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A Simple Multi-Factor “Factor Adjustment” for the Treatment of
Diversification in Credit Capital Rulest

Abstract

We introduce a smple adjustment to the single-factor credit capital model, which recognizes the
diversification obtained from a multi-factor credit setting. We demonstrate how the model can be
applied to extend the Basdl |1 regulatory framework to a genera multi-factor setting, thus
allowing for more accurate model of diversification for a portfolios across various asset classes,
sectors and regions, and in particular within mixed portfolios in developed and emerging

economies.

The modd is based on the estimation of a diversification factor, which is afunction of two
parameters that broadly capture size concentration and the average cross-sector correlation. This
diversification factor can be tabulated for potential regulatory applications as well as for the
implementation of credit portfolio decision management support tools. The model supports an
intuitive capital alocation methodology, which further attributes the diversification contribution
of agiven sector to the overal portfolio diversification, its relative size and cross-asset
correlation. As arisk management tool, the model can be used further to understand concentration
risk, capital alocation and sensitivities, as well asto compute “real-time’” margina risk

contributions for new deals or portfolios.

4 The views expressed in this paper are solely those of the authors. The authors would like to thank Michael

Pykhtin, Michael Gordy and Helmut Mausser for val uable comments and suggestions.



1. Introduction

Minimum credit capital requirements under the new Basdl |11 Capital Accord (Basel Committee of
Banking Supervision, 2003) are based on the estimation of the 99.9% systemic credit risk for a
portfolio (the risk of an asymptoticaly fine-grained portfolio) under a one-factor Merton type
credit model. This resultsin a closed form solution, which provides additive risk contributions for
each position and that is also easy to implement. The two key shortcomings of this model are that
it measures only systemic credit risk, and it might not recognize the full impact of diversification.

The first shortcoming has been addressed in an analytical manner, most notably with the
introduction of a granularity adjustment, which is obtained through an asymptotic analysis
(Gordy 2003, Wilde 2001, Martin and Wilde 2002). The second problem is perhaps more difficult
to address analytically but has greater consegquences, especidly for ingtitutions with broad
geographical and asset diversification. Diversification is one of the key tools for managing credit
risk, and it is vital that the credit portfolio framework, used to calculate and alocate credit capital,
effectively models portfolio diversification effects.

Portfolio granularity and full diversification within a multi-factor setting can be effectively
addressed within a simulation-based credit portfolio framework. However, there are benefits for
seeking analytical, closed-form, models both for regulatory applications as well as for credit
portfolio management. While the use of credit portfolio smulation-based models is now
widespread, they are computationally intensive and may not provide further insights into sources
of risk. They are also not efficient for the calculation of various sensitivities, or provide practica
solutions for real-time decision support. In particular, the accurate calculation of margina capita
contributions in a simulation framework has proven to be a difficult computational problem,
which is currently receiving substantial attention from both academics and practitioners (see
Kalkbrener et a. 2003, Mausser and Rosen 2004, Glasserman 2005). Analytical or semi-
analytical methods generaly provide tractable solutions for capital contributions (c.f. Martin et a.
2001, Kurth and Tasche 2003).

In terms of multi-factor credit portfolio modeling, Pykhtin (2004) recently obtains an elegant,
analytical multi-factor adjustment, which extends the granularity adjustment technique of Gordy,
Martin and Wilde. This method can adso be used quite effectively to compute capita

contributions numerically (given its closed form solution to compute portfolio capital). However,



while one can obtain closed-form expressions directly for capital contributions these expressions
can be quite intricate.

In this paper, we introduce an adjustment to single-factor credit capital models, which recognizes
the diversification obtained from a multi-factor setting and which can be tabulated easily for
potentia regulatory application and risk management decision support. The objective is to obtain
a simple and intuitive approximation, based only on a small number of parameters, and which is
perhaps less general and requires some calibration work. The model is based on the estimation of
a capital divergfication factor, DF, which leads to an gpproximation to the multi-factor credit
risk capital of the form

C™(a;x)» DF(a;)C* (a) @

where C™ (a; ><) denotes the diversified capital from a multi-factor credit model at the a
percentile level (eg. a = 0.1%); C™ (a) is the capital arising from the one-factor model; and

DF (a ; ><) £ lisascalar function of a small number of (yet to be determined) parameters. A

simple solution of the form (1) basically allows us to express the diversified capital as afunction
of the “additive” bottoms-up capital from a one-factor moddl (e.g. the Basal 11 moddl), and to
tabulate the diversification factor (as afunction of say 2 or 3 parameters). For potential regulatory

use, we may also seek aconservative parameterization of equation (1).

In addition to its potentia regulatory application, the model (1) provides a practical risk
management tool to understand concentration risk, capital allocation and correlations, and various
capital senditivities. The model supports an intuitive capital allocation methodology, which
further decomposes the diversification contribution of a given sector or sub-portfolio into three
sources. the overall portfolio composition, the sector’s relative size and the sector’s cross-
correlation. Finaly, for a given portfolio, we can readily fit the model to a full multi-factor
internal credit portfolio model (which may be simulation based). The resulting implied
parameters of the model provide smple risk and sensitivity indicators, which alow us to
understand the sources of risk and concentration in the portfolio. The fitted model can then be
used as a practical tool for real-time computation of marginal capital for new loans or other credit

instruments, and for further sengitivity analyss.



The rest of the paper is organized as follows. We first motivate the use of multi-factor models
through an empirical analysis of possible ranges of asset correlations across various economies,
and particularly across developed and emerging countries. We then introduce the underlying
credit model, the diversification factor and its general analytical justification, and the resulting
capital allocation methodology. Thereafter, we show how the diversification factor can be
estimated numerically using afull credit portfolio model and Monte Carlo simulations. We
provide several parameterization exercises in the context of the Basal 11 formulae for wholesale
exposures. Finally, we discuss the application of the model as arisk management tool, in
conjunction with an internal full multi-factor economic capital model, to understand
concentration risk and capital alocation, as well as for rea-time margina economic capital
caculation.

2. Motivation — Example: Estimating Correlationsin Developed and
Emer ging Economies

Diversification is one of the key tools for managing credit risk and optimally allocating credit
capital. The accurate modeling of diversification has important consequences for institutions with
broad geographical and asset coverage, as well as for those actively managing credit risk. Thisis
especidly true within international banks, with substantial credit activities across different
countries. Thus, many institutions today have in production either internally developed or
commercial multi-factor credit portfolio models across their wholesale and retail portfolios.

In this section, we motivate the importance of using multi-factor models through an empirical
correlation analysis. As is common practice, we use equity correlations as a proxy for asset
correlations (see for example CreditMetrics 1997). Although there are many known limitations
for using equity correlations, our objective is only to provide an intuitive picture for the ranges of
asset correlations, as well as for the number of factors required to model these within and across
developed and emerging economies. Thus, the broad, quditative, conclusions we draw from the
analysis should not be impacted by this crude approximation.

