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Abstract
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the Liquidity Coverage and Net Stable Funding ratios of Basel III. When bank failures
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1 Introduction

Financial policy is historically motivated by the ’microprudential’ concern that bank failures
are socially costly. Following the crisis of 2008, ’macroprudential’ concerns have surfaced
(Hanson et al. 2011). Banks’ individual risk can contribute to systemic risk, which causes
inefficient fire sales and market freezes, thus harming the financial sector as a whole.

Systemic risk is not caused exclusively by insufficient bank capital. It is amplified if banks
fund long-term investments with short-term debt (Brunnermeier 2009). In response to this
problem, the Basel III Accord (BIS 2010) introduces liquidity coverage and net stable funding
ratios, which reflect macroprudential concerns and target maturity structure.

This paper addresses two questions from a welfare-theoretic perspective:

1. How should capital and maturity be regulated to deal with systemic risk?

2. How should this interact with regulation against costly bank failures?

My three-period model builds on Lorenzoni (2008) and Shleifer and Vishny (2010). There
are two fundamental financial frictions. First, banks need equity downpayments, or ’skin
in the game’, to raise funding. Second, banks can only sell assets to outside buyers at fire
sale prices. Fire sales are socially wasteful because outside buyers cannot extract as much
surplus from assets as banks.

Banks make long-term investments which are subject to aggregate and idiosyncratic shocks.
They fund themselves with equity and debt, choosing the maturity of debt endogenously.
Banks’ creditors have a preference for liquidity, so that long-term debt commands an inter-
est premium. Banks trade off this premium against rollover risk to choose their maturity
structure.

Fire sales occur when a bad aggregate shock creates a liquidity shortfall in the banking
sector. Then, banks struggle to roll over short-term debt due to the ’skin in the game’
constraint, and have to sell assets to outside buyers in order to repay short-term creditors.
Fire sales happen when banks are highly leveraged, or when their balance sheets feature
strong maturity mismatch.

Macroprudential regulation is justified by a pecuniary ’systemic externality’. Competitive
banks have no unilateral incentive to reduce leverage or maturity mismatch to avoid wasteful
fire sales, since they take fire sale prices as given. Due to the incompleteness of markets,
the pecuniary externality renders the competitive equilibrium generically inefficient as in
Geanakoplos and Polemarchakis (1985).

2



To answer my first question, I consider three modes of intervention: Centralisation by a social
planner, regulation using balance sheet constraints as in Basel III, and Pigouvian taxation.
The planner’s choices are efficient and maximise welfare subject to a ’no fire sale condition’.

Constraint-based regulation can achieve efficiency by imposing this condition on banks. It
only depends on systematic cash flow risk and the ’skin in the game’ constraint, and does
not require knowledge of other parameters such as funding costs, returns to investment or
idiosyncratic risk. The efficient Pigouvian tax, on the other hand, generally depends on all
parameters. Thus, constraint-based regulation offers significant informational advantages.
This result is fairly robust to extensions of the baseline model.

For the second question, I consider an extended model where bank failures generate dead-
weight costs to the economy. Systemic risk and default risk are not equivalent, and an
additional microprudential constraint is required to limit bank failures. The informational
requirements of macro- and microprudential regulation are similar, which suggests that del-
egating them to separate institutions may be suboptimal.

The optimal policy can be implemented within the Basel III framework. I show that the
optimal macroprudential policy can be implemented using either the Liquidity Coverage
Ratio (LCR) or Net Stable Funding Ratio (NSFR) requirements of Basel III. This result
supports Basel III, but the theoretical equivalence of LCR and NSFR suggest that the
framework could be simplified without loss of efficiency.

My theory supports time-varying macroprudential regulation, because optimal rules should
react to changes in systematic risk and credit conditions. However, microprudential rules
should also be time-varying, and additionally keep track of cross-sectional idiosyncratic risk.

The next section puts the paper in the context of the related literature. Section 3 sets up
the model. Section 4 analyses the competitive equilibrium and welfare. Sections 5 and 6
consider optimal macro- and microprudential regulation. Section 7 discusses the reaction
of optimal regulation over the business cycle. Section 8 concludes. All proofs are in the
appendix.

2 Related literature

There is a rich recent literature on pecuniary ’systemic risk’ externalities. Perotti and Suarez
(2011) look at optimal ways of regulating maturity in a reduced-form model without a sep-
arate leverage choice. Korinek (2012) studies a three-period model of excessive leverage,
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whereas Bianchi and Mendoza (2012) and Jeanne and Korinek (2010) compute optimal lever-
age policies in calibrated infinite-horizon models. Stein (2012) considers regulating the choice
between short-term and long-term debt through ’cap-and-trade’ mechanisms. Gersbach and
Rochet (2012) demonstrate a systemic externality in a model based on productivity shocks
and moral hazard. Finally, Goodhart et al. (2013) study the impact of multiple regulations
by simulating a complex general equilibrium model.1

In this context, this paper contributes by proposing optimal constraint-based regulation
targeting both leverage and maturity mismatch, and offering an explicit comparison with
Pigouvian taxes. Moreover, I characterise the interplay of optimal macro- and micropruden-
tial regulation analytically in a model with several externalities.

The classic corporate finance literature emphasises maturity choices based on asymmetric
information. Flannery (1986) shows that firms can use short-term borrowing as a signal of
quality. In Diamond (1991), firms choose debt maturity by trading off the risk of inefficient
liquidation by short-term creditors against the possibility of improved credit-ratings and
cheap refinancing. This paper proposes an alternative story specific to banks, where the
trade-off is driven by possible fire sales and the liquidity preference of creditors. A similar
mechanism is explored by Chen et al. (2013), who model maturity choice as determined by
rollover risk due to debt overhang and investors’ exposure to liquidity needs.

Fire sales also arise in the macroeconomic literature on the ’financial accelerator’ (Kiyotaki
and Moore 1997, Bernanke et al. 1999, Shin 2010 , He and Krishnamurthy 2012). Additional
sources of financial instability include ’margin spirals’, when ’skin in the game’ requirements
rise in bad times (Geanakoplos 2009, Brunnermeier and Pedersen 2009), uncertainty about
complex financial networks (Caballero and Simsek 2009) and irrational expectations (Gen-
naioli et al. 2012).

Bank runs are another cause of financial fragility. Diamond and Dybvig (1983) sparked a vast
literature on this subject based on multiple equilibria. More recently, Gertler and Kiyotaki
(2013) analyse bank runs in a dynamic economy with endogenous liquidity mismatch. Bank
runs do not occur in my model because bank debt is secured and there is no sequential service
problem. If unsecured debt were introduced, runs on unsecured debt and ’skin in the game’
constraints on secured debt would work together to exacerbate bank funding problems and
fire sales.

1Farhi and Tirole (2012), Jeanne and Korinek (2013) and Benigno et al. (2013) address the issue of ex
post policies such as bailouts, central bank loans and quantitative easing. Combining their arguments with
the ex ante analysis of this paper is an interesting topic for future research.
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3 The model

Agents and time. There are three types of agents: Banks, creditors and outside buyers.
All agents are risk-neutral and nobody discounts the future. There is a unit measure of each
type. The model has three dates t ∈ {0, 1, 2} and one consumption good called cash, which
can be stored costlessly over time by all agents.

