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Abstract 

This paper examines latent risk factors in models for migration risk. We employ the 
standard statistical framework for ordered categorical variables and induce dependence 
between migrations by means of latent risk factors. By assuming a Markov process for 
the dynamics of the latent factors, the model can be interpreted as a state space model. 
The paper contains an empirical study on quarterly migration data from Standard & 
Poor’s from the years 1981–2000, in which the ordered logit model with serially correlated 
latent factors is fitted by computational Bayesian techniques (Gibbs sampling). Apart 
from highlighting the usefulness of the Gibbs sampler for statistical inference in models of 
this kind, the survey in particular investigates the issues of rating­specific factor loadings 
and heterogeneity among industry sectors, with emphasis on their implications in terms 
of implied asset correlations. 

J.E.L. Subject Classification: C23, C35, C15 
Keywords: Credit Risk, State Space Models, Multivariate random effects, Gibbs sam­
pling 

Introduction 

An ordered categorical variable expressing the ability of a company to fulfill its financial 
obligations is known as a credit rating (or simply rating). Such classifications are provided 
by agencies such as Moody’s and Standard and Poor’s, but could also be according to an 
internal system of a bank. With the recent Basel II accord the importance of ratings as a 
tool for risk management has increased (Basel Committee on Banking Supervision, 2005). 
This has lead to interest in statistical models for the dynamics of ratings; the change in 
rating of an obligor is referred to as a transition or a migration. 

Firstly, it is obvious that the present rating of an obligor is a strong predictor for its 
rating in the nearest future. A cardinal feature of any migration model is hence past and 
present ratings influencing the evolution. The Markov chain is a stochastic process of this 
kind, in which the migration probabilities given all past ratings depend only on the present 
state. This is the simplest form of a Markov chain, and it allows all migration probabilities 
for a specific time­horizon to be collected in a so­called migration (or transition) matrix. If 
no obligor­specific properties other than rating are considered, the Markov assumption is 
very convenient since all migrations taking place in a period can be summarized in cross­
sectional migration counts without any loss of generality, cf. Section 2.2.1. The intuitive 
and comprehensible form of the migration matrix has made it a cornerstone of many current 
risk management applications, see Jafry and Schuermann (2004) for a review. In most 
applications migration matrices are estimated in discrete time with a monthly, quarterly 
or yearly time horizon. As obligors seldom change rating (and when they do it is often to 
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a neighbouring state) migration matrices typically have their mass concentrated along the 
main diagonal; in fact, the low occurrence of certain transitions may be a problem when 
estimating migration probabilities naively by empirical proportions. One way of mitigating 
this is a continuous­time Markov approach as in Lando and Skødeberg (2002). 

The assumption of firm rating paths following homogeneous Markov chains has been 
increasingly questioned and even statistically rejected in recent contributions. An empirically 
verified characteristic of agency rating data is rating momentum; for instance the tendency 
of recently downgraded obligors to be more at risk than other obligors. Such observations 
contradict the Markov property, see Lando and Skødeberg (2002) and the references therein. 
Statistical approaches to model non­Markovian rating paths can be found in Christensen 
et al. (2004) and Frydman and Schuermann (2005). The question of rating momentum will 
not be treated in this paper, since our analysis is based on repeated cross­sectional migration 
counts. Time inhomogeneity in migration probabilities is, however, an important topic which 
we treat next. 

Several empirical surveys have found evidence of time variation in migration intensities 
and confirmed that this time variation may to some extent be explained by observed macro­
economic variables, see Nickell et al. (2000), Bangia et al. (2002) and Hu et al. (2002). A 
second requirement of the migration model is therefore that of dependence among transitions 
taking place within a time period. The underlying economic conditions will be referred to 
as the systematic risk of the portfolio. Unfortunately, observed variables as proxies for 
the systematic risk are seldom completely satisfactory. The first important issue is the 
identification of appropriate proxies. Moreover, there may also be a lag between the cycle of 
a proxy variable and that of the migration activity and this lag may vary stochastically over 
time. The above shortcomings have serious implications for regulation, see the discussion in 
Koopman, Lucas, and Klaassen (2005). 

The approach of this paper will be to complement observed risk factors with unobserved 
latent ones, that capture the residual systematic risk once any observed parts have been 
accounted for. The unobserved systematic risk creates dependent migrations in each time 
period; we refer to this as cross­sectional dependence. We also expect the cyclical behaviour 
of economic factors to create serial dependence among migration events in different time 
periods; see McNeil and Wendin (2005) for a similar discussion in the context of default 
risk. 

Relatively little work has been carried out on latent systematic risk in migration models. 
An early contribution is Kijima et al. (2002), where a (non­standard) statistical framework 
for correlated migrations is suggested. Gagliardini and Gouriéroux (2005b) present a gen­
eral framework for rating dynamics with stochastic migration matrices. In particular, they 
consider serially correlated migration matrices, and perform an empirical analysis on French 
corporate data using a linearization of the likelihood function. 

The modelling framework of this paper is conceptually close to that of Gagliardini and 
Gouriéroux (2005b). We consider a general statistical model for discrete­time migration 
counts based on standard techniques for ordered categorical response variables. The ratings 
are subject to both observed and unobserved systematic risk, where the unobserved risk is 
assumed to follow a Markov process. The latent risk factors and their serial dependence are 
able to capture the effects of cross­sectional dependence. The Markovian latent risk factors 
induce serial dependence; in fact, the models formally belong to the class of state space 
models. 

The serially correlated latent risk factors yield joint migration distributions in terms 
of high­dimensional integrals, which are indeed awkward for standard maximum likelihood 
(ML) techniques. Koopman, Lucas, and Klaassen (2005) and Gagliardini and Gouriéroux 
(2005b) consider models with continuous latent factors, although they model the ratio of 
defaulted obligors instead of the actual default counts. This simplification may show undesir­
able features, in particular when either the numerator or the denominator are small (Kurbat 
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and Korablev, 2002). An alternative approach is that of simulated ML; a recent application 
in the context of default risk is given in Koopman, Lucas, and Daniels (2005). Koopman, Lu­
cas, and Monteiro (2005) use simulated ML to fit a duration model with stochastic intensity 
to credit transition data. 

Instead of following a frequentist approach, we follow McNeil and Wendin (2005) and 
use computational Bayesian techniques (Gibbs sampling) for model inference. The algo­
rithms are able to handle varyingly complex specifications of the latent systematic risk, such 
as serially correlated factors as well as general multivariate Gaussian risk factors that in­
duce heterogeneity across industry sectors. A brief review of Bayesian statistics and Gibbs 
sampling is given in Section 3. The rest of the paper is organized as follows. Section 2 intro­
duces the basic framework for models of cross­sectionally and serially dependent migration 
counts. The empirical analysis on quarterly migration data from Standard & Poor’s follows 
in Section 4. Section 5 concludes. 

2 State Space Model of Migration Counts 

2.1 Notation 

Consider a set K = {1, . . . ,K} of rating classes of increasing creditworthiness. The state 
default, which we assume is absorbing, is denoted by 0 and is included in K .� 0 := K ∪ {0}
Denote by mtk the number of firms in group k ∈ K so that mt = mtk is the total k∈K
number of obligors in the portfolio at the beginning of period t. For each obligor i = 1, . . . ,mt 

in period t, let κ(t, i) denote its initial rating and Rti the rating at the end of the period t. 
Notice that the former is necessarily in K, whereas the latter is in K0. 