We use as proxies the stock market indices of the different countries. Table 1 displays the average
correlations between countries within developed and emerging economies and across both groups
on the basis of monthly returns over a period of 7 years (1996-2003). The average correlation
between the indices of devel oped economies stands at around 74%, whereas the average



correlation between developed and emerging economies, as well as between emerging
economies, is around 40%. The Appendix further presents the detailed correlation matrix.

Developed Emerging
economies economies
Developed
economies 0.74 0.41
Emerging
economies 0.41 0.40

Table 1. Average asset correlations from stock market indices

Alternatively, we can use aggregate indices instead of using individual market indices for each
country®. In this case, the correlation between the two aggregated global indices is 61%, which is
still not very high in spite of the fact that considering general indices tends to raise correlations.

To give a better characterization of the multi-factor nature of the problem, we perform a principal
components analysis (PCA) of the individual stock market index returns. Table 2 presents the
percentage of variance explained by the factors resulting from the PCA. A single factor accounts
for 77.5% of the variability of the developed markets, and three factors are required to explain
more than 90%. In contrast, the first factor only explains about 47% of the variability of emerging
market indices and seven factors are required to explain more than 90%. Although the single-
factor modd is not a satisfactory simplification in either of the two cases, this model is even
further removed from redlity in the case of emerging economies.

%ACCUMULATED
%VARIABILITY VARIABILITY
DEVELOPED EMERGING |DEVELOPED EMERGING

Factor 1 77.5 46.7 77.5 46.7
Factor 2 8.3 14.2 85.8 60.9
Factor 3 54 10.7 91.2 71.7
Factor 4 3.1 7.2 94.3 78.8
Factor 5 2.2 5.9 96.6 84.7
Factor 6 15 4.6 98.1 89.2
Factor 7 1.1 4.3 99.2 93.5
Factor 8 0.8 3.3 100.0 96.9
Factor 9 3.1 100.0

Table 2. PCA analysis of stock market indices

5 Based on series of monthly returns over 7 years of the S& P Emerging Market and Morgan Stanley
Developed M arkets I ndices (1996-2003).



To complement the previous analysis, we estimate the correlation between the PCA factors for
developed and emerging economies. Table 3 shows the correlation structure of the first three
principal components for each group (with F and G denoting the factors for devel oped countries
and emerging countries, respectively).

Correlations between factors

Gy Gy Gy
Fi 041 005 070
Fi 0.32 044 045
Fa -003 081 0.39

Table 3. Corrdation between PCA Factors

In summary, there are multiple factors that affect devel oped and emerging economies and,
moreover, these factors are not the same in both cases. It is thus important to consider a multi-
factor model for dealing suitably with financial entities that have investments in both developed
and emerging economies.

Simple Two-Dimensional Diver sification Example

Consider the case of a corporate portfolio consisting of one sub-portfolio with exposuresin a
developed economy, with stronger credit standing, and a second one in an emerging economy,
with weaker average credits. As an example, Table 4 shows the calculation of the economic
capita required by a portfolio with 94% of exposures in the developed economy (portfolio with
PD of 2.5%), and the remaining 6% in the emerging economy (average PD of 5.25%). We
assume an average LGD of 50% . The total capital required (excluding expected 10ss) is 9.37%,
using the Basdl |1 modd (single-factor). Under atwo-factor model with a correlation of 60%, the
capital requirements fall to 9.01%. Thisis areduction of about 4% of capital dueto
diversification or, aternatively, afactor adjustment of 0.96 (i.e. 9.01% = 9.37% x 0.96).



Portfolio 1 Portfolio 2 Total

Average prob. of default 2.5% 5.25% 2.7%
FPercentage of exposure 84% B% 100%
Loss given default a0% a0% 0%
Awerage correlation 15% 13%
Expected loss 00119 0.0015 1.34%

Capital (without EL) 0.0871 0.0088 4.37%

Total 0.0991 0.0081 10.71%

One factor Two factor Reduction

Total Entity model model factor
Expected loss 1.34% 1.34%

Capital {withaout EL) 8937% 901% 9E%
Total 10.71% 10.35%

Table 4. Example: two-factor credit portfolio

3. TheModd

We first introduce the underlying credit model. We then define the concepts of the capita
diversification index and the diversification factor, and outline the estimation method. Finally we
discuss capital allocation and risk contributions within the mode.

Underlying Credit Model and Stand-Alone Capital

Condder asingle-step model with K sectors (each of these sectors can represent an asset class or
geography, etc.). For each obligor j in a given sector k, the credit losses at the end of the horizon
(say, one year) are driven by a single-factor Merton model 6. Obligor j defaults when a

continuous random variable Y, , which describes its creditworthiness, falls bellow agiven

threshold at the given horizon. If we denote by PD; the obligor’s (unconditional) default
probability and assume that the creditworthiness is standard normal, we can express the default

threshold by N“*(PD, ).

The creditworthiness of obligor j is driven by a single systemic factor:

6 For consistency with Basel |1, we focus on a one-period Merton model for default losses. The
methodology and results are quite general and can be used with other credit models, and can also

incorporate |osses due to credit migration, in addition to default.
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where Z, isastandard Normal variable representing the systemic factor for sector k, and the €

are independent standard Normal variables representing the idiosyncratic movement of an
obligor’s creditworthiness. While in the Basdl |1 model al sectors are driven by the same

systemic factor Z, here each sector can be driven by a different factor.

We assume further that the systemic factors are correlated through a single macro-factor, Z
Z, =:bZ+1-bh,, k=1..K ©)

where h, are independent standard Normals. For simplicity we have assumed a single correlation

parameter for al the factors (as we seek a smple parametric solution). Later, we alow for this

parameter b to be more generally an average factor correlation for all the sectors.

For ease of notation, assume that for obligor j has a single loan with loss given default and
exposure at default given by LGD,, EAD; respectively. As shown in Gordy (2003), for
asymptoticaly fine-grained sector portfolios, the stand-alone a -percentile portfolio loss for a
given sector k, VaR, (@) , is given by the sum of the individual obligor losses in that sector, when

an a -percentile move occurs in the systemic sector factor Z, :

-1 ) 2 a
VaR (a)= @& LGD, xEAD, N}k (PD,)- 1y 2 2
jT Sectork 8 _\/1_ rk a

4

where z* denotesthea -percentile of a standard normal variable.