Aggregate uncertainty. The aggregate state is good or bad: s ∈ {g, b}. The bad state
occurs with probability P [s = b] = α, and the good state occurs with probability 1−α. The
aggregate state becomes public information at t = 1.

Individual uncertainty among banks. For bank i ∈ [0, 1], the individual state is high or
low: zi ∈ {H,L}. The low individual state occurs with probability P [zi = L] = β, and the
high state occurs with probability 1−β. The individual state is independent of the aggregate
state, and independent across banks. Individual states also become public information at
t = 1.

Bank projects. Banks can invest in risky long-term projects at t = 0, which cost one
unit of cash. At t = 1, each project yields a state-contingent cash flow v1s + εzi . v1s is the
aggregate cash flow, and v1g > v1b ≥ 0. εzi is the idiosyncratic shock, and εH > εL. Without
loss of generality, assume that E [εzi ] = (1− β) εH + βεL = 0.2

At t = 2, each project yields v2s, where v2b < v2g ≤ 1.3 The t = 2 cash flow is a partial
repayment of the initial investment, and the fraction repaid is higher in the good state. Let
R = E [v1s + v2s] − 1, and assume that R > 0, so that projects have positive expected net
present value.

After cash flows are received at t = 1, projects are traded in a competitive secondary market.
The secondary market price for projects at t = 1 in aggregate state s is ps.

Collateral constraint. Banks can raise debt from creditors, using projects as collateral. As
in Shleifer and Vishny (2010), there is an exogenous ’marked-to-market’ collateral constraint:

loan = (1− h)×market value of collateral (1)

where h ∈ (0, 1) is the ’haircut’ on debt. Other things being equal, a larger haircut decreases
the likelihood of default, since more collateral is pledged per unit borrowed. h is assumed to

2If E [εzi ] = ε̄ 6= 0, one could simply redefine v̂1s = v1s + ε̄ for all s, and ε̂zi = εzi − ε̄ for all zi.
3I assume away idiosyncratic risk at t = 2. This is for clarity of exposition and does not affect the

qualitative results.
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be large enough to rule out any bank default in the baseline model - an explicit condition is
given below.4

Creditors and liquidity preference. Banks make ’take it or leave it’ offers of short- and
long-term debt contracts to creditors. Short-term debt contracts last one period and can be
issued at t = 0 and t = 1. Long-term debt lasts two periods and is only available at t = 0.
Each creditor has an endowment of Y at t = 0 and I assume that Y is large, so that the
bank never exhausts creditors’ endowment at any date.

Creditors have a preference for liquidity due to a potential investment opportunity at t = 1,
which yields a net return of q > 0 at t = 2. Alternatively, one can think of creditors having a
potential liquidity need at t = 1, e.g. due to illness, and a marginal utility of 1+q of servicing
this need. Creditors are heterogeneous, and uniformly distributed on the unit interval. For
creditor k ∈ [0, 1], the investment opportunity arises with probability λ (k), where λ (0) = 0
and λ′ (k) > 0, independently across creditors.

Banks optimally offer interest payments to make creditors indifferent between debt contracts
and holding cash. No interest payment is required on short-term debt, as long as Y is large
enough so that banks can borrow freely from creditors without an investment opportunity at
t = 1. The required long-term interest rate for creditor k is λ (k) q > 0, which compensates
for the expected cost of forgone opportunities.

Note that long-term debt is not only costly for banks, but also reduces the social surplus.
Long-term debt reduces socially valuable maturity transformation by intermediaries.

Bank investments at t = 0. Each bank has a fixed equity endowment of e0.5 Since banks
are ex ante identical, I suppress i-superscripts and analyse the decisions of the representative
bank (’the bank’), contingent on aggregate and individual states.

The bank invests in n0 projects funded by (and pledged as collateral against) short-term
debt. By (1), it raises (1− h)n0 in short-term debt, and contributes hn0 of its own equity.6

The bank invests in n̄0 projects funded by long-term debt. It raises (1− h) n̄0 in long-term
4Borrowing constraints can be derived from inalienable returns (Hart and Moore 1994) or moral hazard

(Holmström and Tirole 1997). Generalising my analysis to endogenous haircuts is a subject for future
research.

5The assumption of fixed equity is fairly standard in the related literature, and represents a parsimonious
approach to modelling costs of or limits to outside equity issues, for instance due to informational asymmetries
(Myers and Majluf 1984). Additionally, I assume that no additional equity can be raised at t = 1. Relaxing
this would only affect my results if banks were able to raise outside equity in times of crisis, i.e. in the bad
state at t = 1. However, it is generally accepted that doing so is very difficult due to time pressure or debt
overhang problems (see Hanson et al. 2011).

6I use the convention that the ’market value’ of projects at t = 0 is one, as this is the ratio at which cash
can be turned into projects.
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debt and contributes hn̄0 of its own equity. The bank is obliged to hold the collateral, n̄0

projects, until the debt matures.7

The cheapest way to borrow (1− h) n̄0 units long-term is to go to the creditors who are least
likely to have an investment opportunity. Thus, the bank borrows Y units from all creditors
k ∈ [0, (1− h) n̄0/Y ], promising each of them an interest payment of λ (k) qY . This implies
that the (minimised) interest payment at t = 2 is equal to

(1−h)n̄0
Ŷ

0

λ (k) qY dk ≡ r (n̄0)

It is easy to verify that the function r is strictly increasing, strictly convex and twice differ-
entiable, with r (0) = r′ (0) = 0.

Any equity not spent on downpayments is held as cash, denoted c0.8 The bank’s choices at
t = 0 are summarised by x0 = (c0, n0, n̄0) ∈ R3

+, and its budget is

e0 = h (n0 + n̄0) + c0 (2)

Let B0 ⊂ R3
+ be the set of bank choices x0 that satisfy the budget.

Diseconomies of scale. Investing in risky projects requires careful monitoring and risk
management, which becomes increasingly costly as the scale of investment increases. This
implies that there are diseconomies of scale to investment in risky projects. The bank incurs
a disutility of monitoring effort at t = 0 which is equal to g (n0 + n̄0), where the function g
is strictly increasing, strictly convex and twice differentiable.9

Bank cash flows at t = 1. After states s and z are revealed at t = 1, the bank receives the
cash flow v1s + εz for the n0 + n̄0 projects it invested in at t = 0. It also repays its short-term
creditors (1− h)n0.

7One does not need to require the bank to hold the projects themselves as collateral, but merely assets
of equivalent value. This would not change my main results, as the bank would still be unable to liquidate
the collateral to finance itself at t = 1.

8The bank does not invest in unlevered projects that are funded in full by equity. It can be shown that
this assumption is without loss of generality, since the cash flow from an unlevered project can be replicated
by a combination of short-term debt and cash.