Our aim is to derive a statistical model for Mt:k,�, the number of obligors with ratings 
k ∈ K and � ∈ K0 at the onset and at the end of period t, respectively. Although mt1, . . . ,mtK 

are assumed to be known at the beginning of period t, the migration count variable Mt:k,� 

is known only at the end of it. For notational convenience we introduce the migration count 
vector M tk := (Mt:k,�)�∈K0 , which summarizes the migrations of the k­rated obligors during 
period t. Analogously, M t := (M tk)k∈K. 

The framework of this paper presupposes data of repeated cross­sectional type so that 
Rti and Rsi, the ratings of obligor i in two distinct periods s =� t, do not necessarily refer to 
the same obligors. Cross­sectional migration counts are easily constructed given a dataset of 
rating paths (i.e. data of panel type, where the migration dates of each obligor are collected), 
but the reverse construction is in general not possible. 

2.2 Cross­sectionally Dependent Migrations 

Assumption 1. Conditional on a latent factor bt (following a non­degenerate distribution F 
to be specified) the ratings Rt1, . . . , Rtmt at the end of period t are conditionally independent 
and satisfy 

P (Rti ≤ � bt) = g(µκ(t,i),� − xti
� β − zti

� bt), 0, (1)| � ∈ K

for some strictly increasing function g : R → (0, 1). 

xti and zti of Assumption 1 denote the known design vectors holding the corresponding 
covariates of obligor i, µκ(t,i),� and β are unknown intercepts and regression coefficients to 
be estimated, and g is known as the response function. Common choices of g are Φ(x) = 

x(1/
√

2π) −∞ exp{−u2/2}du and 1/(1 + exp{−x}), which lead to the so­called probit and 
logit models, respectively. 

The formulation in (1) is a generalized linear mixed model (GLMM) for ordered polyto­
mous responses, where the rating at the onset of period t has been included as a covariate. 
If no latent factor bt is present, the model is known as a generalized linear model (GLM), 
the theory of which is treated in the monograph by McCullagh and Nelder (1989). For more 
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information about GLMMs, see Fahrmeir and Tutz (1994) and Skrondal and Rabe­Hesketh 
(2004).

The design vectors xti and zti together with the latent factor bt constitute the systematic 
risk x� β + z� bt of obligor i in period t. To simplify notation we will often refer to the ti ti

systematic risk as γti := x� β + z� bt. A fundamental role of xti and zti is to add observed ti ti

elements to the systematic risk; they may hold quantitative variables as well as dummy 
variables indicating group membership. By including macro­economic variables or other 
observed risk factors we may capture time inhomogeneity in transition rates. Likewise, 
obligor­specific variables such as balance sheet data can be used to capture heterogeneity 
among obligors. In fact, current rating is an obligor­specific covariate, which for sake of 
clarity has been kept separate from β. Observed explanatory variables are known as fixed 
effects in the GLMM­framework. 

The latent factors bt (or random effects as they are now as in the literature on GLMMs) 
account for unobserved systematic risk, and hereby introduce heterogeneity beyond that 
which can be captured with observed covariates. In particular, they induce dependence 
among the responses. The latent factors within a time period may be univariate or multivari­
ate; the latter are useful when treating migrations according to industry sector. Parameters 
of F are referred to as hyperparameters and will be denoted by θ. 

It immediately follows from (1) that 

P (Rti = � bt) = g(µκ(t,i),� − xti
� β − zti

� bt)− g(µκ(t,i),�−1 − xti
� β − zti

� bt), (2)|

and that the intercepts (µk,�)k∈K,�∈K0 , which are also known as threshold values or cut­off 
levels, for all k ∈ K must satisfy 

=−∞ = µk,−1 ≤ µk,0 ≤ µk,1 ≤ · · · ≤ µk,K−1 ≤ µk,K ∞ 

in order for the probabilities in (2) to be non­negative. (For the absorbing state default 
we have µ0,� = ∞ for all � ∈ K0.) Note that a model for K + 1 ordered choices requires 
K thresholds. We shall refer to the vector of K thresholds associated with k ∈ K as 
µk := (µk,�)K−1 and the full K ×K­set of thresholds will be denoted by µ := (µk)k∈K.�=0 

Unconditionally, Rt1, . . . , Rtmt of Assumption 1 are not independent, which is most easily 
seen by interpreting the threshold model (2) as follows: Let εt1, . . . , εtmt be iid rvs with df 
g, which are independent of bt. Set Vti := εti + x� β + z� bt for i = 1, . . . ,mt, and notice ti ti

that Rti is generated according to 

.Rti = � ⇐⇒ Vti ∈ µκ(t,i),�−1, µκ(t,i),� 

εti is referred to as the idiosyncratic risk of obligor i in period t. It is easy to see that 
Vt1, . . . , Vtmt , despite being conditionally independent given bt, are dependent random vari­
ables. Moreover, their joint distribution fully determines that of (Rt1, . . . , Rtmt). Vti is often 
interpreted as the asset value of obligor i and µi as critical liability levels as in the seminal 
work on structural models of credit risk in Merton (1974). This representation is particularly 
useful for the probit case with a Gaussian random effect bt (each εti is standard Gaussian 
under the probit response); the joint distribution of Vt1, . . . , Vtmt is then Gaussian, and fully 
determined by its correlation matrix as in the well­known industry model CreditMetrics. 

The representation with Vti allows us to quantify the cross­sectional migration depen­
dence in period t in terms of the so­called implied asset correlation, corr(Vti, Vtj), of two 
obligors i, j. Given relevant covariates, we trivially have 

2corr(Vti, Vtj) = cov(z�tibt,ztj
� bt) var(z� bt) + w2 var(z� bt) + w , (3)ti tj

where w2 := var(εti). In the probit case we have w2 = 1 while in the logit case w2 = π2/3. 
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2.2.1 Homogeneous Groups of Obligors 

When fully obligor­specific covariates are not considered it is often reasonable to the divide 
the portfolio into homogeneous subgroups (or buckets), in which all ingoing obligors are 
assumed to share the same systematic risk. The index set of subgroups will be denoted by 
H = {1, . . . ,H}, where H is the number of homogeneous buckets. 

A commonly seen assumption in practice is homogeneity within rating classes, which is 
accomplished by setting xti = xtk and zti = ztk for all i with κ(t, i) = k. This corresponds 
to the case H = K. Under Assumption 1 and given bt, we then have the vectors of migration 
counts M t1, . . . ,M tK (see Section 2.1 for their definition) conditionally independent with 

M tk |bt ∼ Multinomial mtk,pk(x
�

tkbt) for all k ∈ K, (4)tkβ + z�

where 
pk(·) := {pk,�(· and pk,�(x) := g(µk,� − x)− g(µk,�−1 − x).)}�∈K0 

Thus, for each x = (x0, x1, . . . , xK) ∈ {0, 1, . . . ,mtk}K+1 satisfying x0 +x1 + +xK = mtk· · ·
we have 

mtk! 
K

P (M tk = x |bt) = pk,�(x� tkbt)x� .tkβ + z�
x0!x1! xK ! 

�=0
· · ·

The unconditional distribution of M tk is evidently not multinomial, since the effect of the 
latent factors bt must be integrated out. Furthermore M t1, . . . ,M tK are not independent. 
The systematic risk of group k in period t will be referred to as γtk := x� β + z� bt.tk tk

For applications, it might be relevant to perform the grouping according to further at­
tributes than merely rating class; natural candidates are industry sector and country mem­
bership. In the case of industry sector effects we then have H = K×S, where S is an index 
set of industry sectors. A convenient way of introducing heterogeneity between subgroups 
is by means of multivariate latent factors. The transition properties of the portfolio are de­
termined by the joint distribution of (bt1, . . . , btH )�, where bth denotes the latent systematic 
risk of group h ∈ H at time t. This fits naturally into the GLMM­framework introduced in 
Assumption 1 by setting bt = (bt1, . . . , btH )� and zth = eh, where eh is the hth unit vector 
in RH . Applications of this technique are given in Section 4.2. 

