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Abstract 

This article deals with methods for identifying as well as stressing risk concentra­
tions in credit portfolios, in particular concentrations caused by large exposures to 
a single sector or to several highly correlated sectors. We present a general and yet 
computationally efficient framework for implementing stress scenarios in a multi­factor 
credit portfolio model and illustrate the proposed methodology by stressing a large 
investment banking portfolio. Although the methodology is developed in a particular 
factor model, the main concept ­ stressing sector concentration through a truncation 
of the distribution of the risk factors ­ is independent of the model specification. We 
introduce the concept of Factor Concentration that formalizes the proposed approach 
and analyze its mathematical properties. 

1 Introduction 

In a typical bank the economic as well as regulatory capital charge for credit risk far out­
weighs capital for any other risk class. Concentrations in a bank’s credit portfolio are key 
drivers of credit risk capital. These risk concentrations may be caused by material con­
centrations of exposure to individual names as well as large exposures to a single sector 
(geographic region or industry) or to several highly correlated sectors. While single­name 
risk concentrations are relatively straightforward to measure and to manage, this is much 
harder for sector concentrations. Therefore quantitative techniques that support the identi­
fication of sector concentration are valuable tools for credit risk management. The objective 
of the present paper is the development of a stress testing methodology for this type of con­
centration risk. 

The IRB approach in BIS [2004] does not provide an appropriate quantitative framework 
for analyzing concentration risk. It is based on a credit portfolio model which is only 
applicable under the assumptions that (cf. Gordy [2003]) 

1. bank portfolios are perfectly fine­grained and 

2. there is only a single source of systematic risk. 

The simplicity of the model ensures its analytical tractability. However, it makes it impos­
sible to model risk concentrations in a realistic way: neither name concentration is captured 
nor is it possible to define sector concentration in this one­factor model. 
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this article are the authors’ personal opinions and should not be construed as being endorsed by Deutsche 
Bank. 
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Concentration risk could therefore be paraphrased as “the difference between the risk as­
cribed to a credit portfolio by the IRB approach and its real risk”. To fill this gap, banks are 
required to address credit concentration risk under Pillar 2 of BIS [2004] (para. 770­777). 
Stress tests are an essential technique to identify and quantify risk concentrations and are 
needed to understand the full risk profile of large credit portfolios. In order to develop 
meaningful stress tests, we need to generalize the IRB approach to a multi­factor credit 
portfolio model that takes into account individual exposures and has a richer correlation 
structure. Note, however, that in such a model concentration risk cannot be separated from 
credit risk. Stressing concentration risk therefore is an integral part of the stress testing 
methodology for credit risk. 

We consider two types of scenarios for stressing sector concentration: 

1. economic stress scenarios or market shocks and 

2. portfolio specific worst case scenarios. 

These scenario types serve different purposes. Economic stress scenarios and market shocks 
are usually specified by risk management. The objective is to quantify the impact of a 
plausible economic downturn or a market shock on a credit portfolio. This type of stress test 
is designed to provide information that can be easily translated into concrete management 
actions. 

The aggregated loss of portfolio specific worst case scenarios, on the other hand, serves 
more as a benchmark to create some awareness of the current market situation rather than 
providing guidance for specific risk management actions. 

In order to implement an economic stress scenario in the credit risk model, the model should 
include a set of systematic risk factors that have a clear economic interpretation, e.g. the 
systematic factors represent either countries or industries. Via this link, the economic stress 
scenario can be translated into constraints on the corresponding systematic factors. These 
constraints are used to truncate the distribution of the stressed risk factors or ­ in other 
words ­ restrict the state space of the model, where each state represents values of the 
systematic and idiosyncratic factors. The response of the peripheral (or unstressed) risk 
factors is specified by the dependence structure of the model. This approach is superior to a 
simple aggregation of exposures by sector, because it can also be used for the identification 
of risk concentrations across distinct, but highly correlated sectors. 

The translation of stress scenarios into constraints on the state space of the model has a 
number of advantages: 

1. Stress scenarios are implemented in a way that is consistent with the existing quan­
titative framework. This implies that the relationships between (unrestricted) risk 
factors remain intact and the experience gained in the day­to­day use of the model 
can be used to interpret the results from stress testing. 

2. The probability of each stress scenario,	 e.g. the probability that the risk factors 
satisfy all the constraints under non­stress conditions, can be easily calculated. This 
is a good indicator for the severity of a stress scenario. 

3. It is a flexible framework for the implementation of stress tests of different complex­
ity, while at the same time being computationally efficient: importance sampling 
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techniques can be applied to keep the computational effort close to an unconditional 
simulation. 

In the present paper, stress tests are performed in a Merton­type credit portfolio model. 
This quantitative framework provides the necessary flexibility to incorporate stress scenarios 
by restricting the state space of the model. The actual calculation of the stressed loss 
distribution of the portfolio is done through Monte Carlo simulation on the restricted model 
space. It is therefore straightforward to calculate risk measures like Expected Loss, Value­
at­Risk or Expected Shortfall for the loss distribution under stress and to use statistical 
techniques such as QQ­plots to study its behaviour. 