Consistent with common risk practices and with the Basdl 11 capitd rule, we define the stand-
alone capital for each sector, C, (a ) , to cover only the unexpected losses. Thus,



C.(a)=VaR, (a)- EL, ,where EL, = a LGD; xEAD; XD, are the expected sector

jT Sectork

losses.” The capital for sector k can then be written as

€ aN(PD, )- 20 u
Ca)= & LGD, xEAD, xeN& (Po)- 1, 2 - PD, )
jT Sectork é g —\/1' r. ﬂ H

Under Basdl 11, or equivalently assuming perfect correlation between al the sectors, the overall
capital is simply the sum of the stand-alone capital for al individual sectors (for smplicity, we
omit the parameter a hereafter).

c'=ac (6)

&
k=1

The Capital Diversification Factor and Capital Diversification Index

We define the capital diversification factor, DF, asthe ratio of the actual capital computed using

the multi-factor model and the stand-alone capitd, DF =C™ / C'", DF £1.

For a given quantile, we seek to approximate DF, by a scalar function of a small number of
parameters, which leads to a reasonable approximation of the true, multi-factor, economic credit
capital. A solution of the form (1) basically alows us to express the (diversified) economic
capital exclusively as afunction of the “additive’ bottom-up capital from the one-factor (Basel I1)
model, and tabulate the factor adjustment as a function of a small number of intuitive parameters.

Let us now first motivate the parameters of this approximation. We can think of diversification
basicaly being aresult of to two sources. The first one is the correlations. Hence a natura choice
for a parameter in our model is the cross-sector correlation b. The second source is the relative
size of various sector portfolios. Clearly having one dominating very large sector resultsin high
concentration risk and limited diversification. So we would seek a parameter representing
essentialy an “ effective number of sectors’ accounting for their sizes. Ideally, this should also

7 Thefollowing discussion still holdsif capital isdefined by VaR, by simply adding back the EL at the end

of the analysis.

10



account for the differences in credit characteristics as they affect capital. Thus, a sector with a
very large exposures on highly rated obligors, might not necessarily represent a large contribution

from a capital perspective.

Define the capital diversification index, CDI, as the sum of squares of the capital weightsin each
sector

2

ac,

CDI :W%\wkz ™
C K

withw, =C, /C*" the contribution to one-factor capital of sector k. The CDI is simply the well-

known Herfindahl concentration index applied to the stand-alone capital of each sector.
Intuitively, it gives an indication of the portfolio diversification across sectors (not accounting for
the correlation between them). For example, in the two-factor case, the CDI ranges between 0.5
(maximum diversification) and one (maximum concentration). The inverse of the CDI can be
interpreted as an “ effective number of sectors’ in the portfolio, from a capital perspective. Note
that one can similarly define the Herfindahl index for sector or counterparty exposures (EADS),
which results in a measure of concentration in terms of the size of the portfolio (and not

necessarily the capital).

It is easy to understand the motivation for introducing the CDI. For a set of uncorrelated sectors,

the standard deviation of the overal portfolio loss distribution isgiven by s , =+/CDI é Sk
with s ,,s , the volatilities of credit losses for the portfolio and sector k, respectively. More

generaly, for correlated sectors, denote by b the single correlation parameter of credit losses

(and not the asset correlations). Then, the volatility of portfolio credit lossesis given by8

8 One can explicitly obtain the relationship between asset and loss correlations. For the simplest case of

homogeneous portfolios of unit exposures, same default probability, PD, with a single intra-sector asset

correlation r and cross-sector asset correlationb , the credit loss correlation is given by

t;=[N2(N-1(PDi),N-l(PDi),rb)' r 2]/[N2(N-1(PDi)yN-l(PDi),I’ )_ r 2]

11



s,=4[l-b)CDI +b §s, 6)

If credit losses were normally distributed, a smilar equation to (8) would apply for the credit
capital at agiven confidencelevel, C™ = DF N(CDI,b) xC, with

DF" =/[t- b )CDI +b , the diversification factor for aNormal loss ditribution. Figure 1

shows aplot of DF M asafunction of the CDI for different levels of the sector loss correlation,
b . For example, for a CDI of 0.2 and a correlation of 25%, the diversified capital from a multi-
factor model is about 60% of the one-factor capital, if the distribution is close to Normal).

12
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Figure 1. Idealized multi-factor factor adjustment for normal distributions

Although credit loss distributions are not Normal, it seems natural to attempt a two-factor
parameterization for equation (1) such as

Note also that the explicit formulafor the variance of portfolio |osses as a function of the asset correlations

isgiven by the well -known formula

2 = 8 LGDEAD,LGD,EAD; N, (N *(PD,),N*(PD;).r ;)- N"*(PD,)N"*(PD,)]

i

with N, (a,b,r )the standard bivariate normal distribution of random variablesa and b and correlationr ;

Fi=r for obligorsin the same sector andr“_ =b /rm/ﬁfor obligorsin different sectors.



C™(CDI,b )» DF (CDI,b )>xC! ©)

with the cross-sector asset correlation substituting the loss correlation, given it's availability, a
priori, from the underlying model. In the rest of the paper, we refer to the mode given by
equations (2), (3), (5), (6) and (9) as the DF credit capital model.

Clearly, we do not expect the parameterization (9) to be exact, nor for the DF to follow

necessarily the same functional formas DF ™ . However, as explained earlier, we can expect
the two parameters to capture broadly the key sources for diversification: homogeneity of sector
Sizes and cross-sector correlation. So it remains an empirical question to see whether these two
parameters are enough to create a reasonable approximation of the diversification factor. Note
also that, for regulatory use, we might seek to estimate aconservative diversification factor DF,
so finding a reasonable upper bound might be more appropriate for this type of application.

Estimating the Capital Diversification Factor, DF

We propose to estimate the DF function numerically using Monte Carlo simulations. In general,
this exercise requires the use of a multi-factor credit portfolio application (which might itself use
a smulation technique). The parameterization obtained for DF can then be tabulated and used
generdly both as a basis for minimum capital requirements and for quick approximations of
economic capital in a multi-factor setting, without recourse to further simulation.

The general parameterization methodology is as follows. We assume in each simulation, a set of

homogeneous portfolios representing each sector. Each sector is assumed to contain an infinite
number of obligors with the same PD and EAD. Without loss of generdity, we set LGD = 100%,

and the total portfolio exposure equal to one, § EAD, =1.

The numerical experiments are performed as follows:

13



Assume afixed average cross-sector correlation b and number of sectorsK. We run alarge
number of capital calculations, varying independently in each experiment?:

the sizes of each sector

PD, ,EAD, ,r, , k=1..,K

In each run, we compute C, (k =1,...,K), C*' and CDI from the smple one-factor

analytical formula and aso the “true” C™ from a full multi-factor model10

We plot theratio of (C™ /C*") vs. the CDI.

