have been analyzed earlier in the

literature, but by and large the analysis has been based on essentially static models.

For instance, the key distinction between flows of external and internal capital has been

made in papers by Froot et al. (1993), and Froot and Stein (1998). These papers develop a three-

period model of bank capital with costs analogous to those of this paper, including costs of

capital, failure, and adjustment. Since the model is moderately dynamic – it has three periods – it
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is possible to make distinctions between capital stocks and flows, and to speak of costs of

adjustment. However, the dynamic structure is not sufficiently rich to allow questions about

cyclical patterns.

Winter (1994) and Cummins and Danzon (1997) construct dynamic models of insurance

company balance sheets in which capital plays an important role. They also model costs

analogous to those of this paper. The model building strategy of these papers is to construct a

static theoretical model of an insurance company, which is then embedded in a dynamic

empirical model. In the context of the empirical model, the authors are able to draw important

distinctions between stocks and flows of internal and external capital.

Some earlier papers have raised the issue of the cyclical behavior of capital explicitly,

albeit within the framework of static models. These include Winter (1991), who concludes that

solvency regulation exacerbates the cycle in property-liability insurance and Blum and Hellwig

(1995), who argue that binding capital requirements increase the amplitude of macroeconomic

cycles. In both cases, static models are used to perform comparative static thought experiments

involving the degree to which capital or solvency requirements are binding.

Hoggarth and Saporta (2001) and Heid (2000) study the impact of the new capital accord

of the Basel Committee (2001a). Both papers are based on extensions of the static Blum and

Hellwig (1995) model, and the latter also uses elements of a model by Bernanke and Blinder

(1988). The closest precedents for the formal dynamic structure of the present model are not in

the financial capital literature, but in the literature on business inventories (for instance,

Blanchard (1983) and Blanchard and Fischer (1989)).

Turning to the model itself, define first a simple but important dynamic identity:

1t t t tK K R L−= + − . (1)

The bank’s capital this period ( tK ) equals capital the previous period plus net new external

capital raised ( tR ) minus net losses sustained ( tL ). Capital here represents equity capital only.

Including other elements of bank capital is possible, but it would complicate the dynamics

without adding much to the intuition derived from the model. Net external capital raised is a

combination of inflows (new external capital) and outflows (dividends, stock buybacks). In

normal circumstances, these flows are dominated by dividend payments in the case of U.S.

banks, as we will observe in section 4.
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Net losses are simply the negative of net income for the bank. The sign is reversed to

clarify the relationship between this variable and var and to emphasize the potential for negative

net income to affect capital adversely. Note, however, that in normal circumstances, net income

would be positive and net losses negative. Note also that losses as defined here are different from

the accounting losses of a bank that give rise to provisions and reserves for loan losses. In the

accounting definition, the losses are nonnegative amounts that are deducted from the positive

nominal payments associated with loans. Losses here correspond to the total net income of the

bank, regardless of the sign or the source of those losses. In particular, the losses are not

necessarily tied to credit risk.

Assume now that losses are not known with certainty at the beginning of the period, but

that the stochastic distribution of losses is known to have a time-invariant cumulative distribution

function F. We assume that F is continuous and that its mean is well-defined. 1tK −  is

predetermined as of time t and tR  is under the bank’s control. Taking expectations in equation

(1), we obtain

1t t t t t tE K K R E L−= + − . (2)

Then, subtracting equation (2) from (1), we have that

( )t t t t t t tK E K L E L u− = − − ≡ − , (3)

so that the shock to capital is exactly the opposite of the shock to losses.

For expositional purposes, we first consider the model in the absence of adjustment costs,

in which case it is essentially myopic. We then turn to the full dynamic model with adjustment

costs.

A. Model with no adjustments costs

As noted, the bank faces three types of capital-related costs. First, it is costly for the bank

to hold capital, and the cost is proportional to the level of capital of an operating bank. This cost

is not necessarily a simple nominal return on capital, but may be the difference between the cost

of capital funding and funding through other means such as debt. Theoretical analysis (for

instance, Myers and Majluf (1984)) has argued that equity is more costly than other forms of

corporate liabilities. We express this cost as

[ ]c c tC c K += , (4)
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where the plus sign subscript indicates that the cost is the amount within the brackets, if positive,

and zero otherwise. The expected value of this cost at time t is given by

1

1( ) ( )
t t t tK R E L

t c c t t t t t t tE C c K R E L u F u du
− + −

−−∞
′= + − −∫ . (5)

Second, the bank faces a cost of failure, which is proportional to the absolute value of the

negative net worth of a bank that fails. This measure corresponds to the costs of bankruptcy,

including loss of charter value, reputational loss, and legal costs. It is represented as

[ ]f f tC c K += − (6)

and its expected value at time t is

1
1( ) ( )

t t t t
t f f t t t t t t tK R E L

E C c K R E L u F u du
−

∞

−+ −
′= − − + +∫ . (7)

In the absence of adjustment costs, the bank may fully adjust to the desired level of

capital in the current period. Thus, the bank’s objective is to select a level of external capital

raised so as to minimize the expected value of the costs of capital and failure. Symbolically, the

bank’s problem is

min ( )

{ }
t f c

t

C E C C

R

= + . (8)

This problem may be solved by substituting (5) and (7) into (8) and solving the first order

conditions.

Proposition 1. (a) C is a “U-shaped” convex function of tR .