Although our stress testing methodology is developed in a particular factor model, the 
main concept ­ stressing sector concentration through a truncation of the distribution of 
the risk factors ­ is completely independent of the model specification and the way that 
default dependencies are parameterized, e.g. whether asset or default correlations are used. 
In fact, it can be applied to factor models for market and operational risk as well. The pro­
posed notion of sector (or factor) concentration is also largely independent of the marginal 
distributions of the risk factors and the portfolio loss, thus focusing on the dependence of 
these variables. It can be considered as a generalization of Tail Dependence (see Embrechts 
et al [2002] for a definition of this measure of dependence). 

The paper is structured in the following way: The second section introduces the quanti­
tative framework we will work in. The third section provides a survey on stress testing 
methodology and gives an outline of our approach to stressing concentration risk. The 
actual implementation in a multi­factor credit portfolio model is described in the fourth 
section. Results from stressing a sample portfolio are presented. In section 5, the concept of 
factor concentration is formalized and its basic properties are analyzed. The sixth section 
provides a short classification of our stress testing methodology in the Revised Framework 
and outlines how the impact of a stress scenario on regulatory capital can be assessed. 
Section 7 concludes. 

Concentration Risk and Credit Risk Models 

To a certain degree, any real credit portfolio will contain concentrations of exposures. We 
differentiate between two kinds of concentrations: 

Name concentration. When there are material concentrations of exposure to individual 
names, there will be a residual of undiversified idiosyncratic risk in the portfolio that is 
not captured by the IRB model. This form of credit concentration risk has been addressed 
via a granularity adjustment to portfolio capital, see for example Gordy [2004] or Martin 
and Wilde [2002]. Name concentration only depends on the characteristics of individual 
portfolio positions. Hence, name concentration is easier to identify (and to measure) than 
sector concentration. 

Sector concentration. Borrowers may differ in their degree of sensitivity to systematic 
risk, but few firms are completely indifferent to the wider economic conditions in which they 
operate. As a consequence, defaults of different borrowers are usually not independent. The 
realistic estimation of default dependence is essential for the quantification of credit risk. 
The most common approach to introduce default dependence into a credit portfolio model 
is through systematic factors, for example through factors corresponding to different sectors 
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(geographic regions or industries). A large exposure to a single sector or to several highly 
correlated sectors can give rise to so­called sector concentrations. 
It is a difficult practical issue to identify those factors that are particularly important for 
a given portfolio. However, it is obvious that a single systematic factor is not sufficient to 
capture the complex dependence structure in a large credit portfolio. Hence, the IRB model 
is not an appropriate framework for quantifying concentration risk due to sector concen­
tration. It depends on the correlation between credits (or equivalently their correlation to 
the systematic factor) whether the IRB capital requirements underestimate or overestimate 
risk: since the Basel II correlation was calibrated to “a well­diversified portfolio of a large 
national bank”, it probably is too low for a bank specializing in one sector, industry or 
region but may actually be too high for a well­diversified internationally active bank (due 
to only partial recognition of portfolio diversification). 

We will perform our analysis in a typical multi­factor credit portfolio model which takes into 
account individual exposures and has a much richer correlation structure. Note, however, 
that the model itself does not distinguish concentration risk from credit risk. On the 
contrary, name and sector concentrations are the main drivers of economic capital for credit 
risk, and are inextricably linked to the default risk of individual obligors. Therefore any 
attempt to separate concentration risk from the notion of basic portfolio credit risk cannot 
be naturally grounded in the multi­factor model but needs to draw on externally derived 
artificial criteria. As a consequence, stressing concentration risk in a multi­factor model is 
an integral part of a general stress testing methodology for credit risk. It is also a crucial 
prerequisite for successful risk management of a credit portfolio because the calculation of 
stress scenarios is imperative to fully quantify the impact of economic downturn scenarios 
or market shocks on risk concentrations. 

We will now introduce a multi­factor credit portfolio model that will serve as the formal 
framework for the development of stress scenarios for concentration risk. In order to fix 
some notation, let us consider a portfolio of n loans with loss­at­default li. With each loan 
we associate a Bernoulli variable Li that specifies the loan loss over one period: 

default: Li = li with probability pi, 

no default: Li = 0 with probability 1 − pi. 

We can calculate expected loss and loss variance of the portfolio, taking into account default 
event correlations: 

E[L] = lipi 

V[L] = V[Li] + ρe V[Li]V[Lj ].ij 
i=j 

Here ρe denotes the default event correlation between two credits. 