To get the overal DF function for alevel of correlation b we then repeat the exercise
varying the number of sectors K

We then repesat the exercise for various levels of correlation

Finaly, we estimate the function DF (CDI, b) by fitting a parametric function to the points

As an example, Figure 2 presents the plot for K=2 to 5 and b =25% and random independent
drawswith PD, T [.0296,20%] , r 1 [2%,20%)] . The dots represent the various experiments,

each with different parameters. The colours of the points represent the different number of
sectors. Simply for reference, for each K, we dso plot the convex polygons enveloping the points.
Figure 2 shows that the approximation is not perfect, otherwise all the points would lie on aline
(not necessarily straight). However, al the points do lie within awell bounded area, suggesting it
as areasonable approach. A function DF can be reliably parameterized either as afit to the points
or, more conservatively, as their envelope. For example, for a CDI of 0.5, a diversification factor
of 80% resultsin a conservative estimate of the capital reduction incurred by diversification.

This exercise is only meant to illustrate the parameterization methodology. We have shown that
even in the case where sector PDs, exposures and intra-sector correlations are varied
independently, two factors (CDI, b) provide a reasonable explanation of the diversification factor.

9 |n practice, one must use reasonable ranges for the parameters as required by the portfolio. For Basel 11
adjustments, we do not have to sample independently the asset correlationsr |, , since these are either

constant or prescribed functions of PD, for each asset class. As shown later, this resultsin tighter estimates.

10Except for the two-factor case, where numerical integration can be used, multi-factor capital is calculated

using a MC simulation, although some analytics might be possible as explained earlier in this section.

14



One can get tighter approximations by adding explanatory variables or by constraining the set
over which the approximation is valid. In practice, for example, PDs and intra-sector correlations
do not vary independently and they might only cover a smaller range. In Section 4, we provide a
more rigorous parameterization and examples in the context of the Basel 11 formulae.

LY
o2 =3 o4 [L4-] 43 o o8 og 1

CDI

Figure 2. Empirical DF asa function of the CDI (K=2-5and b=25%)

Capital Allocation and Risk Contributions
Under a one-factor credit model, capital alocation is straightforward. The capital attributed to a

given sector is the same asiits stand-alone capital, C, , since the model does not alow further

diversification. Under the full multi-factor model, the total capital is not necessarily the sum of
the stand-alone capitals in each sector. Clearly, the standalone risk of each component does not
represent a valid contribution for sub-additive risk measures in generd, since it fails to reflect the
beneficia effects of diversification. Rather, it is necessary to compute contributions on a margina
basis. The theory behind marginal risk contributions and additive capital allocation iswell
developed and the reader is referred elsawhere for its more formal derivation and justification
(e.g. Gouriéroux et a 2000, Hallerbach 2003, Kurth and Tasche, 2003, Kalkbrener et a 2004).

Using the factor adjustment approximation (9), one might be tempted simply to alocate back the
diversification effect evenly across sectors, so that the total capital contributed by a given sector

is DF xC, . We refer to these as the unadjusted capital contributions. Thiswould not account,

however, for the fact that each sector contributes differently to the overall portfolio

diversification. Instead, we seek a capital decomposition of the form

15



C™ =q DF, *C, (10)

=

11 Q_)Ox

1

We refer to the factors DF, in equation (10) as the marginal sector diversification factors.

If DF only dependson CDI and b (where the correlation can also represent an average
correlation for all sectors, as shown below), it is then a homogeneous function of degree zeroin
the C, ’s (indeed it is homogeneous in the size of each sector exposures as well). Thisis a direct
consequence of both the CDI and the average b (as defined later) being homogenous of degree

zero. Thus, the multi-factor capital formula (9) is a homogeneous function of degree one.

Applying Euler’s theorem, leads to the additive margina capital decomposition (10) with

mf
DFk:ﬂC . k=1..,K (11)

(&%

Under the smplest assumption that all sectors have the same correlation parameter b, we can
show that

éCy u
&t - CDlH (12)

DF, = DF + 2DF '

where DF'=9DF /|CDI isthe dope of the factor adjustment for the given correlation level b.
Expression (11) shows that the marginal sector diversification factor is a combination of the
overal portfolio DF plus an adjustment due to the “ relative size” of the sector to the overall
portfolio. Intuitively, for DF >0 and all sectors having the same correlation b, a sector with

small stand-alone capital (C, /C*" < CDI ) contributes, on the margin, less to the overall

portfolio capital; thus, it gets a higher diversification benefit DF, .

In the more general case, when each sector has a different correlation level by , we define the

average corrdlationas b = § (C, /C'")»b, . Then, the marginal sector diversification factor is

given by

16



C,
1?5; gclf CDIE IBF Jb. - B] (13)

DF, = DF +2

Thus, sectors with lower than average correlation get a higher diversification benefit, as one
would expect.

The marginal capital alocation resulting from the model leads to an intuitive decomposition of

diversification effects (or concentration risk) into three components: overall portfolio

diversification, sector size and sector correlation:
DF, = DF + DDF

+ DDF (14)

Size Corr

4. Parameterization Exercises

Section 3 presented a ssimple example to illustrate the parameterization methodology for a generd
problem where sector PDs, exposures and intra-sector correlations where varied independently.
Even in this case, two parameters (CDI, b) provided a reasonable explanation of the
diversfication factor. One can get atighter approximation, by either searching for more
explanatory variables, or by constraining the set over which the approximation isvalid. In
practice, PDs and intra-sector correlations do not vary independently and they might only vary
over smaller ranges. For example, under the Basdl |1 capita rules, the asset correlation is either
constant on a given asset class (e.g. revolving retail exposures, at 4%) or varies as a function of
PDs (e.g. wholesale exposures).11 See also Lopez (2004), which shows that average asset

corrdation is a decreasing function of PD and an increasing function of asset size.

In this section, we present more rigorous parameterizations and error analysis for the case of
wholesale exposures (corporates, banks and sovereign) in the context of Basel 11. We first
describe in detail the case of atwo-factor parameterization and a given cross-sector correlation b,
and then extend the results further to multiple factors and correlation levels. Our objective in this
section is not to provide a complete parameterized surface, but rather to develop a good

11 |n this case, the asset correlation is given by

&- e 5 1- 5% §

® o
r =0.12 ++0.24¢1- T
§1-e-5° & § 1-e 4
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understanding of the basic characteristics of the diversification factor surface, the approximation
errors and the robustness of the resullts.

Two-Dimensional Parameterization for Wholesale Exposures

Consider a portfolio of wholesale exposures in two homogeneous sectors, each driven by asingle
factor model. We assume a cross-sector correlation b = 60%. For smplicity, assume dl loansin
the portfolio have a maturity of one year. To estimate the diversification factor function, DF
(CDI, b=60% ), we perform a Monte Carlo smulation of three thousand portfolios. The PDsfor
each sector portfolio are sampled randomly and independently, from a uniform distribution in the
range [0,10%)]. We further assume that in each sector, asset correlations are given as a function of
PDs from the Basdl |1 formula for wholesale exposures without the firm-size adjustment. The
percent exposure in each sector is sampled randomly as well, and without loss of generality we
assume 100% LGDs. For each of the 3,000 portfolios, the economic capital is calculated using a
MC simulation with one million scenarios on the sector factors (assuming b=60%), and assuming
these are granular portfolios (hence computing the conditional expected portfolio losses under
each scenario). Economic capital is estimated as the 99.9% percentile of the credit losses net of
the expected |osses.