(b) C has a global minimum at 1* *t t t tR K K E L−= − + , where K* is defined implicitly by

( 0) ( *)tP K P u K< = > 1 ( *) c

f c

c
F K

c c
= − =

+
. (9)

(c) The optimal expected level of capital is constant:

1 * *t t t t t tE K K R E L K−= + − = . (10)

Proposition 1(b) states that the solution to the model with no adjustment costs is

equivalent to a var approach to risk in which the probability of failure, which is generally seen as

a subjective parameter, is determined endogenously. Var is generally defined as the level at
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which the probability that losses will exceed the var is no greater than, say, α . From (9), we

have that

( *) ( *) /( )t t t f f cP u K P L E L K c c c> = > + = + , (11)

which implies that if we set /( )f f cc c cα = + , then

var *t t tE L K= + . (12)

Thus, a problem in which the objective function includes a desire to minimize a conditional tail

expectation corresponding to bank failure is seen to be equivalent to setting var at a specific

level, once the costs of capital are taken into account.3

Note also that var differs from the optimal level of capital by the predictable component

of losses. Using (10) and (12), we obtain that

1* vart t tR K �� � . (13)

Thus, although the optimal expected level of capital is constant and hence uncorrelated with var,

the optimal flow of external capital varies one-for-one with var, given the previous period’s level

of capital.

B. Full model with adjustment costs

We now bring adjustment costs explicitly into the model. These costs apply both when

the firm is raising new external capital and when it is shedding external capital. Why do these

entry and exit costs arise?

Several reasons have been given for entry costs in the corporate finance literature. For

instance, these costs may be associated with asymmetric information. Equity is a form of capital

for which monitoring costs are high, and the firm has an informational advantage over public

investors as to the value of its own equity (Myers and Majluf (1984)). A related reason is that the

issuance of equity may send a signal to the market that it is being done at time most

advantageous for the company and not necessarily for outside investors (Winter (1994)). A

specific example of this type of signal occurs when a bank is attempting to replenish capital after

suffering severe losses. A third reason is the “trapped equity effect” of dividend taxation (Winter

                                                
3 A recent paper by Artzner et al. (1999) argues that var is not – by their definition – a coherent measure of risk.
They argue instead for another class of measures of risk, which includes the conditional tail expectation. The reader
is referred to the mathematically rigorous treatment in Artzner et al. (1999) for details of these distinctions. Note,
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(1994)). Once equity is raised, it is costly for investors to obtain returns in the form of dividends,

which are subject to high taxes as compared with other forms of income.

Exit costs may arise for various reasons as well. For instance, the firm may be reluctant to

shed equity if there is a good chance that it may have to bear round trip costs of raising the equity

again in the short term (Winter (1994)). This rationale is particularly important in models with

uncertainty. A second reason is the so-called stock repurchase premium (McNally (1999)). If the

company opts for shedding equity through a stock repurchase, the market may interpret this as a

signal that stock is undervalued, and the cost of the buyback may increase. Finally, an important

cost of shedding equity comes from pressure from regulators, supervisors and the markets to

maintain clearly sound levels of capital.

For all of the foregoing reasons, we model adjustment costs in the following simple form

21

2a a tC c R= . (14)

Of course, there is no assurance that the costs will be symmetrical, as assumed in (14). For

instance, one might suspect that the costs of raising new capital are larger than the costs of

shedding external capital. Nevertheless, since the objective is to study cyclical patterns and not to

measure these costs precisely, (14) seems like a reasonable approximation that preserves the

qualitative behavior while allowing for an explicit solution to the general model.

In fact, we adopt a similar approximation to the cost function C of the previous section

before constructing the full model. The reason is that we would like to have linear-quadratic

form for which the optimal solution may be computed explicitly. Thus, we use a second-order

Taylor approximation to the U-shaped function C around the optimum value of R in the case

with no adjustment costs:

2
1

1
( ) ( *)( *)

2 f c t t t tC c c F K K R E L K−′≈ + + − − . (15)

Note that the constant term is irrelevant for optimization and that the first-order term disappears

because the approximation is taken around the optimum.

Combining these approximations in an infinite-horizon objective function with time-

discount factor β , the bank’s intertemporal problem becomes

                                                                                                                                                            
however, that var – which Artzner et al. (1999) argue is not coherent – is equivalent to a conditional tail expectation
(equation (7)) – which they classify as coherent – when the cost of capital is brought into the picture.
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2 2
1

0

1
min ( *)

2 2
{ }

i
t t i t i t i t i t i

i

t i

a
E K R E L K R

R

β
∞

+ − + + + +
=

+

 + − − + 
 

∑ , (16)

subject to (1), where 
( ) ( *)

a

f c

c
a

c c F K
=

′+
.

One strategy for solving this optimization problem is to use equation (1) to solve for tR

and substitute the result in (16). Taking derivatives with respect to t iK + , 0,1, ,i = ∞� , we obtain

the first order conditions (or Euler equations)

1 1 1

1 1 *
0t t i t i t i t i t i

K
E K K K L L

a

γ
β β β β+ + + + − + + +

 
− + − + + = 

 
, (17)

0,1, ,i = ∞� , where 
1

1
a

γ β≡ + + . These allow for the solution of K in terms of the L.

First note that there are two solutions to the characteristic polynomial 2 1
0

γλ λ
β β

− + =

corresponding to K in (17), with properties 10 1λ≤ <  and 2
1

1
1λ

βλ
= > . As is customary in

rational expectations models, the first root it solved backward and the second root is solved

forward in terms of K and L. In addition, the second root may be expressed in terms of the first,

so that only the first is needed to write the solution.4 The resulting optimal paths of the level of

capital and net new external capital are given in the following result.

Proposition 2. The solution to the optimization problem in expression (16), subject to (1),

satisfies:

1 1 1 1 1
0

(1 ) * ( ) ( )i
t t t t i t i t

i

K K K E L L uλ λ λ β β
∞

− + + +
=

 = − + + − − 
 

∑ (18)

and

( )1 1 1 1
0

(1 ) * (1 ) i i
t t t t i

i

R K K E Lλ λ λ β
∞

− +
=

= − − + −∑ . (19)

                                                
4 See appendix for an exact expression for 1� .
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Note also that the root 1λ  is a function of the adjustment cost parameter a such that

10 0a λ= ⇒ =  and 1 1a λ→ ∞ ⇒ → .