We are further interested in the Value­at­Risk VaRα(L) of L at level α ∈ (0, 1) defined as 
an α−quantile of L, 

VaRα(L) := inf{x ∈ R P(L ≤ x) ≥ α}| 

and we define the Economic Capital EC(L) by 

EC(L) = VaRα(L) − E[L]. 
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In this setup, an example of a portfolio which only has name concentration would be given 
by credits of different notionals which default independently but have identical default 
probability p and recovery r. The loss variance for such a portfolio is given by 

2V[L] = p(1 − p) l2 = p(1 − p)(1 − r)2N2 wi ,i 

where li = (1 − r)Ni and Ni denotes the notional of the i­th loan with relative weights 
wi = Ni/N , N = Ni. The sum is the well­known Herfindahl­Hirshman concentration 

2index, H = wi . H is maximal if there is only one credit in the portfolio, and is minimal if 
all credits have equal notional. It is an easy consequence of the Central Limit Theorem (see, 
for instance, Embrechts et al [1997]) that for an infinitely granular portfolio, the portfolio 
loss L converges (in probability) to its expected loss and the variance goes to zero. As 
a consequence, the VaRα(L) converges to the expected loss and therefore the economic 
capital EC(L) converges to 0. 

In order to include varying default probabilities and recovery rates, a useful quantity to 
measure name concentration may be 

2 

NC = i E[L2]
= 

wi (1 − ri)2pii 

N2p̄ 1/n pi 

This is similar to a Herfindahl index on credit weights and expected losses, but weighted with 
the default probability of the credit. Notice that this quantity is invariant to a simultaneous 
relative shift of the default probabilities pi. Subtracting the expected loss in the numerator 
would keep that property. 

Stressing name concentration is rather straightforward since only individual exposures are 
involved. In this paper, we will therefore exclusively deal with sector concentration. A 
prerequisite is the specification of the dependence structure of the credit portfolio. 

eThe default event correlations ρ used above are difficult to estimate historically (because 
they describe the correlation of rare events) and are not very intuitive (they have widely 
varying values depending on the default probabilities of the credits). A common way to 
describe dependencies between credits in a portfolio is the following Merton­type factor 
model, where loss variables Li are linked to ability­to­pay variables Yi: 

Li(ω) := li if Yi(ω) ≤ Φ−1(pi), ω ∈ Ω 

Li(ω) := 0 if Yi(ω) > Φ−1(pi), ω ∈ Ω. 

Here Φ−1 is the inverse of the standard Gaussian distribution function and Yi is a standard 
Gaussian variable on Ω. The dependency structure is parameterized in terms of systematic 
factors Xi which drive the individual ability­to­pay variables: 

m

Yi = φij Xj + 1 −R2Zi and (1)i 
j=1 

iid 
Zi ∼ N (0, 1), (2) 

where 0 ≤ R2 ≤ 1 and (φi1, . . . , φim) is a weight vector. The systematic factors form an i 
m­dimensional Gaussian vector (X1, . . . , Xm) with mean 0 and covariance matrix Σ. 

Seen in the context of a multi­factor credit portfolio model, sector concentration risk is due 
to the systematic risk factors driving individual credits’ asset price processes. For the rest 
of this paper, we will place ourselves in the setting of this model. 
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3 Stress Scenarios 

Stress testing has been adopted as a generic term describing various techniques used by 
financial firms to gauge their potential vulnerability to exceptional but plausible events (see 
BIS [2000, 2001, 2005] and Blaschke et al [2001] for industry studies on stress testing). The 
most common of these techniques involve the determination of the impact on the portfolio 
of a bank or business unit of a move in a particular risk factor (a simple sensitivity test) or 
of a simultaneous move in a number of risk factors, reflecting an event which the bank’s risk 
managers believe may occur in the foreseeable future (scenario analysis).3 The following 
classification should serve as a rough guide and distinguish different types of stress scenarios. 

1.	 Macroeconomic scenarios. A macroeconomic scenario usually requires the use of a 
macroeconomic model. It specifies an exogeneous shock to the whole economy that 
is propagated over time and may impact the banking system in various ways. This 
type of stress scenario is sometimes used by financial regulators or central banks in 
order to gain an understanding of the resilience of financial markets or the banking 
system as a whole, see for example DeBandt and Oung [2004]. 

2.	 Market shocks. These scenarios specify shocks to financial markets. Also included 
in this category are certain shocks of a ”systemic” nature affecting credit risk (such 
as a sudden flight to liquidity), or sectoral shocks, for instance the deterioration in 
credit spreads in the TMT (Technology Media­Telecommunications) sector. Historical 
scenarios are frequently used for this type of shocks in order to increase the plausibility 
of these stress scenarios. 

3.	 Portfolio specific worst case scenarios. The objective of this worst case analysis is 
to identify scenarios that are most adverse for a given portfolio (Breuer and Krenn 
[2000]). The specification of worst case scenarios can either be based on expert judge­
ment or quantitative techniques, for instance importance sampling (see, for example, 
Kalkbrener et al [2004]). Rather than providing guidance for specific risk manage­
ment actions, the aggregated loss in these scenarios serves more as a benchmark to 
create some awareness of the current market situation. 

Stress scenarios are typically analyzed within the existing model. The focus is different 
for those tests where the model itself is challenged, and alternative assumptions or models 
are used to value a portfolio or measure its risk. This implies that the usual framework 
for risk management is abandoned, and the experience gained in the old framework may 
no longer be valid in the alternative model. As a consequence, model stress is not part of 
the day­to­day risk management process in a financial institution. It is typically used to 
analyze the sensitivity of model outputs with respect to specific model assumptions and 
therefore a way to gauge model risk. 