2.2.2 Migration Correlations 

A consequence of the latent factor bt is dependence between rating migrations occurring in a 
time period. It is often convenient to quantify this in terms of the migration correlation, an 
entity that relates to two particular obligors and a corresponding (bivariate) rating transition 

2from (k1, k2) ∈ K2 to (�1, �2) ∈ K0. It is well­known that migration correlations alone do 
not determine the full distribution of the migrations. Nevertheless, they present useful 
summaries for comparisons between different statistical models for migrations. A review of 
issues regarding migration correlations is given in Gagliardini and Gouriéroux (2005a). 

In the present context, migration correlations are derived with the conditional indepen­
dence property and (2). Assuming that κ(t, i) = ki for two obligors i = 1, 2 we have: 

cov I{Rt1=�1}, I{Rt2=�2}� � �2 � � 
= E E[I{Rt1=�1}I{Rt2=�2} bt] E E[I{Rti=�i} |bt]| − 

i=1
��2 �2 �

= E pki,�i

(xti
� β + z� tibt)tibt) 

� 
− E pki,�i

(xti
� β + z�

� (5) � i=1 i=1 �2 
�
�2


= pki,�i
(xti

� β + z� tibt) dF (bt).tibt) dF (bt)− pki,�i
(xti

� β + z�
i=1 i=1 

Since the number of combinations (k1, k2) and (�1, �2) above is large, we restrict our atten­
tion to the practice­relevant question of migrations in the same direction as well as default 
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correlations. In this spirit we define the joint upgrade­correlation and downgrade­correlation 
as 

corr I{Rt1>k1}, I{Rt2>k2} and corr I{Rt1<k1}, I{Rt2<k2} , 

respectively. Naturally, the joint default correlation follows as corr I{Rt1=0}, I{Rt2=0} . 
Given µ, β and θ these expressions are easily calculated numerically. 

2.3 Serially Dependent Migrations 

The cyclical behaviour of economic factors leads us to expect dependence between migration 
events taking place in different time periods. Given the interpretation of bt as a general state­
of­the­economy in period t, it seems reasonable to let its value at time t + 1 depend on bt, 
and hence to impose a Markovian structure on the sequence (bt). 

Assumption 2. (i) The sequence (bt) is a Markov chain; and (ii) conditionally on (bt), the 
M t’s are independent and M t depends on bt only. 

Assumption 2 defines a state space model (or hidden Markov model, HMM) for the count 
sequence (M t), see Künsch (2001). (Recall that mtk is treated as a known variable, cf. 
Chapter 2 of MacDonald and Zucchini (1997) on binomial HMMs.) It is straight­forward to 
see that M1, . . . ,MT in general are not independent in the HMM framework. Assumption 2 
thus provides a meaningful serial dependence for the migration counts (M t), where the 
components of M t already exhibit cross­sectional dependence by Assumption 1. 

The first­order autoregressive, AR(1), time series (bt) 

bt = αbt−1 + φ�t, t ≥ 1, b0 = φ�0/ 1− α2 , (6) 

where �0, �1, . . . are iid N(0, 1), is a real­valued Markov process in discrete time. For |α| < 1 
it has a Gaussian stationary distribution with mean 0 and variance σ2 := φ2/(1 − α2). Its 
d­dimensional counterpart takes the form 

bt = αbt−1 + A(�t,1, . . . , �t,d)�, t ≥ 1, b0 = A(�0,1, . . . , �0,d)�/ 1− α2 (7) 

with α ∈ (−1, 1), A ∈ Rd×d and (�t,i) iid N(0, 1). The stationary solution is Gaussian with 
mean zero and covariance matrix Σ := Φ/(1 − α2), where Φ := AA�. The parameterizations 
in (6) and (7) turn out to be useful for the applications of Section 4. 

Before turning to model calibration, we make a remark on the implications of Assump­
tions 1 and 2 on the rating path of a single obligor. The migration counts M1, . . . ,MT are 
easily seen to be independent if the underlying rating paths are Markovian. An important 
consequence of this observation is that serially dependent migration counts (as in the state 
space setting) necessarily imply non­Markovian rating paths. This feature should not be 
confounded with what is known as rating momentum on the obligor level, where a recent 
downgrade of an obligor increases its probability of further downgrades or default (Lando 
and Skødeberg, 2002). Models incorporating rating momentum treat each firm individually 
in order to model its rating path explicitly, and hence presuppose a dataset of actual rating 
paths. The non­Markovian rating paths under Assumptions 2, on the other hand, can be 
viewed as rating momentum due to general past adverse or favourable periods. Note that if 
b1, . . . , bT instead are assumed to be independent, the rating paths are Markovian. 

3 Calibration with Markov Chain Monte Carlo 

The unconditional distribution of the migration count vectors (M t) as defined in Section 2 
require the effect of the latent factors (bt) to be integrated out, which greatly complicates 
the use of standard maximum likelihood (ML) techniques. This difficulty applies even more 
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if the latent factors are serially correlated. Unless the likelihood function is approximated 
numerically, some kind of simulation­based approach to inference seems inevitable, see for 
instance the discussion of simulated ML in Chapter 3 of Gouriéroux and Monfort (1996). An 
overview of general approaches to frequentist and Bayesian inference in a very similar context 
is given in McNeil and Wendin (2005). The latter highlights the usefulness of computational 
Bayesian procedures for inference in models of portfolio credit risk, an approach we follow 
in this paper as well. 

3.1 Bayesian Statistics and Markov chain Monte Carlo 

In Bayesian statistics, all unobserved elements ϑ of the statistical model are treated as 
random variables. These are assigned a joint prior distribution p(ϑ), on a suitable space Θ, 
expressing any information about ϑ we might have before observing the data D. Inference 
is based on the posterior distribution of ϑ, p(ϑ | D), which is obtained by applying Bayes’ 
rule. In the context of Section 2, ϑ holds the parameters µ and β, the hyperparameters θ 
as well as the latent risk factors b1, . . . , bT , whereas the migration counts M1, . . . ,MT and 
design vectors constitute the observed data D. 

The posterior distribution of ϑ is in general unobtainable by analytical means, but can 
be simulated from with Markov chain Monte Carlo (MCMC) techniques. The objective of 
these is to generate a realization ϑ(1), ϑ(2), . . . of an ergodic Markov chain, whose stationary 
distribution is the desired posterior p(ϑ|D). The B iterations prior to convergence are known 
as burn­in. A prominent example is the Gibbs sampler which proceeds by simulating from 
the so­called full conditional distributions 

p(ϑi ϑ1, . . . , ϑi−1, ϑi+1, . . . , ϑr, D)| 

in a pre­specified order, where ϑ ≡ (ϑ1, . . . , ϑr) is a decomposition of ϑ with r ≥ 2 (Gilks, 
1996).

By exploiting conjugacy we obtain full conditionals which are easy to simulate from. In 
many cases of practical interest, however, non­standard full conditionals necessarily emerge. 
Note that ϑi, i = 1, . . . , r, can be univariate, which greatly facilitates simulation since the 
ARS (Adaptive Rejection Sampling) and ARMS algorithms can often be employed (Gilks, 
1992). While the former is intended only for log­concave densities, the latter is capable 
of handling arbitrary densities and plays an important role in Section 4. The Gibbs sam­
pler along with other approaches to non­standard full conditionals are treated in detail in 
Chapters 6 and 7 of Robert and Casella (1999). 