Equations (18) and (19) contain an infinity of expectational terms. Until the expectations

are defined, these equations do not constitute observable reduced form relationships between

losses and the capital levels and flows. Nevertheless, the expressions may be used to gain some

intuition into the rational expectations solution.

For instance, recall that when there are no adjustment costs, the expected level of capital

every period is set to K*, and new capital raised is whatever it takes to bring expected capital to

that desired level. Note that (18), apart from the disturbance term, is a weighted average of K*

and of a term involving initial capital and the present values of expected future losses. These

expected losses enter as present values of generalized first differences of losses. When

1 0a �� � , the first term receives the full weight. As adjustment costs increase, the second term

receives greater weight and the optimal level tends to converge to K* only with a lag.

The second term in equation (19) is a long-run weighted average of discounted expected

losses with weights 1 1(1- ) i� � , which add up to 1. When a = 0, all the weight is on

contemporaneous expected losses and the equation reduces to 1* t t tK K E L−− + . As a goes to

infinity, the weights on the individual discounted losses become more uniform and also much

smaller. The second term gains in importance as a increases from zero, but as a approaches

infinity, the cost of raising external capital becomes prohibitive, and both terms go to zero.

3. Cyclical behavior

To model cyclical behavior, we need to assume that losses tend to behave cyclically in a

predictable way. Thus, we feed a process tL  that looks like a wave into the optimal solutions

given by (18) and (19), and we see what happens to tK , tR  and tK∆  over time. More

specifically, we assume that losses follow a second-order autoregressive process with complex

roots, which means that expected losses exhibit a sinusoidal pattern over time around an

unconditional mean. Furthermore, assume that the amplitude of that pattern is constant to

facilitate tracing and visualizing the processes over time.
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The assumption of a sinusoidal pattern is justified by the fact that any stationary time

series may be expressed as a linear combination of sinusoids (see, for example, Jenkins and

Watts (1968)). Using multiple sinusoids could lead to more realistic patterns, but would also

complicate the analysis and obscure the intuition behind the results that follow.

Thus, let losses be represented by the process

( ) 1 22cost t t tL L L uω − −= − + (20)

with 0 ω π< < , where tu  is white noise. The roots of this equation are exp( )i�� . Expected

losses then follow a cycle of frequency ω  with constant amplitude. It is normally desirable that

the roots of a process like (20) lie outside the unit circle, which implies that the process is

stationary. For present purposes, it is more convenient to use the limiting case in which the roots

lie on the unit circle so that cycles remain undampened and their properties are clearer to

examine. In addition to having convenient cyclical properties, expected future losses under this

process have a particularly simple form,

1 2

sin(( 2) ) sin(( 1) )

sin sint t n t t

n n
E L L L

ω ω
ω ω+ − −

+ += − , (21)

which makes it possible to transform (18) and (19) into observable equations. For simplicity, we

assume for the time being that the unconditional mean of L is zero. Since L represents the

negative of net income, its unconditional mean is likely to be negative. We return later to the

implications of a nonzero unconditional mean for expectations of the variables in the model.

Before examining the behavior of the full model under this process for losses, consider

the implications of the process in the case with no adjustment costs.

A. Cyclical behavior in model with no adjustment costs

If there are no adjustment costs, we saw in Proposition 1(c) that the optimal expected

level of capital is constant (K*). Thus, there is no forecastable cyclical pattern to the optimal

level of capital. We also saw in section 2.A. that the behavior of var in this case is determined by

the predictable component of losses, which from (21) is clearly cyclical. Thus, optimal capital

and var follow different paths as long as the probability distribution of losses (F) is constant.

Suppose, alternatively, that the distribution F varies over time in such a way that the

probability of extreme events is related to the mean of the distribution. For example, tL  could
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follow a normal distribution in which the variance of tL  is a monotonic function of t tE L . In this

formulation, the cyclical pattern of expected losses would be reflected in the variance of the

distribution, and the optimal buffer K* would vary over time in a cyclical way.

If *
tK  varies directly with t tE L , the optimal level of capital would move in the same

direction as var. However, if *
tK  varies inversely with t tE L , the optimal level of capital would

move in the opposite direction from var. Which of these two alternatives is more likely to occur?

Accurate data to estimate this type of relationship are difficult to find. In section 4.A., we

will examine the path of real gross domestic product (GDP) as a proxy for the business cycle and

conclude that evidence of comovement between the mean and variance of GDP is not at all

strong. The hypothesis of homoskedasticity cannot be rejected and, in the analysis of the full

model, we will maintain the assumption of a constant distribution F.

B. Cyclical behavior in full model with adjustment costs

Suppose that losses are cyclical in the manner defined in equation (20). Since

expectations of losses at all horizons can be derived, as in equation (21), we can replace the

expectation terms in expressions (18) and (19) to obtain equivalent equations based only on

observable variables. In particular, we have:

Proposition 3. Suppose that losses follow the cyclical pattern (20), where the shock tu  has a

constant distribution F. Then the optimal level of capital and the optimal net flow of external

capital are given by

1 1 1 1 1 2 2(1 ) *t t t t tK K K L L Lλ λ δ δ− − −= − + − + + (22)

and

1 1 1 1 2 2(1 )( * )t t t tR K K L Lλ δ δ− − −= − − + + , (23)

respectively, where ( , , )i i aδ δ β ω= . Exact expressions for the iδ  are given in the appendix.