Figure 3 compares the capital obtained for the smulated portfolios using a one-factor model and
atwo-factor modd, as a function of the average default probability (to make the number more
realistic, we plot the capital assuming 50% LGDs). The two-factor model generdly resultsin
capital requirements that are lower than those of the single-factor model, asthe circles (in blue),

which correspond to the single-factor model, are generally above the squares (in red), which
correspond to the two-factor model.

164%.

Two factor model vs, 1
14% o Factor raodel 2 \.Eﬁug ¥

12%
DOnp Eaclor mad el
1% e

B% Tt ki e ul

Regulatory Capital

2% A% % % 0%
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Figure 3. One-factor and two-factor capital as a function of aver age PDs (LGD=50%)

Figure 4 plots the diversification factor, DF, as afunction of the CDI for the ssimulated portfolios.
With two factors, the CDI ranges between 0.5 (maximum diversification) and 1 (maximum
concentration). Thereis a clear relationship between the diversification factor and the CDI, and a
smple linear model fits the data very well, with an R of 0.96. Thus, we can express the
diversification factor as'?

DF(CDI,b =0.6) =0.6798+0.3228 CDI

100%
80%

70% 4

60%

50% 4 y= 0,32228x +0,6798
R =0,9625

40% 4

Diversification Factor

30% 4

20% 4

10%

0% T T T T T T T T T
50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

Capital Diversification Index (CDI)

Figure 4. Two-factor diversfication factor as a function of the CDI (b=60%)

Figure 5 displays, for all ssimulated portfolios, the actual economic capital from the two-factor
model against that estimated from the DF model resulting from the regression in Figure 4. There
is clearly a close fit between the two models, with the standard error of the estimated
diversification factor model of only 10 basis points. Finally, Table 5 summarizes the resulting
diversification factor in table format. Accounting for maximum diversification, the capital

savings are 16% .

12 Similarly, one can obtain the parametric envel op of the data, to get a more conservative adjustment.
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Figure 5. Capital from DF modd vs. actual two-factor capital (b=60%)

cDI Diversification
Factor |

50% 84%

55% 86%

60% 87%

65% 89%

70% 91%

75% 92%

80% 94%

85% 95%

90% 97%

95% 99%

100% 100%
Intercept 0.6798

slope 0.3228

R"N2 0.97

Table 5. Tabulated diversification factor (two-factors) (b =60%)

To understand the application of this resulting model to capital alocation, consider a portfolio
with 70% of the one-factor capital in sub-portfolio 1 and 30% in sub-portfolio 2. Table 6 presents
asummary of the capital contributions. The CDI = 0.58, which leadsto DF = 86.3% . As defined
earlier, the unadjusted capital contributions apply the same diversification factor of 86.3% to each
sub-portfolio, thus retaining the same proportion of allocation as the SA contributions. However,
consistent with amarginal risk allocation, the smaller portfolio contributes more to the overall
diversification and gets an adjustment factor of 67%, while the larger portfolio gets a 94% factor.
The marginad capital contributions of the portfolios are 66.1 (76.6%) and 20.2 (23.4%),
respectively (summing to 86.3).
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Cai SA Capital | Unadjusted | Marginal Sector
apital o . P
One-Factor | Contributions | Capital Diverisfication
% Contributions Factor
Pl 70.00 70.0% 60.4 0.94
P2 300} 30.0% 259] 0.67
Total 100.0] 100% 86.3]
CDI 0.58]
DF 86.3%

Table 6. Capital contributionswithin the two-factor factor adjustments (b=60%)

Parameterization of the Surface

We now investigate the behaviour of the surface as a function of the number of factors and also
for other cross-sector correlation levels. We now consider portfolios of wholesale exposures
consisting of k homogeneous sectors, k=2,3,...,10. The cross-sector correlation isb = 60%. We
follow the same estimation procedure as before to estimate the diversification factor function, DF

(CDI, b=60% ) for each k, using Monte Carlo smulations of three thousand portfolios, each.

Figure 6 shows the detailed regression plots for k=4, 7, 10. Table 7 presents the DF tabulated for
each k. It al'so presents the coefficients of the regressions and, finally, an average over al the
range. In all cases from 2-10 factors linear modd fits the datawell with R? ranging from 96-98%,
and standard approximation errors of 10-11 bps. It is clear that at this correlation level, alinear
mode fits the data very well, from this example, asis further shown in Figure 7, which plots the

nine regression lines.
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Figure 6. DF model regressionsfor k=4, 7, 10 (b=60%)
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Figure 7. DF mode regression linesfor k=2, ..., 10 (b=60%)



Table 7. Tabulated results for the DF modd for k=2,...

10 (b=60%)

CDI \ Factors 2 | 3 | 4 1 5 | 6 | 7 8 | o 10 Average
10% 70.7% 70.7%
15% 72.3% 71.9% 72.2% | 72.4% 72.2%
20% 740% | 740% | 74.0% 73.6% 73.9% | 74.0% 73.9%
25% 75.0% | 75.7% | 757% | 757% 75.3% 756% | 757% 75.5%
30% 76.8% | 774% | 77.4% | 77.4% 77.0% 713% | 77.4% 77.2%
35% 791% | 78.5% | 791% | 79.1% | 79.0% 78.7% 79.0% | 791% 78.9%
40% 80.7% | 80.2% | 80.8% | 80.8% | 80.7% 80.4% 80.7% | 80.8% 80.6%
45% 82.4% | 81.9% | 825% | 825% | 824% 82.1% 82.4% | 82.4% 82.3%
50% 84.1% | 84.1% | 83.7% | 842% | 842% | 841% 83.8% 84.1% | 841% 84.0%
55% 85.7% | 858% | 85.4% | 859% | 858% | 858% 85.5% 85.8% | 858% 85.7%
60% 87.3% | 87.4% | 87.1% | 87.6% | 875% | 875% 87.2% 87.5% | 87.5% 87.4%
65% 89.0% | 89.1% | 88.8% | 89.3% | 8920 | 89.2% 88.9% 89.20 | 89.1% 89.1%
70% 90.6% | 90.8% | 90.6% | 91.0% | 90.9% | 908% 90.6% 90.9% | 90.8% 90.8%
75% 92.2% | 92.5% | 92.3% | 92.7% | 926% | 925% 9R2.4% 92.6% | 92.5% 92.5%
80% 93.8% | 94.1% | 94.0% | 944% | 943% | 942% 94.1% 94.3% | 94.2% 94.1%
85% 95.4% | 958% | 95.7% | 96.1% | 959% | 95.9% 95.8% 96.0% | 959% 95.8%
90% 97.0% | 97.5% | 97.5% | 97.8% | 97.6% | 97.6% 97.5% 97.7% | 97.5% 97.5%
95% 98.6% | 99.1% | 99.2% | 995% | 99.3% | 993% 99.2% 99.4% | 99.2% 99.2%
100% 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% 100.0% | 100.0% | 100.0% | 100.0%

Intercept 06708 | 06734 06641] 0.6722] 06731] 06726 06679 0.6706] 0.6732] 0.6718
slope 0328 | 03349 03449] 0.3397] 03369  0.3368 03413 0.3406]  0.3359] 0.3371
R 96.3% | 96.9%| 97.2%| 97.6%| 98.0%|  97.9% 9r.9%| _ 98.0%[  98.1%

Figure 8 plots the linear regressions from the same exercise for a correlation of b=40%, for

k=2,...,10. The R arein the order 97 to 98% and the standard errors range between 12-15 bps.