9The assumption of convex disutility (e.g. Allen and Gale 2000) ensures that there is an interior solution
to the bank’s maximisation problem, and a meaningful trade-off between investment in projects and holding
cash. There are other ways to achieve this, such as limited risk tolerance or decreasing monetary returns to
investment, but this formulation makes for a particularly neat exposition.
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The bank’s equity at t = 1, denoted ez
1s, is defined as the sum of the net cash flow and the

value of its marketable assets. Marketable assets exclude the n̄0 projects which are pledged
as collateral against long-term debt. The remaining assets are cash c0 and n0 projects with
a market value of ps each. Hence, equity is

ez
1s = c0 + (n0 + n̄0) (v1s + εz) + n0ps − (1− h)n0 (3)

Bank investments at t = 1. After trading in the secondary market, the bank holds
nz

1s projects funded by new short-term debt. By (1), it raises (1− h) psn
z
1s in debt and

contributes hpsn
z
1s of its own equity. The bank holds cz

1s units of cash. Its choices at t = 1
are xz

1s = (cz
1s, n

z
1s) ∈ R2

+, and its budget is

ez
1s = hpsn

z
1s + cz

1s (4)

where ez
1s is its t = 1 equity, which is related to its first-period choices x0 by equation (3).

Let Bz
1s (x0) ⊂ R2

+ be the set of bank choices that satisfy the budget.

Bank cash flows at t = 2 in state s. The bank receives the cash flow v2s for the n̄0 + nz
1s

projects held at t = 1. It repays short-term and long-term creditors. The bank’s utility Πz
s

is given by the sum of the net cash flow and retained cash, minus monitoring costs incurred
previously:

Πz
s = cz

1s + v2s (nz
1s + n̄0)− (1− h) psn

z
1s − (1− h) n̄0 − r (n̄0)− g (n0 + n̄0) (5)

Outside buyers. In addition to banks, outside buyers participate in the secondary market
for projects at t = 1. Outside buyers have less project management skills than banks, and
can only extract a cash flow of p < v2b per project at t = 2.

Competitive equilibrium. Market clearing requires that the banking sector cannot be a
net buyer of projects in the secondary market, since no projects are sold by anybody else.
Moreover, if a strictly positive number of projects are sold by the banking sector, then their
price must equal the marginal valuation of outside buyers p. This value plays the role of a
fire sale price.10

Note that in aggregate state s, a measure β of banks have a low individual shock zi = L ,
and sell n0 − nL

1s projects. A measure 1 − β have a high shock and sell n0 − nH
1s projects.

This yields the following definition of equilibrium:
10Shleifer and Vishny (2011) provide an excellent theoretical and empirical survey on fire sales.
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Definition 1. A competitive equilibrium is described by asset prices ps for s ∈ {g, b} and
bank choices x0 ∈ R3

+ and xz
1s ∈ R2

+ for s ∈ {g, b} and z ∈ {H,L} satisfying

1. Optimality. The bank’s choices maximise E [Πz
s] subject to x0 ∈ B0 and xz

1s ∈ Bz
1s (x0),

taking asset prices as given.

2. Market clearing. For all s ∈ {g, b},

n0 −
(
βnL

1s + (1− β)nH
1s

)
≥ 0 (6)

Furthermore, ps ≥ p, and if (6) is a strict inequality, then ps = p.

Parametric assumptions. The following assumption makes the analysis of fire sales in-
teresting:

Assumption 1. Aggregate cash flows at t = 1 satisfy

v1g >
(
1− p

)
(1− h)

v1b < (1− v2b) (1− h)

The first condition ensures that in the good state, aggregate bank liquidity is high, so that
banks never have to sell assets to outside buyers in equilibrium. The second condition ensures
that aggregate liquidity is low enough in the bad state to make fire sales a possibility.

Moreover, I impose a condition guaranteeing that bank debt is risk free in the baseline model.
As discussed above, this requires a lower bound on the haircut h.

Assumption 2. For all n̄0 ∈ [0, e0/h], the haircut satisfies

h > 1− p+ r (n̄0)

This condition states that the bank can always sell its assets in the secondary market, service
its outstanding debt and interest obligations, and have cash left over. Thus, it has positive
continuation value at t = 1 and will not default.

4 Competitive equilibrium

Bank profits. The bank earns a basic expected net return of R on each of the (n0 + n̄0)
projects it invests in. It has to pay interest on long-term debt and incurs monitoring costs.
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Hence, its expected basic profits are

R (n0 + n̄0)− r (n̄0)− g (n0 + n̄0)

The bank may also make profits or losses from trading projects in the secondary market
at t = 1. By virtue of Assumption 1, projects will be priced fairly in the good state in
equilibrium, pg = v2g. There are two relevant scenarios in the bad state: Projects can be
priced fairly (pb = v2b) or underpriced (pb < v2b).11

If projects are priced fairly, then the bank cannot gain or lose from trading. If they are
underpriced, the bank will optimally hold as many projects at as possible in the bad state.
From the budget (4), it follows that this is achieved by holding no cash, i.e. setting cz

1b = 0
and nz

1b = ez
1b/pbh. Its net sale of assets is then ez

1b/pbh − n0. On each asset sold, the bank
loses v2b − pb (it gains when the net sale is negative).

The bad state occurs with probability α, so that expected trading losses are α (v2b − pb)
times the expected net sale. Using the definition of equity ez

1s in (3), the budget constraint
(2) and the fact that E [εz] = 0, expected trading losses are

φ (pb) [(n0 + n̄0) (1− pb (1− h)− v1b)− n̄0 (1− pb) (1− h)− e0] (7)

where φ (pb) = α (v2b − pb) /pbh.

The term in square brackets is the bank’s expected liquidity shortfall, which measures the
difference between its t = 1 equity and the amount required to hold on to n0 assets. The
factor φ (pb) is the marginal value of bank liquidity at t = 1. It is the product of the likelihood
of the bad state, the undervaluation of projects, and the number of assets that can be bought
with one unit of liquidity, which is 1/pbh.

Lemma 1. In any competitive equilibrium, asset prices satisfy pg = v2g and pb ∈
[
p, v2b

]
.

The bank’s expected profits satisfy E [Πs] = V (x0, pb), and its choices solve the problem
maxx0∈B0 V (x0, pb), where

V (x0, pb) = R (n0 + n̄0)− r (n̄0)− g (n0 + n̄0)

− φ (pb) [(n0 + n̄0) (1− pb (1− h)− v1b)− n̄0 (1− pb) (1− h)− e0] (8)

Optimality conditions. Assuming that the solution to the bank’s maximisation problem
is interior, its choices are characterised by two marginal conditions:12

11The proof of Lemma 1 verifies that these are the only possibilities.
12Appendix B derives parametric conditions that guarantee an interior solution.
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r′ (n̄?
0) = φ (pb) (1− pb) (1− h) (9)

R− g′ (n?
0 + n̄?

0) = φ (pb) [1− pb (1− h)− v1b] (10)

Equation (9) determines optimal maturity structure. The left-hand side is the marginal cost
of long-term funding, driven by creditors’ liquidity preference. The right-hand side is the
marginal liquidity cost of short-term funding. It is equal to the marginal value of liquidity
times the liquidity injection required to roll over short-term debt.

Equation (10) determines optimal investment. The left-hand side is the marginal basic
profit of investment in projects, net of monitoring costs. The right-hand side is the marginal
benefit of cash, driven by the fact that cash offers liquidity in the bad state. It is equal
to the marginal value of liquidity times the decrease in the expected shortfall when cash is
substituted for projects.

4.1 Fire sales

When there is an aggregate liquidity shortfall at t = 1, banks must sell assets to outside
buyers. By the law of large numbers, the aggregate liquidity shortfall is the same as the
expected liquidity shortfall of an individual bank, i.e. the term in square brackets in (7).
If this is positive, the banking sector is an aggregate net seller of projects in the bad state.
Consequently, there is a fire sale and the price has to drop to the valuation of outside buyers
p.