The results of Proposition 3 may be used to construct numerical illustrations and also to examine

in more detail the cyclical relationships among the variables. We start with the illustrations.
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Extreme values of the adjustment cost parameter a have simple predictable effects on

equations (22) and (23). For instance, if there are no adjustment costs ( 1 0a �� � ), then

1*t tR K K �� �  and *t tK K u� � . Adjustment to past shocks occurs immediately by raising the

amount of capital needed to achieve *t tE K K� . Thus, expected capital is constant and actual

capital deviates from its expectation by an amount corresponding to the unexpected shock to

losses. In the other extreme case, adjustment is infinitely costly and 1 1� � . Then 0tR �  and

1t t tK K L�� � . No external capital is raised and the level of capital is completely at the mercy of

fluctuations in losses.

Values of a between these extremes are more realistic and interesting. Figure 1 considers

the case where a = 5 and shows the effects of a shock to tL  of size sin� . A shock of this

magnitude produces a cycle in losses of amplitude 2 (losses are in the range of 1� ), which is a

convenient benchmark. The choice of a is somewhat arbitrary, but it has some useful features.

First, it is roughly consistent with empirical estimates presented later in section 4. Second, this

value creates cycles in var and K of approximately the same amplitude, which is helpful when

we try to compare these series graphically. The starting values for all variables in Figure 1 are

their respective unconditional means.

In Figure 1, the pattern of var is essentially the same as that of losses, except that var is

transposed upward by a constant amount K* = 3. This illustrative value of K* is consistent with

an infinity of parametric assumptions and distributions. It is obtained, for example, by assuming

that the innovation tu  follows a normal distribution with standard deviation 1.46, and that

/( ) .02f f cc c c� � .

The capital variables follow cyclical patterns that are somewhat different from the cycle

for losses. The optimal amount of external capital raised (R), for example, rises sharply in the

first quarter in response to the shock in losses. Within a few quarters, it falls into a cyclical

pattern whose timing is very close to that of losses, but with smaller amplitude. The net result is

that the change in capital follows a cyclical pattern that is negatively related to the cycle of

losses.

Finally, the level of capital moves in a cycle that is out of phase with the cycle of losses.
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We will see shortly that the lag in the cyclical movements of the level of capital, relative to

losses, bears a consistent relationship to the length of the cycle. This lag is easy to see in Figure

1, particularly because of the choice of adjustment cost coefficient a = 5, but it holds in general.

We can also observe in Figure 1 a conflict between var, interpreted as a minimum capital

requirement, and the optimal level of capital. The initial shock to losses raises the value of var

much more sharply than the optimal level of capital (which also rises). The value of var

continues to exceed the optimal level of capital over approximately one half of the cycle, with

the opposite relationship holding over the other half. This result suggests that a minimum capital

requirement based on var would be very binding in contractionary periods, in which losses are

cyclically high, and very loose in expansionary periods, when losses are cyclically low.

In Figure 1, the level of capital sometimes moves in the same direction as var, and

sometimes in the opposite direction. On balance, this relationship is negative, as we will see

shortly. This negative relationship is another indication that using var as a minimum for optimal

capital is likely to be problematical.

Some intuition for the foregoing results may be obtained by considering two opposing

influences on capital. Suppose that the economy is in a downturn. The first influence is simply

that losses tend to be higher in a downturn, and that these losses tend to deplete capital. The

second influence is that measures of risk tend to indicate a greater need for capital, and that the

natural reaction is for the bank to raise more capital. In the absence of adjustment costs, the

optimal reaction is to fully offset losses, which tends to keep capital at a constant level

(abstracting from surprises). However, if there are adjustment costs, the reaction is somewhat

delayed, and it is optimal to allow capital to decline in a downturn and to accumulate in a

subsequent upturn.

Thus, without adjustment costs, capital is expected to remain stable. With adjustment

costs, it will tend to vary in a pattern that is not exactly synchronized with measures of risk such

as var. The result in either case is that there tends to be a conflict between the behavior of an

essentially myopic measure of risk, like var, and the behavior of optimal bank capital over the

cycle.
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C. Covariances and lags between optimal capital and var

The important questions regarding the procyclicality of var-based requirements focus on

the relationship between optimal capital and var at cyclical frequencies. Since we have assumed

that our cycle has frequency � , this is the relevant frequency for the analysis of covariation.

This section uses frequency domain techniques to examine the relevant relationships for in-phase

components of frequency ω  and to compute the exact lag between optimal capital and var,

which was observed in Figure 1.

First, we compute the equivalent of regression coefficients for each of the key optimal

variables with respect to var. These coefficients are obtained from the lag structures of equations

(22) and (23). Thus, let Y represent one of R, K∆  or K and let

( )t YX tY h L X= . (24)

Note that equations (22) and (23) are of this form. Note also that a constant may be added to the

right-hand side of equation (24) without fundamentally affecting the results. Then the coefficient

of a regression of the frequency-ω  component of Y on the in-phase frequency-ω  component of

X is given by

( ) Re( ( ))i
YX YXb h e ωω −= , (25)

where “Re” indicates the real part of the complex number in parentheses.5 These spectral

regressions are “analytical” in the sense that no data are needed to calculate the coefficients and

the “standard errors” are zero.

Proposition 4. In spectral regressions of the sort described above,

(a) the coefficient of R regressed on L is nonnegative for any frequency ω ,

0 ( ) 1RLb ω≤ ≤ ,

(b) the coefficient of K∆  regressed on L is nonpositive for any frequency ω ,

1 ( ) 0KLb ω∆− ≤ ≤ , and

(c) the coefficient of K regressed on L is nonpositive for any frequency ω

( ) 0KLb ω ≤ .

Expressions for the coefficients are found in the appendix.

                                                
5 See, e.g., Jenkins and Watts (1968, section 8.3.1).
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Now, from equation (12) we can determine that

var *t t tL K u� � � , (26)

so that L and var differ by a constant plus an innovation that is uncorrelated with var. Thus, if the

regressor in Proposition 4 were var instead of L, we have essentially an errors-in-variables

problem in which the regression coefficient is biased toward zero, but has the same sign.