3.2 Inference with MCMC 

Inference about a single parameter ϑi of the model is based on ϑ(B+1) 
, . . . , ϑ

(B+N), which is a i i 

sample of size N from p(ϑi|D), the marginal posterior distribution of ϑi. Point estimates and 
standard errors are given by forming the sample mean (or median) and standard deviation, 
respectively. Other features of p(ϑi | D) are estimated accordingly; the posterior probability 
of ϑi lying in Θ0 ⊂ R is estimated as #{t : ϑ(B+t) ∈ Θ0}/N . This offers an intuitive way of i 

conducting tests of hypotheses (Casella and Berger, 2002, Ch. 8), a technique that we will 
make use of when discussing the significance of regression coefficients β. As ϑ also includes 
the latent risk factors, the output of the MCMC algorithm can be used to investigate the 
posterior path of (bt). In particular, one can visually compare the path of (bt) with those 
of observed economic variables. 

A further strength of the MCMC approach is that the above techniques can be applied 
to model quantities derived from several primary parameters as well, such as migration 
probabilities or correlations. Assuming that these can be written in the form f(ϑ) for some 
f : Θ R, a sample from their respective posterior distributions is instantly given by → 
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f(ϑ(B+1)), . . . , f(ϑ(B+N)). This means that point estimates as well as standard errors of 
derived quantities are obtained at virtually no additional computational cost. 

3.3 Bayesian Model Validation 

Bayesian model validation involves two steps: firstly robustness (i.e. quantifying the impact 
of the prior distribution on the posterior point estimates) and secondly assessment of model 
fit, where the latter step is closely related to model selection. The first issue can be addressed 
by considering several prior specifications and comparing the resulting posterior estimates. 
By restricting ourselves to so­called non­informative (or vague) priors, the differences in 
posterior estimates are generally kept small. 

For the second step we consider a modern approach to Bayesian model comparison based 
on cross­validation predictive densities and regression diagnostics derived from these. Due 
to the multivariate nature of M tk as basic observation, a marginal likelihood is a suitable 
diagnostic to work with for the purposes of Section 4. We consider the conditional predictive 
ordinate (CPO), defined as 

CPOt := p(M t1,obs, . . . ,M tK,obs {M s1,obs, . . . ,M sK,obs : s = 1, . . . , T, s = t}), 

where M tk,obs denotes the observed realisation of M tk. The CPO is attractive in that it 
suggests how likely the joint observation M t1,obs, . . . ,M tK,obs is, when the model is fitted to 
all observations except M t1,obs, . . . ,M tK,obs. It can be implemented promptly by re­using 
the output of the Gibbs sampler. By comparing the plots {(t,CPOt) : t = 1, . . . , T} as well 
as T−1 

t log(CPOt) for different models, we obtain an assessment of the model fits. See 
Gelfand (1996) and Carlin and Louis (2000) for an in­depth survey of the above issues and 
more. 

4 Empirical Analysis 

In this section we suggest a series of migration models of increasing complexity and fit these 
to S&P data by Gibbs sampling. 

4.1 Dataset 

The dataset analysed in this paper has been extracted from Standard & Poor’s CreditProTM 

6.6 database and consists of 5,651 US and Canadian firms from 12 S&P industry sectors (see 
Table 1). The migration counts M tk have been collected for three­month periods, ranging 
from January 1981 to December 2000 (T = 80 quarters). Obligors whose rating is withdrawn 
during the period have been excluded; the same applies to obvious duplicates in the database 
such as holding companies. The rating classes under consideration are 

K = {CCC, B, BB, BBB, A, AA, AAA}, 

where for the case of simplicity qualifiers have been suppressed (K = 7). This means that 
k ∈ K corresponds to one of the actual ratings k+ , k or k−. As is customary, we merge 
CCC, CC and C into a single rating class: CCC. All other notation follows Section 2. 

4.2 Models 

Throughout this section we employ the logit response g(x) = 1/(1 + exp{−x}) in the frame­
work of Sections 2.2 and 2.3. Apart from being the canonical response function for many 
GLMs (McCullagh and Nelder, 1989) the logit response is also straight­forward to evalu­
ate (the probit response g(x) = Φ(x) requires numerical evaluation). We do not consider 
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obligor­specific covariates, so firms are arranged into homogeneous groups as discussed in 
Section 2.2.1. 

The empirical study follows the common Bayesian approach of using non­informative 
priors; detailed information about prior distributions is given in Section 4.3.1. 

Model Class (P) — Preliminary Analysis 

Our preliminary analysis, also known as model class (P), explores the validity of the Chicago 
Fed National Activity Index (CFNAI) (xt) as a proxy for the business cycle. The CFNAI 
is published on a monthly basis and can be downloaded from the internet, see McNeil and 
Wendin (2005). 

We assume that all obligors in rating class k in period t are exposed to the same sys­
tematic risk γtk, k ∈ K. Given γt1, . . . , γtK , the migration count vectors M t1, . . . ,M tK are 
assumed to be conditionally independent with 

M tk |γtk ∼ Multinomial {mtk,pk(γtk)} , 

as in (4). We give three different specifications of γtk. First we consider two simple GLMs 
which are free from latent factors: 
(P1) γtk = xtβ; 
(P2) γtk = xtβk, 

where xt is the CFNAI for the first calendar month of time period t. The unknown pa­
rameters of models (P1) and (P2) to be estimated are the threshold values (µk,�) and the 
regression coefficients β and β1, . . . , βK , respectively. 

We then investigate a GLMM which in addition to (xt) features a sequence of serially 
dependent latent factors (bt), in order to capture any cross­sectional or serial dependence 
among the migrations: 

(P3) γtk = xtβ + bt, 

where (bt) is the univariate AR(1) sequence with variance σ2 = φ2/(1 − α2) introduced in 
(6). Given xt, the implied asset correlation is zero under the first two models, and equals 
σ2/(σ2 + π2/3) under model (P3). Model (P3) requires estimation of the hyperparameters 
φ and α in addition to the unknown parameters of model (P1). 

Results 

The posterior mean and standard deviation of all parameters of model class (P) are contained 
in Tables 2, 3 and 4, from which we draw the following conclusions. Four of the threshold 
parameters apparently exhibit large standard errors, as the corresponding transitions never 
take place in the dataset (see rows AAA and B). The large standard errors merely indicate 
the profound uncertainty in assigning these events a probability. It is also worth noting that 
the thresholds of rating class CCC exhibit higher standard errors than the cut­off levels of the 
other subinvestment­grade ratings. One reason for this is the small size of the CCC­cohort 
(rating classes B and BB are approximately 10 times larger than CCC). 

Secondly, even though model (P1) suggests high explanatory power of the CFNAI, the 
results of model (P2) are slightly contradictory: the coefficients βk remain significant (al­
though the BB and CCC rating categories are borderline cases), but βAAA carries a different 
sign than expected. We interpret this as empirical evidence for differences in exposure to 
systematic risk across rating classes. 

Model (P3) is summarized in Table 4. The point estimates of φ and α clearly suggest the 
presence of latent systematic risk in the migrations; the variance of bt, φ2/(1−α2), suggests 
an implied asset correlation of 3.5 %, and the time series parameter α points to profound 
serial dependence. Figure 1 presents the posterior mean of bt in all time periods. For sake of 
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reference, we include the CFNAI in the graph for visual comparison. There is some degree 
of co­movement between the two time series (xtβ) and (bt), but it is clear that the observed 
covariate does not capture the full variability in migration rates. Finally, the presence of 
(bt) has reduced the explanatory power of CFNAI to the extent that it is no longer formally 
significant. We therefore leave out (xt) in the remainder of the analysis. 