The focus of this paper is on situations where fire sales arise in competitive equilibrium.
This occurs when investment in projects is sufficiently attractive, and when long-term debt
is sufficiently costly. In that case, banks find it worthwhile to invest a large proportion of
their initial equity in projects funded by short-term debt, and hold few cash reserves, which
naturally creates an aggregate liquidity shortfall.

Projects are attractive when the net present value R is high. Long-term debt is costly when
creditors have a strong liquidity preference, which corresponds to a high return q on their
potential investments.

Proposition 1. There are two thresholds Rf > 0 and qf > 0, which are functions of the
parameters other than R and q, such that when R > Rf , and q > qf , the unique competitive
equilibrium has a fire sale, with pb = p.
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In the remainder of the paper, I assume that there is a fire sale in equilibrium. Thus, I will
focus on the parametric region where R > Rf and q > qf .

4.2 The cost of fire sales and systematic risk

Fire sales are a systematic phenomenon, as they are driven by aggregate illiquidity. I now
analyse how the cost of fire sales is affected by increases in systematic risk. Increased
systematic risk is captured by mean-preserving spreads in the aggregate cash flows v1s and
v2s.

I have assumed that there is some systematic risk in the economy (v1g > v1b), or equivalently,
that there is positive correlation in cash flow risk across banks. If cash flow risk were entirely
idiosyncratic (v1b = v1g), fire sales would not arise, as banks with high cash flows would buy
assets from banks with low cash flows, and outside buyers would not need to get involved.
This is analogous to the point on aggregate liquidity shortages in Holmström and Tirole
(1998). In their model, there is no role for public liquidity provision when shocks are purely
idiosyncratic, since firms can insure each other. Here, there is no role for regulation when
cash flow shocks are purely idiosyncratic.

In my model, systematic risk is sufficiently high to cause fire sales in equilibrium. Fire sales
are costly, as banks make losses by selling projects below value. The losses in equilibrium
are equal to (7), evaluated at the equilibrium price pb = p and the optimal choices n?

0 and
n̄?

0.

Fire sale costs do not depend on the individual shock εz, and are unaffected by idiosyncratic
risk. They do, however, respond to changes in systematic risk.

Proposition 2. A mean-preserving spread in v1s increases the equilibrium cost of fire sales
if and only if

g′′ (n?
0 + n̄?

0) >
φ
(
p
) (

1− p (1− h)− v1b

)
(n?

0 + n̄?
0)

A mean-preserving spread in v2s increases the cost of fire sales if g′′ (n?
0 + n̄?

0) is sufficiently
close to this lower bound.

To understand this result, note there are direct and indirect effects of increased systematic
risk. A mean preserving spread in v1s decreases v1b, which directly increases fire sale costs by
reducing cash flow liquidity. However, banks optimally react by investing less, which reduces

12



their liquidity shortfall and the cost of fire sales.13 Costs increase on balance when the first
effect dominates. This occurs when banks’ demand for investment is inelastic, i.e. when the
curvature of monitoring costs g′′ is big enough.

A mean-preserving spread in v2s decreases v2b, which directly lowers cost by diminishing the
fire sales discount and lowering the marginal value of liquidity φ. However, banks optimally
respond to a lower φ by investing more and issuing less long-term debt, which increases
their liquidity shortfall. Costs increase when the second effect dominates. This occurs when
banks’ demand for investment is not too inelastic, i.e. when g′′ is not too big.

An alternative interpretation of these results is in terms of the correlation between banks.
The correlation between the t = 1 cash flows of bank i and j is

Corr (v1s + εzi , v1s + εzj ) = 1
1 + V ar (εz) /V ar (v1s)

A change in correlation affects the cost of fire sales if and only if it is driven by an increase in
systematic risk through V ar (v1s). If correlation changes due to changes in systematic risk
through V ar (εz), the costs are unaffected.

4.3 The social planner’s choice

I now study the choices of a benevolent planner who dictates t = 0 bank choices x0 =
(c0, n0, n̄0) but has to satisfy the bank’s budget constraint (2). He leaves banks to optimise
given x0 and market prices at t = 1. His choices induce a planned equilibrium.

There are three types of agents: Banks, creditors and outside buyers. Creditors and outside
buyers are always indifferent between dealing with the bank and consuming their exogenous
endowment, so that their utility is the same in any planned equilibrium. Hence, the social
planner seeks to maximise expected bank profits in planned equilibrium. His optimal choices
are called constrained efficient. Constrained efficiency differs from full Pareto efficiency in
that my social planner cannot freely transfer wealth between groups of agents, e.g. between
creditors and banks.

One vector of social planner’s choices x0 may induce multiple planned equilibria. This is
due to a self-fulfilling debt-deflation spiral, which implies that both high and low asset prices
may clear the market: When asset prices are high, banks have no funding problems and do

13This indirect effect is closely linked to the point on maturity and systematic risk in Chen et al. (2013).
In their dynamic model, firms with high systematic risk exposure choose a longer debt maturity. Condition
(9) shows that the optimal maturity of debt also lengthens with an increase in systematic risk in my model.
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not sell assets. When asset prices are low, banks are forced to sell. To facilitate the analysis,
I assume that the market selects the ’better’ equilibrium without a fire sale.

Assumption 3. If the social planner’s choices induce multiple planned equilibria, the one
with the highest equilibrium price pb is selected with probability 1.

It is helpful to examine what the social planner needs to do to avoid a fire sale. He has to
choose t = 0 investments such that fair pricing in all states (ps = v2s) is an equilibrium.
This can only be the case if, given fair prices, there is no aggregate liquidity shortfall.

Lemma 2. In planned equilibrium prices satisfy pg = v2g. Furthermore, pb = v2b if the
planner’s choice x0 satisfies the ’no fire sale’ condition

(n0 + n̄0) (1− v2b (1− h)− v1b)− n̄0 (1− v2b) (1− h) ≤ e0 (11)

and pb = p otherwise.14

This characterisation illustrates the two basic trade-offs the planner faces if he wishes to
avoid a fire sale. First, he trades off investment in projects n0 + n̄0 against holding cash
reserves. The no fire sale condition is more likely to hold when cash reserves are high and
n0 + n̄0 is low, because cash provides a liquidity cushion. The downside is that projects have
a higher net present value than cash.

Second, the planner trades off short-term against long-term borrowing. The no fire sale
condition (11) is more likely to hold when long-term debt is used, since it alleviates the
rollover problem. However, long-term debt is expensive due to the social value of bank
maturity transformation.

4.4 Generic inefficiency of equilibrium

Recall that in competitive equilibrium, the bank invests much of its equity in projects funded
by short-term debt, which leads to a fire sale. I establish that the inefficiency of competitive
equilibrium is generic. For a range of parameter values, the social planner chooses not to
replicate banks’ choices in competitive equilibrium.