Therefore, we also have the following.

Proposition 4a. In spectral regressions of the sort described above,

(a) the coefficient of R regressed on var is nonnegative for any frequency ω ,

(b) the coefficient of K∆  regressed on var is nonpositive for any frequency ω , and

(c) the coefficient of K regressed on var is nonpositive for any frequency ω .

The signs of the relationships between R or K∆ , on one hand, and either L or var on the

other are easily verified in Figure 1. The sign of the coefficient of K is harder to visualize

because the pattern in K is similar to those of L and var, only transposed a few periods to the

right. This lag relationship may be confirmed by calculating the phase between K and L, which is

defined as:

( ) arg( ( ))i
KL KLh e ωφ ω −= . (27)

Here, “arg” is the argument of the complex number in parentheses, that is, the angle that appears

in the exponent of the polar form of the number. The ratio

( ) /KLφ ω ω− (28)

is a measure of the phase lag between K and L, measured in periods.6

Proposition 5. (a) The phase lag between K and L lies in the interval

sin sin
( ) /

1 cos 1 cosKL

β ω ωφ ω ω
β ω ω

≤ − ≤
− −

. (29)

(b) Since 1� � ,

sin 1
( ) /

1 cos 4 2KL

qωφ ω ω
ω

− ≈ = −
−

, (30)

                                                
6 Sargent (1979, section XI.6) provides a helpful discussion of phase lags.



17

where 2 /q � ��  is the length of the cycle of frequency � , in periods.

In Figure 1, q = 20 and the phase lag is about 4½ periods.

D. Implications of a nonzero unconditional mean of tL

As noted earlier, the analysis so far has assumed that the unconditional mean of the loss

process is zero. Since losses are defined as the negative of net income, it is more realistic to

assume that losses have a negative unconditional mean. The effects of that assumption are

explored in this section.

Thus, suppose that equation (20) is instead

( )0 1 22cost t t tL c L L uω − −= + − + , (31)

where 0 0c � , but that the rest of the model is the same. Since the dynamic model is linear, the

shape of the impulse responses remains as illustrated in Figure 1. However, the unconditional

means of the variables, which are used as starting points in Figure 1, may be different.

Specifically,

0 0
2(1 cos )

c
L R

�
� � �

�
,

1 2

1

1
*

1
K K L

� �

�

� �
� �

�
, and (32)

var * *L K K� � � .

The unconditional means of all the variables are lower than with a homogeneous process for L,

with the exception of the mean of K, for which the change is ambiguous.

For low values of � , that is, for cycles with relatively low frequency, the unconditional

mean of K is higher than before. More precisely, there is a neighborhood of 0��  in which the

mean of K is higher. For �  outside that neighborhood (higher than some value between 0 and

� ), the mean of K is lower. In the case of the 20-quarter cycles illustrated in Figure 1, the

frequency is sufficiently close to zero so that the unconditional mean of K increases. The

intuition is roughly as follows.

When net income tends to be positive on average, losses have less of a detrimental effect

on the level of capital. If the stochastic distribution of losses around the conditional mean
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remains the same, the risk of loss – and therefore var – is also reduced. The bank finds itself

accumulating more capital at a time when ideally it would like to cut back. However, the costs of

adjusting capital, in particular the costs of shedding capital, make it suboptimal to fully cut back

in the short run, resulting in a higher average level of capital.

The foregoing effects are illustrated in Figure 2, which is analogous to Figure 1, but with

the assumption that 0 .05c �� , which means that the unconditional mean loss is -.51. One salient

feature of Figure 2 is that the direct conflict between var and the optimal level of capital is

reduced. The proportion of the cycle during which var is higher than optimal capital is more

limited, and the amount by which var exceeds optimal capital is less than in Figure 1. Hence, the

propensity toward the creation of a credit crunch is moderated. However, the potential for moral

hazard in good times is increased, since it may be easier for banks to skimp on capital and still

exceed the low var-based minimum.

E. Discussion of results

The conflict between optimal capital and a var-based minimum requirement that we see

in Figure 1 and in Propositions 4(c) and 4a(c) may manifest itself in practice in two forms,

depending on whether the economy is expanding or contracting. In the contraction phase of the

cycle, the potential is for a credit crunch, in which bank capital falls below the var level and the

institution may be driven to cut back on its holdings of risky assets, such as commercial loans.

The potential for this conflict may be reduced by judicious calibration of the var-based minimum

requirement. It is important to consider not only the unconditional average relationship between

var and the level of capital, but also the relationship conditional on an economic downturn.

Proposals to use var in capital requirements could stipulate that the minimum be

calibrated by taking some function of var, rather than var itself. Calibration of this scaling

function would be important because it can affect the extent of the conflict between var and

optimal capital. An attempt to use the function to bring the unconditional means of optimal

capital and var in line – making the requirement “more accurate” – runs the risk of making the

requirement more procyclical. In contrast, a function that produces a low requirement lessens the

danger of procyclicality, but it can lead at times to a requirement that falls far below the level of

optimal capital.
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Whether or not a scaling function is applied to var, the level of optimal capital during the

expansion phase of the cycle may greatly exceed the var minimum. This creates a potential moral

hazard problem in that the level of optimal capital may be so far above the var minimum that the

bank may be tempted to let capital fall toward the minimum. Pillar 2 (supervisory review

process) of the new Basel Accord (Basel Committee 2001c) contains important provisions that

could be very useful in dealing with this type of moral hazard problem.