Diversification Factor (beta=40%) Factors
100.0% % >
95.0%
/ —3
90.0% /
85.0% i 4
80.0% 5

L )

o 75.0% 7 —6
70.0% 7 -
65.0%

s —8
60.0% —
—10
55.0%
50.0% . . : .
0% 20% 40% 60% 80%  100%
CDI

Figure 8. DF modd regression linesfor k=2, ..., 10 (b=40%)
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A linear regression till performs quite well in fitting the actual economic capital for the MC

generated portfolios, but is not as accurate as in the previous case (b=60%). The effect of

curvatureisillustrated in Figure 9, which shows alinear and a quadratic fit through the data for

the case when the portfolio contains 10 sectors.
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Figure9. DF modd linear and quadratic fit for k=10 (b=40%)

90% 100%

The quadratic fit clearly fits the data better, and in particular at both ends of the range, where the

linear fit is clearly off (e.g. resulting in a higher than 100% diversification factor, which would

need to be capped). Figure 10 plots the average linear and quadratic fits and provides the

functions in tabular form for comparison. There are differences in the estimated DF of up to 3%.
In practice, the quadratic fit provides added value. This quadratic modd is given by

CcDI Linear Quadratic
10% 56.9% 53.9% 100.0%
15% 59.1% 57.0% 95.0% /
20% 61.5% 50.9% ' /
25% 63.9% 62 8% 90.0% /
30% 66.5% 65.9% 85.0%
350% 69.1% 68.8%
40% Z1.6% 71.8% w 80.0% / — Linear
45% 74.2% 74.6% o 750% / — Quadratic
50% 16 7% 77.1% 70.0%
55% 79.2% 79.9% /
65.0%
60% 81.8% 82 5% /
65% 84.3% 85.0% 60.0%
70% 86.9% 87 5% 55.0%
5% 89.5% 89.8%
80% 92 0% 92 1% 50.0% ' ' ' '
85% 94 6% 9420 0% 20% 40% 60% 80% 100%
90% 97.1% 96.2% cDl
95% 99.7% 98 200
100% 100.0% 100.0%
Figure 10. DF model linear and quadratic functions (b=40%)
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The non-linear nature of the DF tends to increase with decreasing correation level. One can get
some intuition to this by revisiting the functional form for portfolio loss standard deviation as
given by equation (8) and Figure 1. To illustrate this effect further, Figures 10 and 11 present he
results for two uncorrelated factors (b=0%). 13
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90% 4 90%

80% 4 80%
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Capital Diversification Index (CDI)
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Capital Diversification Index (CDI)

Figure11. DF mode linear and quadratic fit for k=2 (b=0%)
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V0 BAD% 6L8% 95.0% 7

B 67.9% 67.6% 90.0%

% 71.%% 728% 85.0%
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100% 1000% 1000% <

Figure 12. DF modé linear and quadratic functions (b=0%)

Findly, to get an overdl picture of the DF surface, Figure 13 plots the function for the three
levels of correlation, as computed in this section. Note the similarity of with Figure 1.

13 |n Figure 12, the DF is capped at 100% and also the quadratic function is adjusted at the end to get
precisely DF=100% for a 100% CDI.
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Figure 13. DF modé linear and quadratic functions (b=0%)

5. The Diversfication Factor asa management tool

In addition to its potential regulatory applications, we now focus on the application of the DF
model as arisk management tool to

understand concentration risk and capital alocation

identify capital sengitivities to sector size and correlations

compute “real-time” margina risk contributions for new deals or portfolios

In this section, we first summarize the parameters of the model and the sensitivities derived from
it, and discuss their interpretation as risk and concentration indicators. We then explain how the
model can be used in conjunction with afull multi-factor internal credit capital model, by
computing its implied parameters. We illustrate this application with a smple example.

Summary of Model Parameters as Risk and Concentration Indicators

The intuitiveness of the DF model allows usto view its parameters as useful risk and
concentration summary indicators. We divide these into, sector -specific indicators, portfolio
capital indicators, capital contributions and correlations, and sensitivities. For completeness, we
summarize these in Table 8.
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Sector specificindicators

(for sectorsk=1,...,K) 14

Portfolio capital indicators

Marginal Capital contributions

(for sectorsk=1,...,K)

Inputs
M. Intra-sector (asset) cf Capital one-factor b . Sector correlation weight
correlation (undiversified) (cross-sector correlation)
PD« average default CDI Capital
probability diversification index
EAD. Average exposure, b Average cross sector
16D, loss given default correlation
Outputs
C, Stand-al one capital DF Capital D |:k Sector diversification factor
diversification factor DF, = DF + DDFS* + DDF™"
cm Economic capital DDF? Sector size diversification
(diversified) component
E Sensitivity of DF to DDF Sector’s correlation
o changesin average diversification component
cross-correlation
IDF Sensitivity of DF to
ﬁ changesin CD

Table 8. Summary parametersand risk indicators of DF mode

We obtain the sengitivities of the diversification factor to the CDI and the average cross-sector

correlation directly as dopes from the estimated DF surface. By using the chain rule, it is

straightforward to get the sensitivities of the factor to the sector SA capital (Cy) or to its

correlation parameter (b, ). In addition, the following sensitivities are useful for management

purposes:

fic” 1C, =DF, , (k =1,...,K) —change in economic capital per unit of stand-alone

capital for k-th sector (it can aso be normalized on a per unit exposure basis)

14 Commonly, the (exposure-weighted) average EAD and LGD for each sector are computed, and the

average PD isimplied from the actual calculation of expected |osses.
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1c %5 =df ©>xC'' - change in economic capital per one unit of average correlation

(with df © = ‘HDF/‘Hb_ , s above, the dope of the DF surface in the direction of the

average correlation)

ﬂc%b =df °>xC, , (k =1,...,K) — changein economic capital per one unit of cross-
k

sector correlation for k-th sector

Implied Parameters from full Multi-Factor Economic Capital M odel

The DF model can be fitted effectively to afull multi-factor economic capital model by
caculating its implied parameters. The fitted model, with its implied parameters, then can be used
to understand the underlying problem better, for communication purposes, or as asmpler and
much faster model for real-time calculation or extrapolation. In this sense, thisis akin to using the
implied volatility surface from option prices with the Black-Scholes model, or the implied
correlation skew in CDOs in the context of a copula modd.