Regardless of the motivation for considering a particular scenario, there exist a number of 
criteria that characterize useful stress scenarios: 

1.	 Plausible. Stress scenarios must be realistic, e.g. have a certain probability of actually 

3Extreme Value Theory (EVT) is another technique used by some banks to capture their exposure to 
extreme market events. We refer to Embrechts et al [1997] for an introduction to Extreme Value Theory 
and to Longin [2000] and Schachter [2001] for an application of EVT to stress testing. 
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occurring. Risk management will not take any actions based on scenarios that are 
regarded as implausible. 

2.	 Consistent. One objective is to implement stress scenarios in a way that is consistent 
with the existing quantitative framework. This has the advantage that the relation­
ships between risk factors remain intact and the experience gained in the day­to­day 
use of the model can be used to interpret scenario results. 

3.	 Adapted. Stress tests should include scenarios that are specifically designed for the 
portfolio at hand. They should reflect certain portfolio characteristics and particular 
concerns in order to give a complete picture of the risks inherent in the portfolio. 

4.	 Reportable. Stress scenarios should provide useful information for risk management 
purposes which can be translated into concrete actions. For reporting purposes, it is 
crucial that the stress scenario is characterized by a clearly identifiable set of stressed 
risk factors, sometimes called the “core” factors. The remaining “peripheral” factors 
should then move in a consistent way with those “core” factors. 

In many banks stress scenarios supplement statistical VaR models in order to improve the 
risk assessment under exceptional circumstances. For integrating scenarios and statistical 
models, Cherubini and Della Lunga [1999] use Bayesian statistics whereas Berkowitz [1999] 
proposes the application of a mixture model. Both integration techniques require knowl­
edge of the precision or probability of a stress scenario. For many hypothetical as well as 
historical scenarios, however, the estimation of their likelihood in the future is very difficult. 
In fact, it is recognised in the finance industry that the lack of probability measures for 
scenarios is the main limitation for their application in a quantitative framework (see BIS 
[2000]). It is an important feature of our approach that the probability of a stress scenario 
in the existing model can be easily calculated (see section 4.2). 

In the general multi­factor framework (1), stress scenarios for sector concentration apply 
stress to the systematic factors of the model. When designing specific stress scenarios, 
we usually focus on a small number of directly stressed factors, e.g. those factors that 
correspond to the sectors of interest. In addition, a small number of stressed factors makes 
it easier to transform the stress results into concrete management actions. The response of 
the other risk factors is specified by the dependence structure of the model (see also Kupiec 
[1998]). This approach is also a superior way to identify risk concentrations compared to 
just aggregating exposures per sector, because there it can happen that concentrations in 
distinct but highly correlated sectors remain undetected. 

In order to increase plausibility and relevance of individual stress scenarios 

•	 we derive the stress applied to systematic factors of the credit risk model from eco­
nomic (or market) stress scenarios or 

•	 use quantitative techniques to identify those systematic factors with the highest 
weights in a given portfolio (or combinations of these factors.) 

In summary, we propose the following stress test for sector concentration: 

1. Specify economic stress scenario or scenario based on the characteristics of the port­
folio 
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Example: A typical stress scenario might be a decline of 20% in the automotive 
production index. 

2. Translate scenario into stress of systematic factors of credit risk model 
The stress scenarios are chosen in such a way that the translation involves only a small 
number of systematic factors. All other factors are impacted through correlations to 
the stressed factors. In this way a consistent set of stressed PDs is generated for all 
credits in the portfolio, where the change in PD depends on the credit’s correlation 
to the stressed factors. 

3. Determine impact of stress scenario by calculating conditional expected loss and other 
statistics of the portfolio. 

4 Factor Stress Methodology 

The objective of this section is to describe how an economic stress scenario for sector 
concentration can be implemented in the credit portfolio model. First of all, a precise 
meaning has to be given to the systematic factors in (1). 

4.1 Interpretation of systematic factors in the portfolio model 

Recall that each ability­to­pay variable 

m

Yi = φij Xj + 1 − Ri 
2Zi 

j=1 

is a weighted sum of m systematic factors X1, . . . , Xm and one specific factor Zi. The 
systematic factors4 correspond either to countries or industries. In our model 75 systematic 
factors are used, for example factors for Germany, U.K, South America, the automotive and 
the electrical engineering industry, etc. The systematic weights φij are chosen according 
to the relative importance of the corresponding factors for the given counterparty, e.g. the 
automobile company BMW might have the following representation: 

BMW assets = 0.8 × German factor + 0.2 × US factor 
+ 0.9 × Automobile factor + 0.1 × Finance factor 
+ BMW’s non­systematic risk. 

The specific factor is assumed independent of the systematic factors. Its role is to model 
the remaining (non­systematic) risk of the counterparty. 

The joint probability distribution of the systematic factors is assumed Gaussian with zero 
mean. Figure 1 shows histograms of the marginal distributions for two factors. To measure 
credit risk, country and industry factors are simulated together with the specific risk factors. 