The parameters of model (P3) can be used to calculate various model summaries: Ta­
ble 11 holds the migration matrix, and Tables 12 and 13 the corresponding joint up­ and 
downgrade correlation matrices, respectively, as defined in Section 2.2. Although migration 
correlations are small numbers (joint downgrade correlations usually higher than upgrade 
correlations), the values presented here are slightly higher than those of Gagliardini and 
Gouriéroux (2005b) based on yearly migration counts on French corporate data. (This 
holds also when we consider only the one­step up­up and down­down correlations.) 

Model Class (K) — Rating­specific Factor Loadings 

With the Basel II capital adequacy framework, in which risk loadings may depend on the 
credit quality of the obligor, the issue of rating­specific factor loadings has been subject to 
recent interest; see Basel Committee on Banking Supervision (2002) and Lopez (2004). We 
therefore propose the following. The findings of model (P2) motivate us to treat similarly­
rated firms as exchangeable, but we allow the K rating classes to be subject to different 
systematic risk. The setting is hence that of Section 2.2.1 with H = K, which explains the 
label (K) of the current model class. The dependence structure of the model is specified 
by the joint distribution of bt := (bt1, . . . , btK )�, where btk denotes the latent risk of the 
kth rating class in period t. We will consider three Gaussian specifications of bt in turn: 
perfect dependence, exchangeable risk factors and finally an arbitrary covariance matrix. 
The results of model class (P) motivate us to refrain from introducing observable business­
cycle covariates in our analysis, hence xtk = 0. 

As in model class (P), we assume that M t1, . . . ,M tK are conditionally independent 
given γt1, . . . , γtK with 

M tk | γtk ∼ Multinomial {mtk,pk(γtk)} . 

Model (K1) 

Let (bt) be the univariate AR(1) sequence (6) with φ = 1, and define 

(K1) γtk = btk = φkbt. 

Note that we impose var(bt) = 1/(1 − α2) for identifiability. The components of bt = 
bt(φ1, . . . , φK)� are perfectly dependent (i.e. the model is still in the single risk factor frame­
work). Moreover, there is no reason to exclude negative φk’s a priori. The implied asset 

k/(σ2 +π2/3), where σ2 = φ2correlation for two obligors in the kth rating class is σ2 
k/(1− α2).k k 

Model (K1) is a standard specification of rating­specific risk factor loadings and has been 
used in e.g. Gordy and Heitfield (2002) and Rösch (2005). 

Model (K2) 

Let (bt) be the univariate AR(1) sequence in (6) with variance σ2 = φ2/(1 − α2), and define 

(K2) γtk = btk = bt + ξtk, 

where (ξtk) are iid N(0, ω2). The vector bt is multivariate Gaussian with mean zero and 

σ2 + ω2 if k = l, 
cov(btk, btl) = (8)

σ2 else, 
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hence, its components are exchangeable (the covariance matrix exhibits compound symme­
try). Furthermore, there is serial dependence between the bt’s due to the common factor 
bt. Although model (K2) does not display rating­specific factor loadings, it allows us to 
obtain a feeling for the covariance structure of a multivariate Gaussian distribution on bt. 
In particular, the magnitude of ω2 reveals the degree of variability in systematic risk across 
different rating classes. For two obligors of rating classes k and l, model (K2) suggests an 
implied asset correlation of (σ2+ω2)/(σ2+ω2+π2/3) if k = l, and σ2/(σ2+π2/3) otherwise. 

Model (K3) 

Assume that (bt) follows the K­dimensional AR(1) sequence (7) and set 

(K3) γtk = btk. 

The covariance matrix of bt is Σ = (Σkl) ∈ RK×K and consists of K(K + 1)/2 parameters, 
compared to only two in model (K2). For two firms in rating classes k and l the implied 
asset correlation equals Σkl/(Σkl + π2/3) under (K3). 

Results 

Point estimates of the parameters of models (K1), (K2) and (K3) are given in Tables 5, 6 
and 7, respectively. The threshold parameters are similar to those of model class (P) and 
will not be commented. 

The variance of the latent factor in model (P3) suggests an average implied asset corre­
lation of 3.5 %, whereas those of (K1) range between a fraction of a percent (class AAA) and 
8.0 % (class B). The Gaussian specification of bt in models (K2) and (K3) leads to higher 
implied asset asset correlations for firms sharing rating class. However, the point estimate of 
corr(btk, btl), k =� l, of model (K2) is only 34 %, which indicates low implied asset correlations 
for obligors in non­identical rating classes. The results of model (K3) are similar to those of 
the constrained model (K2), although there is large uncertainty about many of the elements 
of Σ. 

Model Class (S) — Heterogeneity across Industry Sectors 

This section addresses the issue of heterogeneity among industry sectors by means of mul­
tivariate latent risk factors. Let S = {1, . . . , S} be an index set of industry sectors for 
which migration counts M tsk are collected for each rating category k ∈ K, sector s ∈ S and 
time period t. Notice that s M tsk (componentwise summation) yield M tk as previously 
defined. Table 1 introduces the S = 10 sectors of our study. We treat all obligors sharing 
industry sector and rating class exchangeably, thus H = K × S. In this section we define 
bt = (bt1, . . . , btS )� and denote by γtsk the systematic risk associated with M tsk . 

It seems plausible to find non­perfect dependence between the systematic risk of differ­
ent industry sectors. We therefore concentrate on Gaussian specifications of bt: both the 
compound symmetry model and the fully general covariance structure are treated. We also 
include the case of rating­specific factor loadings after industry effects have been accounted 
for in model (S3). 

Given the systematic risks {γtsk : s ∈ S, k ∈ K} we assume that the migration count 
vectors {M tsk : s ∈ S, k ∈ K} are conditionally independent with 

M tsk |γtsk ∼ Multinomial {mtsk ,pk(γtsk )} . 

We now give three different specifications of the risks {γtsk : s ∈ S, k ∈ K} in period t. 
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Model (S1) 

Let (bt) be the Gaussian AR(1) sequence (6) and assume that (ξts) are iid N(0, ω2) and 
independent from (bt). We define 

(S1) γtsk = bts = bt + ξts. 

Under model (S1) we have bt Gaussian with mean zero and covariance matrix as in (8). In 
particular, the systematic risk is identical for all obligors sharing industry sector, irrespective 
of rating class. The implied asset correlation for two firms sharing sector equals (σ2 + 
ω2)/(σ2 +ω2 +π2/3), whereas that of two firms in different sectors is merely σ2/(σ2 +π2/3). 

Model (S2) 

A more general specification assumes that (bt) follows the S­dimensional AR(1) process (7) 
with 

(S2) γtsk = bts. 

Consequently, the implied asset correlation between two firms in sectors k and l equals 
Σkl/(Σkl + π2/3), where Σ = (Σkl) ∈ RS×S is the covariance matrix of bt. 

Model (S3) 

Our final specification of γtsk merges models (K1) and (S1) by combining rating­specific 
factor loadings with sector effects: 

(S3) γtsk = φkbts = φk(bt + ξts), 

where var(bt) has been constrained to 1/(1 − α2) for identifiability. (All other assumptions 
of models (K1) and (S1) apply.) This specification helps to avoid confounding heterogeneity 
across rating classes with events that can be traced back to an industry sector. The implied 
asset correlations under model (S3) will depend on both rating and sector membership. 

Results 

Point estimates of the parameters of models (S1), (S2) and (S3) are given in Tables 8, 9 
and 10, respectively. The point estimate of ω in model (S1) is 51 % larger than σ, and thus 
reveals material evidence of sector­specific variability (the correlation between bts of two 
different sectors is roughly 30 %). Consequently, the overall implied asset correlation 3.5 % 
of model (P3) is now 2.6 or 8.7 %, depending on whether the two obligors belong to different 
sectors or not. Table 9, which allows for an arbitrary covariance matrix Σ for bt, yields 
a similar picture, albeit with large standard errors on many of the covariance parameters. 
Note that the correlation between certain sectors is high, whereas other appear to be rather 
uncorrelated. 