Assume, for ease of exposition, that we have divided the portfolio into K homogeneous sectors
(not necessarily granular), each with asingle PD, EAD and LGD (in practice this latter
assumption can be relaxed).1®> The inverse problem solves for 2K implied correlation parameters

(r,b,), thusrequiring as many statistics from the internal model. A straightforward algorithm
to fit the modd is as follows:
Compute for each sector portfolio k=1,...,K , its stand-alone capital from the internal
multi-factor economic capital model
Solve for the implied intra-sector correlation, r ., from equation (5). If the portfolio is
fully granular (or we are smply interested in systemic capital), this provides an indication
of the average correlation (even for non- homogeneous portfolios). For non-granular

15 Sector homogeneity is not a requirement. Note that equation (4) does not require single PDs, EADs and

LGDs for each sector.
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portfolios, this implied correlation adjusts the model granularity effects; the less granular
the portfolio, the higher the implied correlation.16

Compute the total stand-alone capital, C*", and CDI from the K stand-alone capitas C,
for each sector.
Compute the overall economic capita for the portfolio, C™ , from the internal multi-
factor capital model.
Solve for the average correlation, b , implied from the equation (9)

C™(CcDl,b )=DF (CDI,b)>C"
assuming that the DF surface is available in parametric (or non-parametric) form
Computes the K marginal capital contributions to each sector, DF, >C, , from the
internal economic capital model.
Solve for the implied inter-sector correlation parameters b, from the margina capital

contributions (only k-1 are independent since the average correlation is known).

We can see from this agorithm, that the DF model basicaly provides amap from the correlation
parameters to various capital measures.
intra-sector correlations <> stand-alone capital
overal capital (or the diversification factor) <—> average cross-sector correlation
marginal capital contributions <-> relative sector size and relative cross-sector

correlation

Example: Model with Implied Parameters

We now present a stylized example to illustrate these concepts. Consider the credit portfolio with
four sectors given in Table 9. Thefirst two sectors have a PD of 1% and exposure of 25; the other
two sectors are lower PD (0.5%). For simplicity we assume a 100% LGD. The third and fourth
column give the expected losses (EL) expressed in monetary terms and as percent of total EL. The
following two columns give the computed stand-alone (SA) capital computed form the internal

16 This s consistent with Vasicek (2002), whereit is shown that under the one-factor Merton model, one
can approximate the losses of non-granular portfolios by applying the Vasicek formula using (r +(1- d)r ) in
place of the actual correlationr , where d isthe Herfindahl index on the sector exposures. We can also use

this approximation further to get the implied asset correlationr for the sector.
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multi-factor model (total and percent). The last column shows the implied intra-sector
correlations, obtained by inverting the stand-alone capital formula (5).

Porolio | EAD | PD | EL | EL% (:SA _CEap'ta]: S: :A C_apE fal ”*| implied Rho
= 25 | 10% | 025 | 333% 34 35.3% 20.1%
P2 25 | 10% | 025 | 333% 2.1 21.5% 12.4%
P3 20 | os% | 020 | 267% 38 39.6% 21.9%
P4 10 | 05% | 005 | 6% 04 37% 8.6%

Tol | 100 075 | 1000%] o7 100.0%

Table 9. Four-sector portfolio: characteristics and stand-alone capital

The portfolio total exposure is 100, the EL is 75bps and the stand-lone capital is 9.7%. The CDI is
close to one third, implying that there are roughly three effective sectors. We can start
understanding the effect of various credit parameters by comparing the contributions to total
exposure, EL and SA capital. The differences in exposure and EL contributions can be explained
by the interaction of the exposures with the PDs and LGDs. The intra-sector correlations explain
the differences between EL and capita contributions. For example, the fourth sector represents
one tenth of the exposures, amost 7% of EL, but less than 4% of the capital. Thisindicates that it
isfirst alow PD sector and also that it has alower than average implied intra-sector correlation.
Consider, in contrast, the third sector portfolio, which congtitutes 40% of the total exposure, 27%
of EL and about 40% again of SA capital. This sector’slow PD reduces its EL contribution, but
its higher implied asset correlation (22%) increases its share of SA capital. The first sector’ s high
capita contribution is explained by both high PD and intra-sector correlation.

Table 10 summarizes the results for overall economic capital and implied inter-sector
correlations. First, the multi-factor economic capital model is used to compute the overall
economic capital, which is then used to calculate the DF and average inter-sector implied
correlation. The economic capital is 7.3% of the total exposure, implying a diversification factor
DF = 75.5% (7.3 =0.755 x 9.7). We use the tables from the previous section to estimate the
average correlation b ; a correlation of 40% gives DF=68% and a correlation of 60% gives
DF=78.2%. Using linear interpolation, we find the implied average inter-sector correlation to be

b =54.9%.



. SA Capital . Capital % Economic Capitall .
Portfolio | Exposures One-Eactor) Implied Rho (Flat Beta=54.6%) % Implied Beta
P1 25 35.3% 20.1% 36.1% 31.9% 37.1%

P2 25 21.5% 12.4% 19.0% 17.2% 42.8%
P3 40 39.6% 21.9% 42.3% 47.5% 74.2%
P4 10 3.7% 8.6% 2.6% 3.4% 89.0%
Total 100
. . Implied
SA Capital CDI DF Capital Average Beta
9.7 32.9% 75.5% 7.3 54.9%

Table 10. Multi-factor capital and implied correlations

The fifth column of Table 10 gives the capital contributions assuming that all sector correlations
are equal to the average of 54.9%. These contributions are close but do not equa the SA capita
contributions. In this case, every sector is equally correlated with the overall portfolio, and the

only difference stems from the size component of the sector diversification factor DDF,*. The

decomposition of the sector diversification factor for the case of aflat inter-sector correlation is
given on the left side of Table 11. Compared to the stand-alone case, the size component of the
sector diversification factor increases contributions for the two biggest sectors (P1 and P3) and
decreases them for the two small ones (P2 and P4). While the overall diversification factor is
75.6%, the marginal sector diversification factors range from 53% (P4) to 81% (P3).

Flat Inter-Sector Correlation (Average) Implied Iner-Sector Correlations
Portfolio]  DF, _ Por_tf_olio_ Se_ctor Secto_r DF _ Por_tr_olio_ Se_ctor Secto_r
Diversification Size | Correlation Diversification Size Correlation
P1 77.5% 75.6% 1.8% 0% 68.4% 75.6% 1.8% -9.1%
P2 66.9% 75.6% -8.7% 0% 60.7% 75.6% -8.7% -6.2%
P3 80.8% 75.6% 5.2% 0% 90.6% 75.6% 5.2% 9.8%
P4 53.3% 75.6% -22.3% 0% 70.7% 75.6% -22.3% 17.4%

Table 11. Decomposition of marginal sector diver sification factors.