14I assume that the social planner always invests in some projects funded by short-term debt, or n0 > 0.
For n0 = 0, then there would be no projects for sale at t = 1 and the secondary market would shut down.
n0 = 0 would never be optimal since projects have positive NPV.
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Proposition 3. There exists an open set of values R > Rf and q > qf for which the com-
petitive equilibrium is constrained inefficient. Then the unique constrained efficient choice,
denoted xE

0 , solves the problem

max
x0∈B0

R (n0 + n̄0)− r (n̄0)− g (n0 + n̄0) (12)

subject to (n0 + n̄0) (1− v2b (1− h)− v1b)− n̄0 (1− v2b) (1− h) ≤ e0

Aggregate actions in competitive equilibrium lead to a situation with fire sales and reduced
individual profitability. This creates a ’systemic externality’: The choices of individual banks,
by contributing to aggregate illiquidity and low equilibrium prices, reduce the profitability
of others. Thus, banks may be better off if they are forced to coordinate on lower aggregate
risk-taking by a social planner.

Systemic externalities are pecuniary externalities because they work through equilibrium
prices. Pecuniary externalities affect welfare when financial markets are incomplete (Geanako-
plos and Polemarchakis 1985). Incompleteness arises here because of binding borrowing con-
straints.15 Raising the equilibrium price relaxes this constraint, which benefits banks more
than it harms buyers. The argument of Greenwald and Stiglitz (1986) on the neutrality of
pecuniary externalities breaks down.

To understand the characterisation of the efficient choice, note that when the competitive
equilibrium is constrained inefficient, the social planner will choose to prevent a fire sale in
the bad state by satisfying the no fire sales condition.16 Subject to that condition, he will
wish to maximise bank profits, as stated in the proposition.

4.5 A graphical illustration

Figure 1 illustrates the welfare analysis. The social planner dictates t = 0 bank investments
x0 = (c0, n0, n̄0). Given the project investments n0 and n̄0, cash holdings are determined by
the budget constraint in equation (2). There are two free choice variables, n0 and n̄0. The
feasible set is the area under the budget line, which has slope −1.

Leverage and maturity mismatch can be visualised in the figure. Leverage corresponds to
a high total number of projects n0 + n̄0. Leverage is high in the north-east of the figure,

15Other applications to finance include Kehoe and Levine (1993), Gromb and Vayanos (2002) and Caballero
and Krishnamurthy (2003).

16Any choice that induces a fire sale is dominated by a replication of the competitive equilibrium.
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Figure 1: Welfare analysis

when the choice is close to the budget line. Maturity mismatch corresponds to a high ratio
of short-term debt to total debt n0/ (n0 + n̄0). Maturity mismatch is high in the north-west
of the figure.

The dashed line illustrates the no fire sale condition (11). The social planner needs to choose
a point on or below the line to avoid a fire sale. The slope of the line is flatter than the budget
line, because substituting long-term debt for short-term debt alleviates liquidity issues.

The planner maximises the objective in (12) subject to the no fire sales condition. The
isoprofit contours are level curves of the objective function, and are ellipses around the
unconstrained optimum at point A. Point A would be the choice of unregulated banks
given pb = v2b. Since A lies above the no fire sale condition, pb = v2b is not a competitive
equilibrium.

The constrained efficient point is at point B, where the isoprofit curves are tangent to the no
fire sale condition. This point features both reduced leverage and reduced maturity mismatch
compared to the unconstrained choice A.
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5 Optimal macroprudential regulation

This section discusses how financial regulation can be used to avoid inefficient fire sales in
a decentralised equilibrium. In the language of Hanson et al. (2011), regulation against
fire sales is macroprudential regulation, as it is concerned with aggregate behaviour and
systematic risk.

I consider two macroprudential tools: Constraint-based regulation and Pigouvian taxation.
Constraint-based regulation requires that bank choices x0 lie in some non-empty setQ0 ⊂ B0.
Pigouvian taxation requires banks to pay the regulator τ per unit of investment, and receive
a rebate ρ̄ per unit of investment which is funded by long-term debt. Each constraint-based
or Pigouvian regulatory regime induces a regulated equilibrium. Unlike in previous studies
of Pigouvian taxes against systemic risk, I model a two-tier tax regime. A simple tax would
not be able to achieve efficiency, as it cannot give nuanced incentives for reduced leverage
and maturity mismatch.

As in the previous section, I impose and assumption to deal with multiple regulated equilib-
ria:

Assumption 4. If a regulatory regime induces multiple regulated equilibria, the one with the
highest equilibrium price pb is selected with probability 1.

5.1 Constraint-based regulation

By definition, a regulator can never do better than the social planner in Section 4.3. Hence, if
a regulated equilibrium is constrained efficient (i.e. if it replicates the planner’s choice), then
it must be optimal. Trivially, dictating that banks must replicate the planner’s choice (Q0 ={
xE

0

}
) is an optimal regulatory constraint. However, this regime offers no informational

advantage over outright centralisation.

As an alternative, the regulator can impose a constraint which mimics the no fire sale con-
dition (11). Under this constraint, the bank’s problem becomes to maximise profits subject
to ’no fire sale’. But Proposition 3 shows that this is equivalent to finding the constrained
efficient investment. In terms of the graphical analysis in Figure 1, if the no fire sale con-
dition is imposed on banks as a constraint, their privately optimal choice will coincide with
the constrained efficient point B, yielding an efficient allocation in regulated equilibrium.

Proposition 4. The following regulatory constraint induces a constrained efficient regulated
equilibrium:
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Qmacro
0 = {x0 ∈ B0| (n0 + n̄0) (1− v2b (1− h)− v1b)− n̄0 (1− v2b) (1− h) ≤ e0} (13)

The optimal rule (13) is remarkably simple in two ways. First, if she can observe the
bank’s balance sheet, the regulator only needs to know three parameters to impose Qmacro

0 :
Aggregate cash flows in the bad state v1b and v2b, and the haircut h. Second, it is linear in
banks’ investment choices.

It is easy to see why a linear constraint is optimal in the current model. The optimal rule
mimics the no fire sale condition (11). This reduces to the requirement that bank equity at
t = 1, which is a linear function of investment choices, must be above a certain threshold
to avoid an aggregate liquidity shortfall. Therefore, even though the marginal value of bank
liquidity φ is non-linear, the optimal regulation to ensure sufficient bank liquidity is linear.17

This is a key result of this paper. A simple linear rule is fully efficient, in the sense that it
achieves the same level of welfare as a benevolent planner. The generality of this conclusion
is discussed at the end of this section.

In contrast, a central planner generally needs to know all parameters of the model to solve the
full optimisation problem (12). This comparison illustrates the considerable informational
advantage of constraint-based regulation over centralisation. Limited knowledge of the value
of investment R, monitoring costs g or funding costs r, for instance, does not render this
policy ineffective.18 Intuitively, the constraint Qmacro

0 gives banks the incentive to use their
information efficiently, without the regulator having to obtain it.

5.2 Pigouvian taxation

The purpose of taxes is to ensure that banks’ optimal choices when there is no fire sale
(pb = v2b) coincide with the choices of the social planner (xE

0 ). Under this condition, the
regulated equilibrium with taxes will be constrained efficient.