4As opposed to specific risk, these factors influence the default of more than one obligor and therefore 
introduce a correlated default structure. 
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Figure 1: Histogram of simulated factors changes (non­stress case) 

4.2 Specification and implementation of stress scenarios 

Multi­factor credit risk models offer a number of possibilities to implement stress tests, e.g. 
adjustments of model parameters or distributions of risk factors, etc. The basic idea in our 
stress testing approach is the specification of stress scenarios as constraints on systematic 
risk factors. More precisely, these constraints are used to restrict the sample space in 
the Monte Carlo simulation of the model. This is a very general framework for stress 
testing. It offers the additional advantage that we can estimate the probability of each 
stress scenario, e.g. the probability that the risk factors satisfy all the constraints under 
non­stress conditions. This is a good indicator for the severity of a stress scenario. 

In the following, we will describe our approach by means of a specific scenario. As an 
example, consider a downturn scenario for the automotive industry. The simplest imple­
mentation in the portfolio model is the following restriction of the state space of the model: 
only those samples are considered in the Monte Carlo simulation where the automotive 
industry factor decreases by a certain percentage, say at least 2%. In other words, the dis­
tribution of the automotive industry factor is truncated from above at ­2%. More precisely, 
the steps in the calculation of stressed EL and EC are: 

•	 simulate risk factors under their original (non­stress) joint distribution 

•	 dismiss any simulation not satisfying the scenario constraints 

•	 derive EL, EC and other statistics from the loss distribution specified by the MC 
scenarios that satisfy the constraints 

Note that the automotive downturn scenario does not only have an impact on the auto­
motive industry factor: because of correlations, other country factors as well as industry 
factors are also affected. Figure 2 shows the impact on the factor for the chemical industry. 
Note that the distribution of this factor has moved to the left. 

In our model the joint distribution of systematic factors is derived from stock indices and it 
is therefore straightforward to implement scenarios involving constraints on those indices. 
Sometimes, however, it is desirable to define scenarios based on other economic variables. 
For example, a scenario might be defined by a constraint on the production index of a 
specific industry. Because of the multivariate normal distribution of the factor model, 
correlation is the easiest way to incorporate dependence of production indices. Suppose, 
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Figure 2: Histogram of simulated factor changes (stress case) 

however, that the production index and the corresponding industry risk factor do not show 
a high correlation, perhaps because their relationship is nonlinear. A crude way to overcome 
this weak dependence is to define a scenario just in terms of the risk factor for the same 
industry in such a way that the probabilities of both scenarios (under non­stress conditions) 
agree. 

In the example above, the factor stress was derived from an economic downturn scenario. 
An alternative approach is the specification of scenarios that are most adverse for a given 
portfolio. Importance sampling is a quantitative technique that can be used for the iden­
tification of worst case scenarios. We refer to Glasserman and Li [2003], Kalkbrener et al 
[2004] and Egloff et al [2005] for importance sampling techniques in Gaussian credit port­
folio models, e.g. models of the form (1). In these papers, a vector (x1, . . . , xm) ∈ Rm is 
constructed such that a shift of the systematic factors by (x1, . . . , xm) reduces the variance 
of Monte Carlo estimates of Value­at­Risk or Expected Shortfall. The variance reduction 
is achieved because the systematic shift generates a large number of high portfolio losses. 
Hence, (x1, . . . , xm) is a natural candidate for the identification of those systematic factors 
that have to be constrained in worst case scenarios. 

Restricting the state space is a flexible technique to incorporate stress scenarios into the 
portfolio model. Complex stress scenarios can be implemented 

1. by specifying constraints that involve more than one systematic factor or 

2. by defining more complex constraints than simple caps on individual factors. 

One possibility is to restrict the state space of the model in such a way that the dependence 
of particular risk factors is increased. This technique provides an interesting alternative 
to simply changing correlation parameters of the model. By keeping the original model 
parameters intact, consistency problems are avoided such as maintaining the positive semi­
definiteness of the correlation matrix of the systematic factors. We would like to emphasize, 
however, that changing correlation parameters is a useful way to gauge the sensitivity of a 
credit risk model against errors or changes in correlation estimates (see, for instance, Kim 
and Finger [2000]). 
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Figure 3: Exposure by rating class for Automotive companies (left) and all other borrowers 
(right) 

4.3 Credit risk concentrations under stress: a case study 

Consider the following downturn scenario for the automotive industry: the industry pro­
duction is forecast to drop by 8% during next year. To represent this scenario in the credit 
portfolio model, a constraint is chosen for the corresponding risk factor in such a way that 
the mean factor change coincides with the forecast. Using a sample investment banking 
portfolio5 we obtain the risk estimates (in mn EUR) shown in Table 1: 

Non­stress Stress % chg. 
Expected Loss 7.03 10.94 55.6 
99.98% quantile 103.23 122.80 19.0 
Cond. tail expectation at 99.98% 119.68 145.45 21.5 

Table 1: Portfolio risk estimates 

Notice that calculating VaR in this stress scenario does not amount to double­counting in 
any way. As we have stressed only one of many systematic risk factors, there is still a large 
amount of stochasticity in the stress scenario so that a measure such as VaR is needed to 
calculate risk. The impact of the stress scenario on the portfolio VaR could be interpreted 
as a measure of ”concentration” of the portfolio in the respective risk factor. However, 
using VaR in this way results in several problems, such as the fact that it is not indifferent 
to an overall change in PDs. In the next section, we will propose a superior quantity as a 
promising candidate to measure factor concentration. 