Model (S3), which combines rating­specific factor loadings with industry sector effects, 
is summarized in Table 10. The factor loading of every rating class is significant; moreover, 
the magnitude of the φk’s shows less variability than in model (K1). A point estimate of 
the correlation between the bts’s of two different sectors is 37 %. 

4.3 Implementation Details 

The models of the previous section are fitted by Gibbs sampling with self­customized code 
in C. The derivation of the full conditional distributions is sketched in Appendix A. The 
running time of a 10,000­iteration simulation of the algorithms ranges from a few minutes 
up to an hour, depending on the complexity of the model. 
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4.3.1 Choice of Priors 

This study follows the common practice of using non­informative priors for the unknown 
parameters of the model. 

The intercept vectors µ1, . . . ,µK are assigned iid zero­mean, ordered Gaussian prior 
distributions with variance τ2IK×K , where τ is large (τ = 100) and IK×K is the identity 
matrix. Likewise, β and β1, . . . , βK of models (P1) and (P2) are given iid N(0, τ2)­priors. 
The autoregressive parameter α is assumed to be uniform on (−1, 1) a priori. 

The variance of the innovations φ2 is assigned an improper prior decaying as 1/x; this 
is a limiting case of the inverse­gamma distribution (1/φ2 is assumed to follow the Γ(η, ν)­
distribution with (η, ν) = (0, 0)). This is a standard vague prior for a scaling parameter, see 
McNeil and Wendin (2005). We employ the same prior for ω2 of models (K2) and (S1) as 
well. 

In models (K3) and (S2) Φ is assigned an inverse­Wishart distribution with parameters 
ν and Λ0, see Appendix A. This is a standard prior for a covariance matrix. For small values 
of ν the inverse­Wishart distribution is vague: we use ν = 0.001 with Λ0 set to the identity 
matrix. References on informative priors for a covariance matrix are given in Boscardin and 
Weiss (2004). 

The scaling parameters φ1, . . . , φK in models (K1) and (S3) occur in the form of regression 
coefficients rather than hyperparameters, which means that the inverse­gamma prior no 
longer leads to an inverse­gamma full conditional. As there is no prior reason for all these 
parameters to share sign, they are assigned independent N(0, τ2) priors. 

4.3.2 Model Comparisons 

We apply the cross­validation density­approach described in Section 3.3 to compare the 
models of Section 4.2. Table 14 contains the relevant summaries of the conditional predictive 
ordinates (CPOs); we consider the average CPO value of each model (to the left) as well as 
the number of time periods (out of T = 80) in which the more advanced model(s) perform(s) 
better (see the right part of Table 14). 

It is evident from Table 14 that the nine models under study can be divided into four 
groups of comparable model performance, which we now list in order of increasing model 
fit. The two simple GLMs (P1) and (P2) undoubtedly exhibit the poorest fit. The two 
univariate risk factor models (P3) and (K1) come second and are followed by models (K2) 
and (K3) with Gaussian distributions for (bt1, . . . , btK )�. Finally, model class (S) featuring 
sector­specific risk factors displays the superior model fit. The differences in model fit within 
these four groups are moderate and barely worth mentioning. 

4.4 Discussion 

One of the main conclusions of the preliminary analysis (P) and model class (K) is that the 
exposure to systematic risk may vary across rating classes. This is particularly evident for 
rating class AAA, whose coefficients βAAA and φAAA in models (P2) and (K1) either have a 
different sign than expected or equal zero; moreover, its systematic risk in model (K3) shows 
very little correlation with the other rating classes. It is of course important to bear in mind 
that assessment of the systematic risk is difficult for rating classes where obligors are scarce. 
This applies especially to rating class CCC, whose parameter uncertainty is constantly large, 
but also to class AAA to some extent. 

This being said, the results of model class (K) still point towards heterogeneity among 
rating classes, which is evident for instance from the large estimate of ω in model (K2). A 
consequence of ω in (K2) is that the implied asset correlations instantly fall by two thirds if 
the obligors belong to different rating classes. Clearly, there is no economic justification for 
massively reduced implied asset correlation just because two obligors belong to neighbouring 
rating classes. One therefore might suspect that the assumption of homogeneity within each 
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rating class is violated and that the correlation structure of (bt1, . . . , btK )� is a substitute for 
effects not accounted for. Applying a finer classification scheme when forming the homoge­
neous groups or including other covariates could alleviate this problem. Before proceeding, 
we note that models (K2) and (K3) exhibit considerably larger estimates of var(btk) than 
models (P3) and (K1). Imposing perfect dependence on (bt1, . . . , btK )� as in (K1) thus seems 
to force the variances to be modest. (Note that other empirical studies may treat the default 
or migration histories of each rating class as independent time series.) 

In the next set of models homogeneous groups are composed with the two attributes 
rating class and industry sector. Each industry sector is allotted a latent risk factor, which 
in models (S1) and (S2) is identical for all rating classes. The correlation between the sector­
specific risk factors is 30 % in the exchangeable model (S1), whereas the correlation between 
industry sectors varies considerably in the general model (S2), despite the large parameter 
uncertainty. As industry sectors may be subject to different business conditions, a non­
perfect dependence structure on (bt1, . . . , btS )� makes good economic sense. Recall also that 
models featuring sector effects are clearly favoured in the model comparison, cf. Table 14. 
Nevertheless, a fully general covariance structure on bt as in model (S2) appears to be slightly 
over­ambitious given the historical data available. 

When combining sector effects with rating­specific factor loadings as in (S3), we notice 
that the order of magnitude of the φk’s is much more comparable than in model (K1) 
without sector effects. This seems to suggest that the need for rating­specific factor loadings 
has decreased in presence of sector effects. As this specification is low in parameters and 
displays a good model fit, it will be our preferred model. 

Finally, our findings do not necessarily support the view that factor loadings drop with 
increasing probability of default, at least not for the investment­grade obligors (rating BBB 
and above). We believe that properly addressing the issue of heterogeneity among industry 
sectors is more imperative. It should, however, be pointed out that inference about the 
investment grade is based mainly on migration events other than default. Thus, inferring 
factor loadings from default data only might lead to other conclusions (although estimates 
for the investment grade are usually highly uncertain due to the rare occurrence of defaults). 

Conclusions 

This paper presents a statistical framework for dependent rating migrations driven by latent, 
serially correlated systematic risk factors. Unobserved risk factors have several advantages 
over observed ones, which are briefly addressed in the Introduction. The paper also high­
lights the use of computational Bayesian statistics (MCMC) for inference in credit migration 
models with latent effects. MCMC is capable of handling a variety of specifications of the 
systematic risk, which are highly relevant for practice. In particular, the methodology can 
deal with multivariate Gaussian risk factors in order to capture heterogeneity among indus­
try sectors. 

The empirical study of quarterly cross­sectional migration data from S&P suggests the 
presence of serially dependent, latent, systematic risk in migration rates; the main empirical 
conclusions are very similar to those of McNeil and Wendin (2005). For practical purposes, 
the effect of the latent systematic risk is most easily interpreted in terms of implied asset 
correlations, which are defined in Section 2.2. The study provides empirical evidence of 
heterogeneity between rating classes, the origin of which lies in a violation of the assumed 
homogeneity among the obligors of a rating class. We therefore suggest taking e.g. industry 
affiliation into account before forming homogeneous groups of obligors. 