The representative bank’s problem when pb = v2b is to maximise V (x0, v2b) net of taxes. Its
17Bolton et al. (2011) provide a general characterisation of the (highly non-linear) marginal value of firm

liquidity in a dynamic model.
18Even though both centralisation Q0 =

{
xE

0
}
and Qmacro

0 are technically efficient in this model, it is easy
to show that for any constraint Q′0 6= Qmacro

0 , there exist values of the parameters other than v1b, v2b and h
such that Q′0 does not induce a constrained efficient equilibrium. In this sense, Qmacro

0 is uniquely optimal.
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first-order conditions are now

R− g′ (n?
0 + n̄?

0) = τ

r′ (n̄?
0) = ρ̄

An efficient tax regime must ensure that these choices coincide with the social planner’s. By
taking the first-order condition of the planner’s program (12), it is easy obtain the following
characterisation.

Proposition 5. The unique tax regime inducing a constrained efficient regulated equilibrium
is

τ = λ [1− v2b (1− h)− v1b]

ρ̄ = λ (1− v2b) (1− h)

where λ is the Lagrange multiplier associated with the no fire sale condition at the solution
of the social planner’s problem (12).

This proposition shows that a two-tier Pigouvian tax can achieve efficiency. However, it does
not compare favourably with constraint-based regulation when it comes to informational
requirements. In order to pick the optimal tax regime τ and ρ̄, the regulator needs to know
the cash flow parameters v1b, v2b and the haircut h. In addition, she needs to know the social
planner’s Lagrange multiplier λ, which measures the social value of aggregate bank liquidity
in the bad state.

In particular, one can use the planner’s first-order condition to solve for λ, which yields

τ = R− g′
(
nE

0 + n̄E
0

)
ρ̄ = r′

(
n̄E

0

)

The efficient tax rates are functions of the planner’s optimal choices nE
0 and n̄E

0 . In general,
these choices depend on all parameters of the model. Consequently, it appears that Pigouvian
taxes are efficient, but more complex to implement than constraint-based regulation.

5.3 Implementation and Basel III

Capital requirements are insufficient to implement the optimal macroprudential regulation.
They treat all debt equally, and cannot provide the differential treatment of long-term and
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short-term borrowing that is prescribed by Qmacro
0 .

The Basel III Accord (BIS 2010) proposes two more nuanced tools: Net Stable Funding Ratio
(NSFR) and Liquidity Coverage Ratio (LCR) requirements. Both can be used to implement
optimal regulation in my model.

Net Stable Funding Ratio. The NSFR requirement works as follows:

1. Available stable funding (ASF) is a weighted sum of bank liabilities. Liabilities which
lead to liquidity shortfalls have low weights.

2. Required stable funding (RSF) is a weighted sum of bank assets. Illiquid assets which
cannot be sold easily have high weights.

3. The NSFR is calculated as the ratio of available to required stable funding. The
regulatory constraint is ASF/RSF ≥ 1.

Using the budget constraint (2), the optimal constraint Qmacro
0 can be written as

ASF

RSF
= e0 + (1− v2b) (1− h) n̄0

[1− v2b (1− h)− v1b] (n0 + n̄0) ≥ 1 (14)

This formulation allows me to provide practical guidance for the calibration of weights in
the NSFR requirement. In the numerator, equity receives a weight of 100%, whereas long-
term debt (1− h) n̄0 receives a lower weight of (1− v2b) < 1. Long-term debt is not quite
as ’stable’ as equity, because it obliges the bank to pledge assets as collateral, reducing its
liquidity in a crisis as these assets cannot be pledged against new debt.

In the denominator, liquid cash receives zero weight. Projects receive a weight equal to
1− v2b (1− h)− v1b ∈ (0, 1). Their ’stability weight’ is lower when systematic cash flow risk
is high and when funding conditions are tight (high h), since both factors exacerbate rollover
problems.

Liquidity Coverage Ratio. The LCR requirement works as follows:

1. Net cash outflows (NCO) are a weighted sum of bank liabilities. Liabilities which are
withdrawn by creditors in a 30-day stress test scenario (determined by the regulator)
have high weights.

2. High quality liquid assets (HQLA) are a weighted sum of bank assets. Illiquid assets
have low weights.
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3. The LCR is calculated as the ratio of high quality liquid assets to net cash outflows.
The regulatory constraint is HQLA/NCO ≥ 1.

The optimal constraint Qmacro
0 can also be written as

HQLA

NCO
= c0 + (n0 + n̄0) v1b

(1− v2b) (1− h)n0
≥ 1

This yields practical insights for the design of ’liquidity weights’ and the stress test scenario
underlying the NCO. In the numerator, liquid cash receives a 100% weight, and projects
receive a weight that is equal to their liquidity contribution in the bad state, v1b < 1. In the
denominator, representing the optimal stress-test scenario, long-term debt and equity are
not withdrawn, whereas a proportion (1− v2b) of short-term debt (1− h)n0 is withdrawn.
The withdrawal rate on short-term debt is lower when systematic long-term risk is high,
since this erodes the value of projects as collateral in a crisis, again exacerbating rollover
problems.

In sum, my model supports the joint application of capital requirements and new macro-
prudential tools. I remain agnostic about which of the new tools in Basel III is preferable;
either tool can achieve efficiency. The Basel committee’s proposals include both due to wor-
ries about systemic risk at different time horizons. The LCR’s weights are designed with
short-term risk in mind, while the NSFR focuses on longer-term stability.

While risk at different time horizons is a valid concern (and is supported formally by my
dynamic extension below), the analysis here reveals that the two tools are equivalent for
dealing with systemic risk. It would arguably be beneficial to simplify the regime by having
two LCR’s, one with a short-term and one with a long-term focus, rather than two constraints
with superficially different names and definitions.

5.4 The generality of linear optimal rules

I examine whether the linearity and simplicity of Qmacro
0 is an artifact of my simple model

economy. An obvious first observation is that if project investment did not exhibit constant
returns to scale, the no fire sale condition would not be linear. One response is that a first-
order approximation of the condition would still be linear, and that this may offer a useful
regulatory benchmark. Another response is that the assumption of constant returns, a stan-
dard in the banking literature, is quite reasonable. Financial assets and loans to households
and businesses with similar characteristics have a natural constant-returns property.
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A more interesting question is whether the static nature of the model or the binary nature of
fire sales (outside buyers demand any quantity at price p, but nothing at any higher price)
is driving the result. The following two extensions address these concerns.

Dynamic extension. Consider an extension of the model until time T > 2, where the
individual and aggregate states, st ∈ {g, b} and zi

t ∈ {H,L} for t ≥ 1, evolve according to
independent Markov chains. For simplicity, I continue to assume that project investment
and long-term borrowing only takes place at t = 0. For period t, let vt denote the per-unit
cash flow of projects, ct−1 the aggregate cash holdings, and nt−1 the amount of projects held
by banks and pledged against short-term debt between t− 1 and t.19 Denote the fair value
of projects at t = 1 by p̂t = Et

[∑T
s=t+1 vt

]
for t ≥ 1. It is then possible to repeat the steps

above to show that the condition for no fire sale in period t is

nt−1 (pt−1 − p̂t) (1− h)− (nt−1 + n̄0) vt − ct−1 ≤ 0

where p0 ≡ 1. If a social planner wants to prevent fire sales, he will maximise bank profits
subject to a series of such linear conditions. Thus, imposing linear constraints on banks
period-by-period would again sufficient to induce efficiency.