Figure 3 exhibits the portfolio’s exposure by rating class both in the non­stress and stress 
case. The analysis is done separately for automotive companies and all other borrowers. 
Figure 3 clearly shows that exposure is shifted from investments grades (BBB or above) 
to non­investment grades. As expected, the deterioration of ratings is more pronounced 
for the automotive industry. Note, however, that due to the dependence structure of the 
portfolio this stress scenario also has a significant impact on other borrowers. 

The % increase in Expected Loss by original (e.g. non­stress) rating class is depicted in 
Figure 4. It shows that in % terms the increase in EL is significantly higher for the good 
rating classes. 

Rather than just looking at certain quantiles or other summary statistics, we can get a better 

The test portfolio consists of 25000 loans with an inhomogeneous exposure and default probability 
distribution. The average exposure size is 0.004% of the total exposure and the standard deviation of the 
exposure size is 0.026%. Default probabilities vary between 0.02% and 27%. 
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Figure 5: Left graph: Density plots of original (circles) and stressed (triangles) loss dis­
tributions, together with fitted Vasicek curves. Right graph: QQ plot of original against 
stressed loss distribution. 

understanding of the impact of a stress scenario by studying the whole loss distribution 
before and after the stress. In order to see the effect of the automotive stress scenario on 
the portfolio loss, the left graph of figure 5 shows the original (circles) and the stressed 
(triangles) loss densities, together with fitted Vasicek distributions (curves). Note that 
the original distribution is captured remarkably well by its fitted Vasicek distribution. By 
plotting quantiles of the two distributions against each other, we can clearly see where the 
stress scenario affects the loss distribution: while quantiles have moved higher overall, the 
impact is especially severe in the extreme tail of the distribution (right hand side). 

A General Framework for Measuring Factor Concentration 

Our approach to stressing risk concentrations is based on constraints of the form {Xj ≤ x}
applied to the systematic factors X1, . . . , Xm of the model. The objective of this section is 
a mathematical formalization of this concept that is independent of the specification of a 

12


5 



particular credit risk model. 

5.1 A formal definition of factor concentration 

In section 4, the tail 
1 − P(L < y) = P(L ≥ y) 

of the loss distribution L has been analyzed in stress scenarios of the form {Xj ≤ x}. For 
assessing the severity of the shock and the confidence level of the tail it is convenient to 
express the parameters x and y in quantile space, e.g. 

x = F−1(p) and y = F−1(1 − q).Xj L 

This parametrization leads to the following formalization of Factor Concentration: for a 
given loss distribution L, the risk concentration in the systematic factor X is a function 
from [0, 1]2 to [0, 1] defined by 

FC X (p, q) := P(L ≥ F−1(1 − q) X ≤ F−1(p))L | X 

= P(P ≤ F−1(q) X ≤ F−1(p)), (3)P | X 

where the probabilities p and q specify the severity of the factor stress and the confidence 
level applied to the portfolio loss distribution and P denotes the profit distribution P := −L, 
e.g. losses are represented by negative and not by positive numbers. 6 

The Factor Concentration FC X (p, q) specifies the probability that a loss is above the (1−q)­
quantile of the loss distribution if a stress of the form {X ≤ F−1(p)} is applied to the X 
systematic factor X. The Factor Concentration divided by q, FC X (p, q)/q, gives the relative 
change in the probability 

P(L ≥ F−1(1 − q)) = P(P ≤ F−1(q))L P 

under the stress {X ≤ F−1(p)}. This notion of concentration risk has the advantage that X 
it is completely independent of the specification of the credit risk model and the way that 
default dependencies are parameterized, e.g. whether asset or default correlations are used. 
In fact, it can be applied to factor models for market and operational risk as well. The 
parameters p and q provide the flexibility to analyze stress tests of different severity and to 
focus on specific parts of the distribution. Because the inequalities are expressed in quantile 
space, the Factor Concentration of X is largely independent of the marginal distributions 
of X and P , thus focusing on the dependence of the variables.7 In particular, if X and P 
are continuously distributed variables with copula C then 

C(p, q)
FC X (p, q) = . (4) 

p 

In a multi­factor credit portfolio model, FC X usually is a rather complex object. Its analysis 
requires a simulation­based methodology for stress testing as presented in the previous 

6In order to ensure that equality (3) is also satisfied for non­continuous distributions L and P , the 
quantile F−1(1 − q) of L has to be defined as the lower (1 − q)­quantile inf{x ∈ R P(L ≤ x) ≥ 1 − q}L 

whereas the quantile F−1 (q) of P has to be defined as the upper q­quantile inf{x ∈ R
| 

P(P ≤ x) > q}.P |
7In the following analysis, it will be convenient to work with the profit distribution P instead of the loss 

distribution L. 
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section. In special cases, however, the calculation of FC X is straightforward. Assume that 
X and P are independent. Then FC X (p, q) is independent of p and for large portfolios we 
have8 