Specifically, Principle 3 states that “Supervisors should expect banks to operate above the

minimum regulatory capital ratios and should have the ability to require banks to hold capital in

excess of the minimum.” The motivation that the Basel Committee gives for this principle is

close to the issues raised in the present paper. For instance, the Committee refers to adjustment

costs (“It may be costly for a bank to raise additional capital, especially if this needs to be done

quickly or at a time when market conditions are unfavourable.”) and to macroeconomic cycles

(“There may be risks … to an economy at large … that are not taken into account in Pillar 1

[quantitative requirements].”).

4. Empirical evidence

In this section, we consider the empirical plausibility of the theoretical model presented

earlier. Ideally, one would estimate the model directly using data for individual banks. However,

that strategy is unavailable because of a lack of appropriate data. Accounting data on banks’ net

income is not reflective of the true stochastic distribution of losses, which plays a central role in

the model. The level of income may be accurately represented on average, but the volatility of

income and the likelihood of a large loss tend to be greatly understated. Therefore, this section

focuses on the empirical verification of a few assumptions and empirical implications of the

model.

A. Cyclicality and predictability of economic performance

The model assumes that the economic performance of the bank is to some extent

predictable and that it follows a cyclical pattern. Since accounting data for individual banks are

not conducive to the types of estimates we need, we present evidence with regard to the business

cycle in general and to the credit quality of individual banks.
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For example, credit ratings are known to have predictive power for the credit quality of

bond issuers and in particular for defaults.7  Nickell et al. (2000) examine how rating transition

matrices – including the transition to default – vary over the course of a business cycle.8 They

find that rating transitions follow a systematic pattern, and that downgrades and failures are more

likely to occur at the trough of the cycle.

Other research has shown that business cycles are somewhat predictable. Stock and

Watson (1989, 1993) have developed statistical techniques for identifying and predicting

business cycles, and they show that the techniques have significant predictive power. Estrella

and Mishkin (1998) look at the out-of-sample predictive power of a broad array of indicators for

predicting NBER-dated recessions. They find that some of these indicators have strong

predictive power, including the term-structure spread, stock prices, and the Stock-Watson

leading indicators.

In section 3.A, we noted how systematic variations in the stochastic distribution of losses

could determine the cyclicality of optimal capital in the absence of adjustment costs.

Specifically, if the probability of large deviations of losses from the conditional mean is greater

when expected losses are larger, var-based minimum requirements could follow a pattern

consistent with optimal capital. Having made the connection between financial performance and

the business cycle, we can test whether the volatility of gross domestic product (GDP) varies

systematically with its conditional mean.

A straightforward test is based on a model in which the conditional variance of the GDP

gap is a function of its conditional expectation. Thus, let ty  represent the output gap – the

difference between the logarithms of real and potential GDP. We use U.S. chain-weighted GDP

and the Congressional Budget Office’s measure of potential GDP, both in 1992 dollars. A model

with an AR(2) component is defined as:

0 1 1 2 2t t t ty y y� � � �� �� � � �

� �� �0 1 0 1 1 2 2expt t th y y� � � � �� �� � � (33)

(0, )t tN h� � .

                                                
7 See, for example, Estrella et al. (2000).
8 The (i,j) element of a rating transition matrix contains the probability that a company with rating i ends up with
rating j after a given period (for instance, one, three or five years). Transition matrices based on long data samples
are published by the major credit rating agencies. See, for instance, Estrella et al. (2000).
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The sign of the relationship between the conditional volatility of GDP and its conditional

mean is given by the coefficient 1� . As argued in Section 3.A. (reversing the sign because losses

are inversely related to output), if this coefficient is negative, the level of optimal capital would

follow a cyclical pattern consistent with var-based requirements. Results using quarterly data, as

described above, for the period from 1966 to 2000 are presented in Table 1.

The results in Table 1 are not supportive of a relationship between the conditional mean

and variance. The estimates of the AR(2) portion of the model are very significant, lending some

support to the theoretical specification of this paper.9 For the variance, only the estimate of the

multiplicative constant is significant. The coefficient of the conditional mean, 1� , has a negative

sign, but it is not significantly different from zero.

Price (1994) finds analogous results with U.K.data for the period from 1957 to 1992

using a GARCH-M specification.10 He estimates a model for the logarithm of GDP, rather than

the GDP gap. The low-frequency components of these two series are bound to be different, since

log(GDP) is bound to contain some type of trend, but the fluctuations at business cycle

frequencies should be similar. The key cyclicality result is the same as in Table 1: Price (1994)

reports that the coefficient that relates the conditional mean and variance has a t statistic of 0.0.

A GARCH-M model applied to our U.S. data gives a qualitatively similar result (t = -1.12).

An alternative approach to the issue of changes in variance over the cycle is based on

examining changes in credit ratings at different points in the business cycle. The pattern of these

changes is frequently summarized in a rating transition matrix and, as noted, Nickell et al. (2000)

find that transition matrices vary over the business cycle in predictable ways.

Furthermore, they construct a multinomial ordered probit model that seems to capture

cyclical fluctuations in transition matrices, and which allows them to condition on whether the

economy is in one of three cyclical states (peak, trough, and normal). The probit model is

consistent with the assumption that ratings are driven by a continuous latent variable whose

stochastic distribution is homoskedastic. The assumption of homoskedasticity is not easily

                                                
9 Note, however, that the roots of the empirical AR(2) component are real. In contrast, the theoretical model’s
assumption of complex roots gives rise to explicit cycles in expectations. The empirical result probably reflects the
difficulty in forecasting accurately over a horizon that is long enough to encompass a full business cycle. The hump-
shaped impulse response implicit in the empirical estimates is consistent with foreseeing only the near-term portion
of a long cycle.
10 The GARCH-M model (Engle and Bollerslev 1986) is similar to the model in (33) in that the conditional mean
and variance are functionally related. In the GARCH-M case, however, the mean is a function of the variance.



22

testable in this context, but the success of the model in capturing empirical patterns is at least

suggestive that the mean and the variance may be unrelated.