We also find that a single risk factor often suggests smaller implied asset correlations than 
multivariate specifications of the latent risk. The implied asset correlations of firms sharing 
industry sector are not far from the values prescribed by regulators (Basel Committee on 
Banking Supervision, 2002), whereas the corresponding values for firms in different sectors 
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in general are substantially lower (although not much lower than those of the corresponding 
single risk factor model). 

Some of the implied asset correlations of our analysis (especially for the investment­
grade ratings) might be received as worryingly low if used as inputs in a risk management 
context, in particular when treating only defaults. As defaults of investment­grade obligors 
are very rare, the implied asset correlations of these rating classes will mainly be influenced 
by migration events other than default, but they nevertheless reflect the correlation structure 
of the implied asset values (Vt1, . . . , Vtmt)� as defined in Section 2.2. However, care should be 
taken when applying the same estimates to events far out in the tails of (Vt1, . . . , Vtmt )� such 
as joint defaults of investment­grade firms; it is well known, that the correlation structure 
alone does not fully determine the joint distribution of (Vt1, . . . , Vtmt)�, in particular not 
its tails. Frey et al. (2001) illustrate the substantial model risk in this context. A proper 
investigation of the tail behaviour of (Vt1, . . . , Vtmt)� remains a subject for future research. 
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A Deriving the Full Conditional Distributions 

This section employs a notation that is common in literature on Gibbs sampling: [X ] 
denotes the (unconditional) density (or mass function) of the random quantity X, [X | Y ] 
the conditional counterpart given Y , and [X | ·] is the full conditional distribution of X. X 
denotes the full sequence (X1, . . . , XT ). The key to all full conditional distributions is the 
joint distribution function of data and parameters, which reads 

[M , b,µ, x, β, α, φ, ω ] ∝ �[M | µ, x, β, b][b α, φ, ω ][µ, β, α, φ, ω ] 
T

= [M ti | µi, xt, β, bt ] [b | α, φ, ω ][µ][β ][α][φ][ω ]. (9) 
t=1 i∈K 

The last line follows by conditional independence arguments and a priori independence 
of the parameters. For more information about the Gibbs sampler and full conditional 
distributions, see Gilks (1996). 

We exemplify the derivation of a full conditional distribution in the context of model 
(P3). Before proceeding, we observe that b := (b1, . . . , bT ) defined as in (6) is multivariate 
Gaussian with covariance matrix Σb: 

cov(bs, bt) = φ2α|s−t|/(1 − α2), s, t ∈ {1, . . . , T}. 

Its inverse Σ−1 is tridiagonal with diagonal elements φ−2(1, 1+α2 , . . . , 1+α2 , 1), off­diagonal b 

elements −φ−2α and determinant φ−2T (1 − α2). 
The full conditional of α is calculated by applying the formula for conditional probabilities 

and using (9). In each step of the derivation we drop factors without explicit dependence 
on α, which explains the use of the ∝­sign: 

[α | ·] =
[M , b,µ, x, β, φ, α] 

[b | φ, α][α].
[M , b,µ, x, β, φ] 

∝ [M , b,µ, x, β, φ, α] ∝ 

The final step involves properties of [b | φ, α] 

[α|·] [b φ, α][α] ∝ det(Σ−1) exp − 1bΣ−
b 

1b� [α]b 2∝ �| � 
1− α2 exp [α], (10)2∝ − 1φ−2(C1(b)α2 − C2(b)α) 
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where C1( ·) and C2( ·) are identified by performing the vector­matrix multiplications. If 
α is assigned a uniform prior, (10) is log­concave in α and can be simulated from with 
the ARS algorithm. The other full conditionals are derived analogously, see McNeil and 
Wendin (2005) for a similar application. Except for φ2 , whose full conditional remains 
inverse­gamma, all other full conditionals of our study rely on the ARMS algorithm for their 
simulation (Gilks, 1992).

In case of multivariate bt = (bt1, . . . , btH )�, note that b := (b1
� , . . . , b�T )� is multivariate 

Gaussian with covariance matrix 

α|t−s|
cov(bsi, btj) = Φij 1− α2 

, 
s, t ∈ {1, . . . , T}, 
i, j ∈ {1, . . . ,H}. 

As Φ has the properties of a covariance matrix, we assign it a inverse­Wishart prior distri­
bution. This means that its inverse Φ−1 := Λ follows the Wishart distribution 

[Φ−1 ] = [Λ] ∼ Wishart (ν,Λ0) , 

where ν and Λ0 are fixed real numbers and symmetric, non­singular H × H­matrices, re­
spectively. Its prior density is thus proportional to 

(ν−H−1)/2 exp −1 
2tr(Λ0Λ)Λ
|
 |
 ,


see Johnson and Kotz (1972) or Muirhead (1982). The inverse­Wishart distribution is a 
conjugate prior of a covariance matrix: 

] ∼ Wishart (ν + T,Λ0 + C3(b)) ,[Λ | ·

where C3(b) is the following H ×H­matrix: 

T T−1

C3(b) = btb
�
t + α2 btb

�
t − α 

T

btbt
�
−1 + bt−1bt

� , 
t=1 t=2 t=2 

see Appendix A.2 of Bernardo and Smith (1994) or McCulloch and Rossi (1994). An algo­
rithm for generating variates from the Wishart distribution is given in Johnson (1987). In 
each iteration of the Gibbs sampler the current value of Φ is obtained by inverting Λ. 

Due to the form of [M | µ, x, β, b ], the full conditional distribution of the latent risk 
factor bt does not follow a standard statistical distribution. We therefore update each bth 

separately by means of the ARMS algorithm, an exercise which is greatly simplified by 
first deriving the conditional distribution of bth given all other elements of b. Let b−t := 
(b1
� , . . . , bt

�
−1, bt

�
+1, . . . , b

�
T )

� and observe that under the multivariate AR(1) process in (7) we 
have [bt |bt , α,Φ] multivariate Gaussian: −t ⎧ ⎪⎪⎨
N αb2,Φ if t = 1, 

[bt b−t, α,Φ]| ∼
 (11)αbT−1,Φ if t
=N T,⎪⎪⎩
 α 1 Φ
1+α2 (bt−1 + bt+1), 1+α2 else.N 

Secondly, it is easily verified that if Z = (Z1, . . . , ZH)� is Gaussian with mean (µ1, . . . , µH)�, 
then for each h = 1, . . . ,H ⎞⎛ 

H 1 
τih(µi − zi), 

1 
Zh {Zi = zi}i=1,...,H; i=h ∼ N

⎜⎝

⎟⎠
,
 (12)µh + 

τhh τhhi=1 
i=h 

where (τij) denotes the inverse of the covariance matrix of Z (the so­called precision matrix). 
Combining (11) and (12) the above observations yields the conditional distribution of bth 

given the remainder of b and the hyperparameters. All other full conditionals are simulated 
as in the case of univariate latent factors. 

16 



References 

Bangia, A., F. X. Diebold, A. Kronimus, C. Schlagen, and T. Schuermann (2002). Rat­
ings migration and the business cycle, with application to credit portfolio stress testing. 
J. Banking Finance 26, 445–474. 

Basel Committee on Banking Supervision (2002, October). Quantitative impact, Study 3, 
Technical guidance. Bank of International Settlements. 

Basel Committee on Banking Supervision (2005, May). Working paper No. 14, Studies on 
validation of internal rating systems. Bank of International Settlements. 

Bernardo, J. M. and A. F. M. Smith (1994). Bayesian Theory. Wiley Series in Probability 
and Mathematical Statistics: Probability and Mathematical Statistics. Chichester: John 
Wiley & Sons Ltd. 

Boscardin, W. J. and R. E. Weiss (2004). Fitting unstructured covariance matrices to 
longitudinal data. Working paper, UCLA School of Public Health. 