FC X (p, q) = P(P ≤ F −1(q)) ≈ q. (5)P 

The opposite extreme is perfect dependence of X and P , e.g. X and P are comonotonic or 
countermonotonic variables. Intuitively, this means that there exist monotonic functions f 
and g and a random variable V such that X = f(V ) and P = g(V ). If both functions are 
non­decreasing, X and P are comonotonic.9 The most popular example of comonotonic 
variables in credit risk are the profit distribution P and the unique systematic factor X in 
the one­factor Vasicek model: 

Φ−1(pd) −√
ρX 

� 

P = g(X) = − Φ √
1 − ρ 

and g is an increasing function applied to the systematic factor X. Hence, for probability 
q, 

F −1(q) = g(F −1(q))P X 

and therefore (except in the degenerate case ρ = 0) 

FC X (p, q) = P(P ≤ F −1(q) X ≤ F −1(p))P | X 

= P(g(X) ≤ g(F −1(q)) X ≤ F −1(p))X | X 

= P(X ≤ F −1(q) X ≤ F −1(p)).X | X 

As a consequence, for continuous comonotonic X and P 

FC X (p, q) = 1 if p ≤ q 
FC X (p, q) = q/p if p > q. 

In the same way we obtain for continuous countermonotonic X and P 

FC X (p, q) = (p + q − 1)/p if p + q ≥ 1 
FC X (p, q) = 0 if p + q < 1. 

Figure 6 displays the Factor Concentration 

FC X (0.4, q), q ∈ [0, 1] 

for comonotonic, independent and countermonotonic factors in the stress scenario X ≤
F −1(0.4). The curve represented by triangles is the Factor Concentration FC X (0.4, q) of X 
the automotive factor X calculated in the case study in section 4.3. The Factor Concen­
trations of the comonotonic and countermonotonic variables provide the boundaries for 
values of FC X (p, q), the triangle above the diagonal is relevant for the identification of risk 
concentrations. 

Another interpretation of Factor Concentration is obtained by reversing the roles of X and 
L: by Bayes rule 

FC X (p, q) = P(L ≥ F −1(1 − q) X ≤ F −1(p))L | X 

P(L ≥ F −1(1 − q) ∧X ≤ F −1(p)) P(L ≥ F −1(1 − q))X L= L 

P(X ≤ F −1(p)) 
· 

P(L ≥ F −1(1 − q))X L 

≈ P(X ≤ F −1(p) L ≥ F −1(1 − q)) · q . (6)X | L p 
8In the general case, P(P ≤ F −1(q)) ≥ q. If P has a continuous distribution then P(P ≤ F −1(q)) = qP P 

and equality holds in (5). 
9For a formal definition of these concepts, we refer to Embrechts et al [2002]. 
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Figure 6: FC X (0.4, q) for comonotonic, independent and countermonotonic factors and for 
the automotive factor (triangles) in the case study. 

It is worth noticing that in a Merton­type credit portfolio model of the form (1) there 
is a close formal relationship between (6) and risk contributions under the risk measure 
Expected Shortfall: the Expected Shortfall contribution (w.r.t. confidence level 1 − q) of 
the i­th loan can be approximated by 

E(Li L ≥ F−1(1 − q)) = P(Yi ≤ Φ−1(pi) L ≥ F−1(1 − q)) · li.L | L| 

In both concepts, the quantification of risk is based on conditional probabilities in the tail 
{L ≥ F−1(1 − q)}. For allocating Expected Shortfall, the probability is calculated that the L 
ability­to­pay variable Yi is below the PD­threshold Φ−1(pi). The risk concentration in the 
systematic factor X is derived from the conditional probability of {X ≤ F−1(p)}.X 

5.2 Factor Concentration and Tail Dependence 

The asymptotic behaviour of Factor Concentration is closely linked to Lower Tail Depen­
dence, a well­known concept for quantifying the dependence of two random variables (see, 
for instance, Embrechts et al [2002] or Malevergne and Sornette [2002]): the Lower Tail 
Dependence of two random variables X and Y is defined by 

λ(X, Y ) := lim P[Y ≤ FY
−1(u) | X ≤ F−1(u)].X 

u 0+ →

As a consequence of (4), Lower Tail Dependence is an asymptotic property of the copula 
C for continuously distributed variables X and Y . It can be rewritten as 

C(u, u)
λ(X, Y ) = lim 

u 0+ u→

and its value is known explicitly for a large number of copulas. An extensive body of liter­
ature is available on this concept. Furthermore, graphical methods exist for detecting tail 
dependence (Chi­plots, K­plots) which could potentially be used for Factor Concentration 
as well. 
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It immediately follows from the definition of Factor Concentration that the limit


lim FC X (u, u) 
u 0+ →

equals the Lower Tail Dependence of the risk factor X and the profit distribution P , e.g. 