B. Time-series behavior of bank capital

Although full estimation of the theoretical model of this paper is problematical, a look at

time series data over a period containing at least one business cycle can help determine whether

some features of the model are consistent with the empirical evidence. Detailed data on changes

in capital for all FDIC-insured U.S. commercial banks are available at an annual frequency from

1984 to 1999 (from the FFIEC call reports).

For instance, we can calculate net losses, tL , which corresponds to the negative of net

income, net new external capital raised, tR , which corresponds to net new external capital minus

dividends paid, and the level of capital, tK , which corresponds to total equity capital. Two

elements of capital are excluded from the analysis, namely changes incident to business

combinations and unrealized gains from available-for-sale securities. We exclude the first

because it would lead to double counting when we look at aggregate data for all banks, and the

second because it tends to add only short-term volatility, whereas we wish to focus on medium-

frequency cyclical fluctuations.

Consider the implications of two features of the model. First, the model assumes that

adjustment costs are associated with changes in external capital in either direction. Thus, we

would expect that external capital should be close to zero unless net income or losses are very

large. If net income is large, there may be a tendency to shed external capital, which is replaced

with cost-effective internally generated capital. If losses are very large, there may be a need to

raise external capital to return to prudent levels of capitalization. Second, we expect from

Proposition 4 that net new external capital raised ( tR ) should move in the opposite direction

from net income ( tL− ), while the net change in capital ( tK∆ ) should move with net income.

Figure 3 shows the values of these three variables over the sample period, which tend to

confirm the regularities described in the previous paragraph. As expected, net external capital

raised is relatively close to zero until 1992. After that, the economy entered a fairly vigorous

economic expansion and net income grew year after year. The banks then shed some external

capital, mainly by expanding their dividend payments. The figure also suggests that net external
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capital and the net change in capital bear the expected relationships to net income. We return to

this question shortly.

A few exceptional spikes are noteworthy in Figure 3. For example, spikes occur in both

the net income and net change in capital series in 1987. In that year, several internationally-

active banks made substantial provisions for loans to “less developed countries” (LDCs), which

had been deteriorating since the LDC crisis of the early 1980s. The net external capital series

shows an upward spike in 1992, most likely as a result of the 1988 Basel Accord and the 1991

U.S. banking legislation, both of which came fully into effect in that year. Other than a few

points such as these, banks seem to have behaved generally as suggested by the theoretical model

for optimal capital.

C. Relationships of capital stocks and flows to net income

The mathematical relationship between the contemporaneous levels of tR  and tL  in

equation (23) is not particularly simple, even though it assumes a relatively simple process for

tL . The spectral regression discussed in Proposition 4(a) (with coefficient given by equation (36)

in the appendix) corresponds to a linear relationship, but may not represent the full story. For

instance, the true relationship may be nonlinear, or there may be a significant disturbance term,

and the relationship applies strictly only to the in-phase components of the variables.

In practice, the spectral regression coefficient captures most of the relationship between

tR  and tL , and the same is true of the relationship between tK∆  and tL , which is captured well

by the regression coefficient in equation (37). We can see this in the first three numerical

columns of Table 2, which show the theoretical values of the spectral regression coefficients

( )RLb �  and ( )KLb �� , as well as numerical estimates obtained by regressing values of tR  and

tK∆ , respectively, on tL . These values were obtained by using the model to generate steady

state values over one full cycle and then running simple regressions with those values. Recall

that in Figure 1, we assume that 1/1.01� � , a = 5 and the cycle length is 20 quarters (periods).

Here we make the same assumptions but also allow a also to take on the values 1 and 10.

Note that the values of ( )RLb �  in Table 2 are substantially larger than those of 1- 1� .

Equation (19) suggests that the optimum flow of external capital with adjustment costs is

obtained by scaling down the level corresponding to no adjustment costs by a factor of 1- 1� .
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However, the effect of the other elements within brackets in (19) is that the scaling down is not

as large as indicated by the outside multiplier. The actual scaling down factor is more like the

theoretical spectral coefficient ( )RLb � .

In table 2, the numerical estimates that are drawn from the theoretical model could differ

in principle from the values of the spectral coefficients, but they are the same to three decimal

places for all three values of a. In addition, the very high 2R s in the numerical regressions

indicate that the relationship is almost exact and linear.

The final column in Table 2 presents regression estimates using the data described above

for U.S. banks from 1984 to 1999. The fit of this equation is, to be sure, not as tight as that of the

theoretical equations, but the 2R  is fairly high at 76 percent. In addition, the coefficient estimate

is significantly positive, as the theory implies.

Estimates of KLb�  obtained in a similar way are presented at the bottom of Table 2. Once

again, the spectral regression produces an almost complete representation of the

contemporaneous relationship between the two variables. The empirical estimates are also

significant and in agreement with the implications of the model, although the 2R  of 51 percent is

a bit lower.11

The empirical estimates are very similar to those obtained from the model with a = 5. In

fact, we can use the empirical regression estimate of RLb , together with expression (36) and the

definition of 1� , to solve for empirical estimates of 1�  and a, given �  and � .12 The estimates,

followed in parentheses by standard errors computed by the delta method, are 1- 1�  = .349 (.061)

and a = 5.26 (2.33). The t statistic for a is 2.26, suggesting that adjustment costs play a

significant role in the model.

Figure 4 shows visually that the linear relationships in the empirical regressions are fairly

accurate approximations of the data for banks from 1984 to 1999.The figure shows a scatter plot

of the data for both external capital raised and net change in capital, plotted against net income.

Also shown in the figure are the fitted values from the regressions in Table 2. As in Figure 3, the

                                                
11  Note that in the empirical estimates we do not observe RLb - KLb� = 1 exactly, as the model suggests. The reason

is that some minor components of the change in capital have been excluded, as explained earlier. The difference
between the two coefficients is 1.02.
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only large outliers correspond to the large loss provisions in 1987, which led to very low net

income, and to the effects in 1992 of the 1988 Basel Accord and of the 1991 banking legislation.