Carlin, B. P. and T. A. Louis (2000). Bayes and Empirical Bayes Methods for Data Analysis 
(2nd ed.). Chapman & Hall/CRC. 

Casella, G. and R. L. Berger (2002). Statistical Inference (2nd ed.). Duxbury, Pacific Grove 
CA. 

Christensen, J. H. E., E. Hansen, and D. Lando (2004). Confidence sets for continuous­time 
rating transition probabilities. J. Banking Finance 28, 2575–2602. 

Fahrmeir, L. and G. Tutz (1994). Multivariate Statistical Modelling Based On Generalized 
Linear Models. Springer, New York. 

Frey, R., A. J. McNeil, and M. Nyfeler (2001). Copulas and credit models. Risk 14 (10), 
111–114. 

Frydman, H. and T. Schuermann (2005, June). Credit rating dynamics and Markov mixture 
models. Preprint, Wharton Financial Institutions Center. 

Gagliardini, P. and C. Gouriéroux (2005a). Migration correlation: Definition and efficient 
estimation. J. Banking Finance 29, 865–894. 

Gagliardini, P. and C. Gouriéroux (2005b). Stochastic migration models with application to 
corporate risk. Journal of Financial Econometrics 3 (2), 188–226. 

Gelfand, A. E. (1996). Model determination using sampling­based methods. In W. Gilks, 
S. Richardson, and D. Spiegelhalter (Eds.), Markov Chain Monte Carlo in Practice, pp. 
145–161. Chapman & Hall, London. 

Gilks, W. R. (1992). Derivative­free adaptive rejection sampling for Gibbs sampling. In 
J. Bernardo, J. Berger, A. Dawid, and A. Smith (Eds.), Bayesian Statistics 4, pp. 641– 
649. Oxford University Press, Oxford. 

Gilks, W. R. (1996). Full conditional distributions. In W. Gilks, S. Richardson, and 
D. Spiegelhalter (Eds.), Markov Chain Monte Carlo in Practice, pp. 75–88. Chapman 
& Hall, London. 

Gordy, M. and E. Heitfield (2002). Estimating default correlations from short panels of 
credit rating performance data. Technical report, Federal Reserve Board. 

17 



Gouriéroux, C. and A. Monfort (1996). Simulation­Based Econometric Methods. CORE 
Lecture series. New York: Oxford University Press. 

Hu, Y.­T., R. Kiesel, and W. Perraudin (2002). The estimation of transition matrices for 
sovereign credit ratings. J. Banking Finance 26, 1383–1406. 

Jafry, Y. and T. Schuermann (2004). Measurement, estimation and comparison of credit 
migration matrices. J. Banking Finance 28, 2603–2639. 

Johnson, M. E. (1987). Multivariate Statistical Simulation. Wiley. 

Johnson, N. L. and S. Kotz (1972). Distributions in Statistics: Continuous Multivariate 
Distributions. New York: John Wiley & Sons Inc. Wiley Series in Probability and Math­
ematical Statistics. 

Kijima, M. K., K. Komoribayashi, and E. Suzuki (2002). A multivariate Markov model for 
simulating correlated defaults. J. Risk 4 (4), 1–32. 

Koopman, S. J., A. Lucas, and R. J. Daniels (2005). A non­Gaussian panel time series model 
for estimating and decomposing default risk. Working paper, Tinbergen Institute. 

Koopman, S. J., A. Lucas, and P. Klaassen (2005). Empirical credit cycles and capital buffer 
formation. J. Banking Finance, in press. 

Koopman, S. J., A. Lucas, and A. Monteiro (2005). The multi­state latent factor intensity 
model for credit rating transitions. Working paper, Tinbergen Institute. 
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Sector Name # Obligors CAN 

1 ”Aerospace, automotive, capital goods, metal” 765 5.9 
2 ”Consumer, service sector” 920 3.2 
3 ”Leisure time, media” 571 5.3 
4 ”Utility” 486 5.4 
5 ”Health care, chemicals” 406 2.8 
6 ”High tech, computers, office equipment” + ”Telecom” 531 6.1 
7 ”Financial institutions” 717 4.2 
8 ”Insurance” 444 4.0 
9 ”Energy and natural resources” 359 9.1 

10 ”Forest and building products, homebuilders” + ”Real estate” 452 10.9 

Table 1: The table displays the industry sectors used for the analysis of Section 4. Sectors 6 and 10 
are mergers of two regular S&P sectors. The rightmost column shows the proportion (%) of Canadian 
firms in the sector. 
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Figure 1: The upper plot shows the posterior mean of the latent process (bt) under model (P3) 
including its 95 % confidence bounds. Observe that the width of the confidence interval decreases 
with time, as the number of obligors in the sample grows. The lower plot shows the posterior mean 
(full line) together with the evolution of the CFNAI {(t, xtβ) : t = 1, . . . , T} for reference. The point 
estimate of β in the lower plot is taken from model (P1). 
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AAA AA A BBB BB B CCC D 

AAA 
AA 
A 
BBB 
BB 
B 
CCC 
D 

97.73 
0.17 
0.02 
0.00 
0.01 
0.00 
0.01 

0 

2.04 
97.89 
0.49 
0.06 
0.02 
0.02 
0.01 

0 

0.17 
1.82 

97.91 
1.27 
0.12 
0.08 
0.09 

0 

0.03 
0.07 
1.42 

97.13 
1.54 
0.09 
0.24 

0 

0.02 
0.02 
0.11 
1.31 

95.70 
1.30 
0.41 

0 

0.00 
0.03 
0.05 
0.17 
2.33 

96.01 
3.03 

0 

0.00 
0.00 
0.00 
0.02 
0.15 
1.54 

84.24 
0 

0.00 
0.00 
0.00 
0.03 
0.14 
0.96 

11.97 
100.00 

Table 11: Unconditional quarterly migration matrix (%) of model (P3) with xt = 0, cf. Table 4. 

AA A BBB BB B CCC 

AA 0.02 0.04 0.06 0.07 0.06 0.10 
A 0.06 0.10 0.12 0.11 0.17 
BBB 0.17 0.19 0.18 0.27 
BB 0.21 0.20 0.31 
B 0.18 0.29 
CCC 0.45 

Table 12: Joint quarterly upgrade­correlation matrix (%) of model (P3), cf. Table 4. 

AAA AA A BBB BB B CCC 

AAA 0.28 0.26 0.23 0.23 0.30 0.29 0.59 
AA 0.24 0.22 0.21 0.28 0.27 0.55 
A 0.20 0.19 0.25 0.24 0.50 
BBB 0.19 0.25 0.24 0.49 
BB 0.32 0.31 0.64 
B 0.31 0.62 
CCC 1.27 

Table 13: Joint quarterly downgrade­correlation matrix (%) of model (P3), cf. Table 4. 

1 
�

t
T 
=1 log(CPO(i)) i\j (P2) (P3) (K1) (K2) (K3) (S1) (S2) (S3)i t 

(P1) −124.56 (P1) 34 60 60 76 74 79 78 78 
(P2) −124.46 (P2) 60 59 76 74 78 75 76 
(P3) −121.98 (P3) 41 72 62 78 75 78 
(K1) −121.73 (K1) 73 64 74 73 75 
(K2) −118.92 (K2) 20 57 54 55 
(K3) −119.26 (K3) 60 57 59 
(S1) −116.62 (S1) 40 36 
(S2) −116.74 (S2) 39 
(S3) −116.60 

T 

Table 14: The leftmost part of the table shows the mean CPO­value, see Section 3.3; the rightmost 
part holds #{t ∈ {1, . . . , T} : CPO(j) 

> CPO(i)}, where CPO(i) is the CPO under model i.t t t 
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