Next, the multi-factor economic capital modd is used to compute the margina capital
contributions, and implied bs for each sector are then estimated (see the last two columns of
Table 10). For the first two sectors, the capita contributions are lower than those with equal
correlations. Hence, we obtain lower than average implied (inter-sector) correlations. The right
half of Table 11 gives the decomposition of the sector diversification factors. Also, from the last
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column, we see that the first two sectors have negative sector correlation diversification
components. The oppositeis true for P3 and P4 (higher than average implied correlations and

positive correlation component in the sector diversification factor).

Thefitted DF model can now be used to calculate, aimost instantaneoudly, sensitivities or the
capital contribution of new loans or trades, while allowing us aso to explain the sources of risk
and diversification. For example, bringing in a new small exposure to sector 3, would result in a
margina capital contribution of about 90bps per unit of exposure (first a SA capital contribution
of about 1%, 39.6% divided by 40, and a marginal sector diversification of 90.6%. The benefit of
diversification is smaller given that the exposure is coming into alarge, highly correlated sector,
as explained earlier. Note that one can aso use the model to compute the capital contributions of
bigger transactions.

6. Concluding Remarks and Recommendations

We present a ssimple adjustment to the single-factor credit capital model, which recognizes the
diversification obtained from a multi-factor credit setting. In contrast to full MC methods, there
are benefits for seeking anaytical or semi-analytical approximations for both for regulatory
purposes as well as for the implementation of credit portfolio decision management support tools.
As arisk management tool, the model can be used to understand concentration risk, capital
alocation and sengitivities, as well as to compute “real-time” marginal risk contributions for new
dedls or portfolios.

The mode is based on the estimation of a diversification factor, which is a function of two
parameters that broadly capture size concentration and the average cross-sector correlation. The
model supports an intuitive capital alocation methodology, which further attributes the
diversification contribution of a given sector to the overall portfolio diversification, its relative
Size and cross-asset correlation.

While, in general, the estimation of the diversification factor requires substantial numerical work,
it can then be tabulated and used readily as a basis for regulatory rules or economic capital
alocation. This results in a practical, smple and fast method that can be aso applied for stress
testing and pre-deal analytics. For example, an ingtitution can re-calibrate the modd using an
advanced credit portfolio framework on a periodic basis (for example monthly, weekly and even

daily) to adjust for changing market conditions and portfolio composition. While this might take a
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large computational effort, the model can then be used in rea time during the day to support
decision making, origination and trading.

We bdlieve the diversification factor has potentia to be applied to extend the Basal 11 regulatory
framework to a genera multi-factor setting, thus alowing for more accurate model of
diversification for portfolios across various asset classes, sectors and regions, and in particular
within mixed portfolios in developed and emerging economies. However, afew remarks are
appropriate with respect to its caibration together with the regulatory parameters from Basdl 1.
While we have used in Section 4 the Basal formulae for wholesale exposures in these exercises,
we do not wish to imply that, as presented, the calibration exercises are generaly appropriate for
regulatory rules. Indeed, an explicit assumption of the results is that the underlying credit model
is given by equations (2) and (3). The cdibration of Basdl |1 parameters was done generaly in the
context of a one-factor model. Thus, one can argue that, if the sample used for calibration aready
covers the sectorsin the portfolio, the asset correlationsr | aready account, at least partialy, for

cross-sector diversification (see aso, for example, Lopez 2004). To the degree that the origina
calibration of the model parameters accounts for cross sector diversification, some scaling (up)
for intra-sector correlations or (down) the diversification factor is required, in order to not incur in
double counting.
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Appendix. Correlations of Market Indicesin Developed and Emerging
M arkets.

Watrix of correlations between stock market indices (7 years of monthly data)

Spain France Germany U ltaly USA CanadaJapan Argentina Mexico Brazil Paland Turkey Malaysia Thailand Czech Rep. Philippines

Spain 100 084 0.83 078 086 075 072 056, 040 0&7 058 051 039 020 025 0.42 0.38
France 084 1.00 0.50 089 085 0687 079 057 028 0581 050 085 041 0.21 025 0.45 0.34
Germany | 0.83 050 1.00 079 084 078 075 057 037 0&7 055 0585 051 0.2a 0.2a 0.46 0.32
UK 0ys 089 0.79 1.00 076 089 074 048, 026 051 046 052 039 0.z0 0.33 0.34 0.39
ltaly 086 085 0.54 076 100 070 0BS5S 059, 036 052 055 052 048 0.14 0.2a 0.45 0.30
USA, 075 087 0.78 082 070 100 084 0458, 032 059 054 048 043 0.24 0.31 0.42 0.45
Canada 072 078 0.75 074 065 084 100 051 0.44 063 060 055 045 0.42 0.35 0.49 0.52
Japan 086 057 0.57 043 0453 048 051 100, 030 043 045 045 044 019 0.27 0.45 019
Argenting | 0.40 0.28 0.37 026 036 032 044 030 1.00 062 054 037 030 039 0.33 0.34 0.42
Mexico 057 051 0.57 051 052 0589 083 048 062 100 068 042 044 0.35 037 033 0.42
Brazil 056 050 0.65 046 055 054 0OBD 046 054 0BS5S 100 045 048 0.30 033 0.36 0.47
Poland 051 056 0.65 052 052 043 055 049, 037 042 045 100 032 0.42 0.36 0e2 0.41
Turkey 039 04 0.51 039 043 043 045 044, 030 044 048 032 1.00 012 0.19 0.36 0.10
Malaysia | 020 0.21 0.28 020 014 024 042 019, 039 03 030 042 012 1.00 0.58 0.36 0.54
Thailand | 0256 0.25 0.28 033 023 031 038 027, 038 037 033 036 019 0.58 1.00 n0z2 0.65
Czech Rep. | 042 045 0.46 034 045 042 049 046 034 033 036 062 036 0.36 0.22 1.00 0.33
Philippines | 0.35  0.34 0.32 033 030 045 052 019 0.42 042 047 041 010 0.54 0.55 0.33 1.00

Each country's average correlation with the different economic groups (emerging/non-emerging

Spain France Germany UK. Maly USA Canadadapan Argentina Mexico Brazil Poland Turkey Malaysia Thailand Czech Rep Philippines
Avarage correlation with
non-emerging economies  76%  82% 78% TE%  75% T7A%  T2% 54%  34%  595% 53% 82%  44%  23% 29% 44% 36%

Average correlation with
ermerging economies M1%  39% 43% 38%  40% 42% 50% 3T% 42% 45% 45% 42%  28%  38% 3% IT% 40%
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