Partial fire sales. In my model, outside buyers demand any quantity of projects at the
fixed fire sale price p. An alternative assumption is that they have a general downward-
sloping inverse demand function for projects. Their demand for projects in state s ∈ {g, b}
is max {0, D (ps)}, where D′ (ps) > 0 and D (v2b) ≤ 0. Recall that the number of assets sold
by banks in the bad aggregate state is equal to 1/pbh times the aggregate liquidity shortfall.
Market clearing now requires that20

D (pb) = (n0 + n̄0) (1− pb (1− h)− v1b)− n̄0 (1− pb) (1− h)− e0

pbh
(15)

In this extension, the social planner might settle for a ’partial fire sale’, aiming for an
intermediate value pb ∈

[
p, v2b

]
and adjusting bank investments to satisfy (15). Let pE

b denote
the price in the optimal planned equilibrium. As noted by Lorenzoni (2008), calculating pE

b

is difficult because the planner’s problem is not concave in general. However, in any case,
the planner’s choice of bank investment xE

0 will be most profitable choice that satisfies (15)
19These variables of course depend on the time-varying states, but I suppress the additional subscript to

save notation.
20As in Lorenzoni (2008), a bound on the slope of D would be required to guarantee uniqueness of

equilibrium.
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for pb = pE
b . Therefore, the efficient choice solves the problem

max
x0∈B0

V
(
x0, p

E
b

)
subject to D

(
pE

b

)
× pE

b h = (n0 + n̄0)
(
1− pE

b (1− h)− v1b

)
− n̄0

(
1− pE

b

)
(1− h)− e0

The planner’s choice still maximises bank profits subject to a linear condition, which means
that it can be decentralised with a linear regulatory constraint. However, the informa-
tional efficiency of constraint-based regulation is compromised. Solving this problem requires
knowledge of pE

b , the socially optimal price level, which generally depends on all parameters
of the model.

In conclusion, it appears that the optimality of a linear regulatory rule is fairly general, while
its informational efficiency partly depends on the baseline model’s assumption that fire sale
prices are fixed.

However, I would argue that the informational efficiency is preserved in a heuristic sense.
Even with partial fire sales, a regulator can simplify her decision by solving a realistic two-
step problem. First, she can decide how much of a drop in asset prices she is willing to
tolerate. Conditional on this decision, she can implement the optimal policy with a linear
constraint which, as in the baseline model, requires little information.

6 Optimal microprudential regulation

This section drops Assumption 2, which ensured that all bank debt was risk-free in the
baseline model. A bank defaults at t = 1 if bad news have driven its continuation value
below zero.21 Bank resolution causes a deadweight social cost of κ ≥ 0 times the measure of
defaulting banks. The parameter κ captures administrative costs of resolution and the wider
social costs of credit crunches and disruptions to intermediation and payment systems.

In this setting, additional regulation may be required to curb the social cost of bank default.
Hanson et al. (2011) define this as microprudential regulation.

Agents’ payoffs upon default depend on the precise mechanism of bank resolution. I make
two assumptions. First, short-term debt enjoys seniority over long-term debt, and the bank’s
choices are safe enough to keep short-term debt risk-free. Second, the bank’s asset goes to a
receiver upon default. The receiver pays back short-term creditors at t = 1, runs the bank

21Since all uncertainty is resolved at t = 1, there is no loss of generality in assuming that all default
decisions are made at this date.
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as efficiently as a banker, and then passes the (maximised) proceeds to long-term creditors
at t = 2. These conditions simplify the analysis by ensuring that the constraint Qmacro

0

continues to rule out fire sales. If short-term debt were risky or the receiver inefficient, bank
default would exacerbate the fire sale, creating a need for stricter macroprudential regulation
as well as an additional microprudential constraint. I also continue to assume that we are
in the parametric region where it is efficient to prevent a fire sale.

Proposition 6. When κ = 0, the constraint Qmacro
0 as defined in (13) induces a constrained

efficient regulated equilibrium. When κ is sufficiently large, the constraint Qmacro
0 ∩ Qmicro

0

induces a constrained efficient equilibrium, where

Qmicro
0 = {x0 ∈ B0| (n0 + n̄0) (1− v1b − εL − v2b) + r (n̄0) ≤ e0} (16)

Without deadweight costs, the macroprudential constraint Qmacro
0 remains sufficient for effi-

ciency. Long-term interest rates reflect default risk as well as the liquidity premium. This
leads the bank to internalise the losses of long-term creditors in default, and there is no
additional externality. With κ > 0, nobody will internalise the social deadweight cost, and
the regulated equilibrium may be inefficient.

When κ is large, the planner, who maximises bank profits net of deadweight costs, chooses
to rule out bank default. A necessary and sufficient condition is that a bank with a low
individual shock (z = L) in the bad aggregate state (s = b) has a non-negative continuation
value.

This translates to the requirement that bank choices lie in the set Qmicro
0 . Proceeding as in

the analysis of fire sales, the planner’s choices maximise bank profits subject to the no fire
sale condition and Qmicro

0 . Consequently, it is efficient to impose both constraints on banks.

Optimal regulation is then based on two constraints - a macroprudential and a micropru-
dential part. In general, neither constraint implies the other, so that both are necessary for
efficiency.

Lemma 3. Suppose that the individual shock εL satisfies

v1b + v2b − (1− h) < |εL| < hv2b

Then the microprudential constraint Qmicro
0 is neither a superset nor a subset of the macro-

prudential constraint Qmacro
0 .

Intuitively, ’no fire sale’ does not imply ’no default’ because banks with low idiosyncratic
shocks may default even though there is no aggregate liquidity shortfall. This requires
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a lower bound the magnitude of idiosyncratic risk |εL|. ’No default’ does not imply ’no
fire sale’ because even long-run solvent banks can have short-run liquidity problems. This
requires that the no default condition cannot be ’too strict’, which translates to an upper
bound on |εL|.

Informational requirements. The macroprudential part of the optimal regulation re-
quires the same information as before: v1b, v2b and h. The microprudential part requires
these three parameters plus the idiosyncratic shock εL and the interest payment on long-
term debt r (n̄0). Regulating against default is more informationally costly than regulating
against fire sales, as both ’micro’ and ’macro’ information is necessary.

Note that there is considerable overlap in the information required for micro- and macropru-
dential regulation. This exposes a potential weakness of recent reforms. Many governments
have established macroprudential regulators which are institutionally separate from existing
microprudential agencies. This dichotomy may inhibit information sharing between agen-
cies. My model shows that information sharing is indeed valuable, as optimal micro- and
macroprudential regulations depend on many common factors.

Implementation. In the Basel regulatory framework, the optimal microprudential con-
straint Qmicro

0 can be implemented by a tool that resembles a capital requirement. Rear-
ranging (16) yields

e0

n0 + n̄0
≥ 1− v1b − εb − v2b + r (n̄0)

n0 + n̄0

The left-hand side is just as in a traditional capital requirement - the ratio of equity capital
to risky assets. Unlike in a traditional capital requirement, which constrains this ratio to
lie above a constant value, the right-hand side is modified to account for interest payments.
This is because banks may default due to high outstanding interest payments, not just due
to a high face value of debt. However, this term may be negligible if interest rates are close
to zero, so that a capital requirement would be approximately optimal.