5. Policy implications

This paper investigates the issue of whether var-based minimum capital requirements are

procyclical by comparing the dynamic path of optimum bank capital with the path of var. The

model of the paper assumes that the bank optimizes by minimizing three costs: the cost of

capital, the cost of failure, and the cost of adjusting capital. Minimum requirements are not

explicitly imposed on the bank, but we focus instead on the identification of periods of conflict,

in which var exceeds the optimum, and periods of laxity, in which the optimum is well above

var.

The conflict between var and the optimum level of capital exists with or without

adjustment costs. Without adjustment costs, the conflict occurs strictly in the negative phase of

the cycle, when losses are above their unconditional average. With adjustment costs, the

maximum gap between optimal capital and var tends to be larger, and the timing of the

occurrence of the gap is somewhat delayed.

When the optimum level of capital is compared with the var over a cycle in the presence

of adjustment costs, the optimum level tends to lag var by about one quarter of a cycle. If the

average level of optimum capital differs from the average var by an amount comparable to the

amplitude of the cycle, or less, conflicts between the two are likely at some point along the cycle

because of the phase lag between the two. Contemporaneous movements in these two variables

are sometimes positively, sometimes negatively related, but on average they are negatively

related over the cycle.

Like the optimum level of capital, the change in the optimum level is negatively related

to var, though in this case the relationship is clear and contemporaneous. In contrast, a positive

relationship exists between the optimum flow of net new external capital raised and var. These

regularities suggest that a var-based minimum requirement is likely to be procyclical if it is

applied to the level of capital, but the analysis also points to various solutions to the problem of

procyclicality.

                                                                                                                                                            
12 It is customary in empirical estimates of these types of models to take the value of �  as given because it can only
be estimated very imprecisely and the other estimates are not very dependent on its particular value. See West
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First, the danger of causing a credit crunch in an economic downturn may be reduced by

judicious calibration of a var-based minimum requirement. In the calibration process, the key is

to focus on the relationship between var and optimum capital during an economic downturn,

rather than simply looking at the unconditional average relationship between these variables.

Second, supervisory review may be very helpful in dealing with the moral hazard

problem that faces banks as the gap between var and optimum capital increases in an economic

expansion. At times, the gap may be so large that there is a temptation to follow a shortsighted

approach and to let capital fall toward the var. Supervisory review may be used to insure that the

bank maintains an adequate buffer between minimum and actual capital even in such times. This

type of supervisory strategy is employed in Pillar 2 of the new Basel Accord.

Third, var may be the basis for a non-distortionary capital requirement – one that does not

conflict with optimum levels – if it is applied to net external capital raised. In a scheme of this

sort, the minimum capital raised could be some fraction of the amount that would be raised in the

absence of adjustment costs. In that case, minimum requirements would not tend to conflict with

optimum capital, and would be less likely to add to normal cyclical fluctuations.

                                                                                                                                                            
(1999).
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Appendix: Exact expressions with references from the text.

1. Coefficients of dynamic equations when losses follow AR(2) process with frequency �

(Section 3.B.).

1 1
1 2 2

1 1

(1 )(2cos )

1 2 cos

� � � �
�
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� �
�

� �
(34)

1
2 2 2

1 1

1

1 2 cos

�
�
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�
�

� �
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where

� �
2 2
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a a a a a

a

� � �
�

�
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�

Since 1�  is a function of a and � , the i�  are functions of a, �  and � .

2. Coefficients of sprectral regressions (Section 3.C.).
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( ) ( ) 1KL RLb b� �� � � (37)
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(38)

The first two expressions satisfy 0 ( ) 1RLb ω≤ ≤  and 1 ( ) 0KLb ω∆− ≤ ≤ . The sign of the expression

for ( )KLb �  is not obvious, but we have that:

1 1 1
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Table 1: Estimate of model of the U.S. real GDP gap, given by equations (33) in the text

0 1 1 2 2t t t ty y y� � � �� �� � � �

� �� �0 1 0 1 1 2 2expt t th y y� � � � �� �� � �

(0, )t tN h� � .

Q1 1966 to Q4 2000
Coefficient Estimate Standard

Error
t statistic p value

0� -.0004 .0007 -.58 .560

1� 1.220 .078 15.66 .000

2� -.293 .083 -3.52 .000

0� .0000635 .0000064 9.99 .000

1� -6.64 5.20 -1.28 .202

Equation estimated using maximum likelihood.

Table 2: Theoretical and numerical coefficients of regressions of capital flows on tL .

Parameter Theoretical model Empirical model
a = 1 a = 5 a = 10

1- 1� .617 .356 .267 —

( )RLb � .911 .672 .506 —

numerical RLb .911 .672 .506 .661

std. error .001 .002 .002 .099
2R 1.000 1.000 1.000 .761
( )KLb ��

-.089 -.328 -.494 —

numerical KLb
�

-.089 -.328 -.494 -.359

std. error .001 .002 .002 .095
2R .999 1.000 1.000 .506
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Figure 1: Impulse responses, quarterly data
Initial shock of size sin�  to tL  in quarter number 1

Cycle length is 20 quarters, relative adjustment cost is       5.00000
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Figure 2: Impulse responses, quarterly data
Initial shock of size sin�  to tL  in quarter number 1, 0 .05c ��

Cycle length is 20 quarters, relative adjustment cost is       5.00000
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Figure 3: Time series of capital variables
All FDIC insured banks
Millions of 1999 dollars (GDP deflator)
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Figure 4: Net income, net external capital raised, and net change in capital
Millions of 1999 dollars (GDP deflator)
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