λ(X, P ) = lim P((P ≤ F−1(u) X ≤ F−1(u))P | X 
u 0+ →

= lim FC X (u, u). 
u 0+ →

While tail dependence is an asymptotic concept, we prefer to view FC as a function of its 
variables p and q for the purpose of managing the risk of a credit portfolio. In that way, 
the impact of various stresses on different parts of the loss distribution can be analyzed. In 
addition, we keep the freedom to set p and q independently. This is an important advantage 
because in typical applications the probability of a stress scenario will be far greater than 
the confidence level of the loss distribution we are interested in, e.g. q = 0.02% and p = 5%. 

5.3 Dynamic concentration risk 

So far, we have focused on concentration risk which currently exists in a credit portfolio, and 
have defined the notion of Factor Concentration FC as an indicator. However, under certain 
circumstances such as market stress events, even a formerly well­diversified portfolio can 
become concentrated due to the deterioration or default of certain parts of the portfolio. 
In the same way that Factor Concentration FC can be viewed as a sensitivity or first 
“derivative” of the loss distribution with respect to a particular systematic factor, the second 
derivative measures how risk concentrations change under stress, i.e. dynamic concentration 
risk. The analysis of dynamic concentration risk can be embedded into our framework in a 
natural way: 

1. Calculate the Factor Concentration for factor A in the original setup, 

2. and repeat the calculation after stressing a different factor B. 

3. The difference represents the change in Factor Concentration for factor A due to a 
stress in factor B. 

Changes in concentration due to market stress events could be viewed as second order 
effects and therefore less important for risk management. However, it might be useful to be 
aware of those potential changes in concentration, in order to develop strategies in advance 
that make the portfolio more robust against stress events. 

6 Stress Tests for Concentration Risk under Basel II 

6.1 Classification of regulatory stress tests 

Stress testing of concentration risk is obligatory under para. 775 of the Revised Framework 
(BIS [2004]): 
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Figure 7: Overview of stress tests in Basel II 

A bank’s management should conduct periodic stress tests of its major credit 
risk concentrations and review the results of those tests to identify and respond 
to potential changes in market conditions that could adversely impact the bank’s 
performance. 

Stress tests for concentration risk focus on portfolio risk concentrations and are not to 
be commingled with the general pillar 1 stress tests for capital adequacy mentioned in 
para. 434 of the Revised Framework (BIS [2004]). Pillar 1 stress tests are mainly focused 
on scenarios such as market risk events, liquidity conditions, or procyclicality (see Fig. 
7). However, there seem to be overlaps between stress scenarios for economic or industry 
downturns (as mentioned in pillar 1), and stress tests for concentration risk. Equivalently, 
the general methodology presented in this paper is not limited to concentration risk but 
has a wider range of application, including some of the areas mentioned above. 

6.2 Stressing risk concentrations: impact on regulatory capital 

As discussed in section 2, the IRB approach in BIS [2004] does not provide an appropriate 
quantitative framework for modeling and stressing concentration risk. However, it can 
be used to forecast regulatory capital requirements in stress scenarios specified in multi­
factor models. More precisely, the impact of a stress scenario on regulatory capital can 
be assessed by recalculating the Basel II formula with the stressed PDs from the multi­
factor model. Since regulatory capital requirements are essential for capital management 
and strategic planning this impact analysis will be an important component of the stress 
testing methodology in a financial institution. 

As an example, we consider the same portfolio and stress scenario as in the case study (sec­
tion 4.3). Stressing the automotive factor increases the regulatory capital from 131.41mn 
to 156.48mn. The increase of 19% observed in this scenario is in line with the increase of 
the 99.98% quantile (see table 1). 
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7 Conclusion 

In this paper, we have presented a general framework for stressing risk concentration in 
credit portfolios. Starting from the idealized IRB portfolio model, we have discussed the 
concepts of name and sector concentration and have demonstrated that a multi­factor model 
is needed as the basis for stressing sector concentration. 

The proposed approach to stressing sector concentration uses economic downturn scenarios 
or market shocks as a starting point. The scenarios are then implemented in a way that 
is consistent with the quantitative framework (e.g. without destroying the dependence 
structure of risk factors in the model). This is achieved by translating the economic stress 
scenarios into constraints on the systematic factors and on the state space of the model. 
The main prerequisite here is that the systematic factors of the credit portfolio model can 
be linked to economic variables. 

Our stress testing methodology detects concentrations in distinct but highly correlated 
sectors, as demonstrated in a case study: while stressing a particular systematic factor 
has the largest impact on creditors in this sector, it still has a significant (though less 
pronounced) effect on creditors outside the sector. 

Although the methodology has been developed in a particular factor model, the main 
concept ­ stressing sector concentration through a truncation of the distribution of the risk 
factors ­ is completely independent of the model specification and the way that default 
dependencies are parameterized, e.g. whether asset or default correlations are used. The 
mathematical formalization of the concept of Factor Concentration and the analysis of its 
basic properties form an important part of the paper. 

Stress tests are required for different purposes under Basel II. We have provided a short 
classification of our stress testing methodology in the Revised Framework and have outlined 
how the impact of a stress scenario on regulatory capital can be assessed by recalculating 
the Basel II formula with the stressed PDs from the multi­factor model. 
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