7 Time-varying regulation and risk measures

Many commentators have isolated the lack of time-variation in financial policy as one of its
key flaws prior to 2008 (Brunnermeier et al. 2009, Hanson et al. 2011). They emphasise that
new macroprudential tools should be applied in a time-varying fashion, with the stringency
of rules adapting to the business cycle, credit conditions and fluctuating systematic risk.
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My model supports this point, as the optimal macroprudential regulation depends on the
economy’s risk profile.

The optimal macroprudential constraint Qmacro
0 in (13) does not depend on the individual

shock z, and changes in idiosyncratic risk do not affect macroprudential regulation. Changes
in systematic risk do matter. Their precise implications depend whether long-term or short-
term cash flows are affected.

A mean preserving spread in v1s decreases v1b, so that the (positive) coefficient on total
investment (n0 + n̄0) in Qmacro

0 increases. Risky investments now provide less liquidity in
the bad state, and regulation must be tougher on leverage. A mean preserving spread in
v2s decreases v2b, so that the coefficient on total investment increases and the coefficient on
investment funded by long-term debt n̄0 decreases (becomes more negative). With a decrease
in future asset values, borrowing constraints at t = 1 are tighter, rollover problems are more
severe, and regulation must be tougher on both leverage and maturity mismatch.

Another risk measure is the tightness of funding conditions, captured by the haircut h. When
h falls, the coefficient on total investment increases, and the coefficient on n̄0 decreases (be-
comes more negative). With relaxed funding conditions, banks lever up more, exacerbating
rollover problems, and regulation must again be tougher on leverage and maturity mismatch.

Moreover, Section 6 shows that microprudential regulation should also adapt to changes in
risk. The optimal microprudential constraint Qmicro

0 in (16) depends on both systematic and
idiosyncratic risk. An mean-preserving spread in either v1s, v2s or εz raises the coefficient on
total investment (n0 + n̄0). All increased risk implies default risk, regardless of its source,
and regulation must become stricter on leverage.

This leads to another critique of the dichotomy between macro- and microprudential regu-
lation. Neither time-variation nor a concern with systematic risk are are macroprudential
concerns. They should be part of the micro- and the macroprudential toolkit.

8 Conclusion

This paper has focused on a setting where banks have incentives to create excessive sys-
temic risk through leverage and maturity mismatch. I proved that efficiency can be achieved
through a relatively simple linear macroprudential constraint on banks’ balance sheets, which
requires less information than central planning or Pigouvian taxation. The Liquidity Cover-
age and Net Stable Funding ratios of Basel III are both capable of implementing the optimal
policy. Macroprudential regulation should react to changes in systematic risk in the economy
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and credit conditions over the business cycle, but not to changes in the idiosyncratic risk of
individual institutions.

In an extended model with potential socially costly bank failures, additional microprudential
regulation against default is needed. This can be implemented with a constraint resembling
a capital adequacy requirement, and needs to track changes in both systematic and idiosyn-
cratic risk.

While my results offer support for recent regulatory reforms, they shed a critical light on
the emerging view of macro- and microprudential regulation as separate tasks. My analysis
demonstrates that both types of regulation ought to be time-varying and react to changes
in systematic risk. Moreover, I have argued that micro- and macroprudential regulators
benefit considerably from the exchange of information, which speaks against institutional
separation.
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A Proofs

Lemma 1

Given the argument in the text, it remains to be verified that in any competitive equilibrium,
asset prices satisfy (i) p ≤ ps ≤ v2s and (ii) pg = v2g.

(i) Suppose ps > v2s for some s. Then the bank optimally sells all projects at t = 1 in state
s, nz

1s = 0. By market clearing, it follows that n0 = 0. Now consider the other state s′ 6= s.
We have ps′ ≥ v2s′ , because otherwise, the bank would choose n1s′ > 0 and the market would
not clear. Hence ps ≥ v2s for all s ∈ {g, b}. But then it is easy to show that the bank would
optimally set n0 > 0, a contradiction.

(ii) Suppose that v2g > pg ≥ p. Then it is optimal for the bank to buy as many projects as
possible, setting nz

1g = ez
1g/pgh. Using (3) for ez

1g and E [εz] = 0, this yields

n0 −
(
βnL

1s + (1− β)nH
1s

)
= n0 [(1− pg) (1− h)− v1g]− n̄0v1g − c0

pgh
< 0

where the inequality follows from Assumption 1 and the fact that one of n0, c0 and n̄0 is
strictly positive by (2). This contradicts market clearing.

Proposition 1

The aggregate liquidity shortfall chosen by the bank given the price pb is

(n?
0 + n̄?

0) [1− pb (1− h)− v1b]− (1− pb) (1− h) n̄?
0 − e0

where n?
0 and n̄?

0 are defined by (9) and (10). We have d (n?
0 + n̄?

0) /dR > 0 and, since r′ (n̄0) is
increasing in q for all n̄0, dn̄?

0/dq < 0. Thus, the aggregate liquidity shortfall is increasing in
R and q. As R and q become large, holding other parameters fixed, optimal choices converge
to the corner solution n̄?

0 = 0, n?
0 = e0

h
and c?

0 = 0, for all pb ∈
[
p, v2b

]
. At this limit, the

aggregate liquidity shortfall is strictly positive by Assumption 1.

Therefore, we can find two numbers Rf > 0 and qf > 0 such that R = Rf and q = qf implies

min
pb∈[p,v2b]

(n?
0 + n̄?

0) [1− pb (1− h)− v1b]− (1− pb) (1− h) n̄?
0 − e0 = 0
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When R > Rf and q > qf , the aggregate liquidity shortfall is strictly positive for all possible
pb. Therefore, the unique equilibrium price is pb = p by Definition 1.

Proposition 2

Let k =
(
1− p (1− h)− v1b

)
, k̄ =

(
1− p

)
(1− h), φ = φ

(
p
)
, y?

0 = (n?
0 + n̄?

0). The cost of
fire sales in equilibrium is φ

[
ky?

0 − k̄n̄?
0 − e0

]
.

(i) Mean-preserving spread in v1s. The cost does not depend on v1g and by an application
of the implicit function theorem to (9) and (10), its derivative with respect to v1b is

k
dy?

0
dv1b

− y?
0 = k

φ

g′′ (y?
0) − y

?
0

This is negative, implying that the mean-preserving spread increases cost, if and only if the
proposed condition holds.

(ii) Mean-preserving spread in v2s. The cost (7) does not depend on v2g and it only depends
on v2b through φ, which is strictly increasing in v2b. Its derivative with respect to φ is

[
ky?

0 − k̄n̄?
0 − e0

]
+ φ

[
k
dy?

0
dφ
− k̄ dn̄

?
0

dφ

]
=
[
ky?

0 − k̄n̄?
0 − e0

]
− φ

[
k2

g′′ (y?
0) + k̄2

r′′ (n̄?
0)

]

When g′′ is at the proposed lower bound, the terms involving y?
0 cancel and the expression is

strictly negative. Hence, it is negative, implying that the mean-preserving spread increases
cost, when g′′ is close to the bound.

Lemma 2

By a parallel argument to Lemma 1, prices in planned equilibrium satisfy p ≤ pb ≤ v2b and
pg = v2g (as long as n0 > 0). First, suppose the planner’s choices satisfy (11). If pb = v2b

then banks are indifferent between all feasible t = 1 investments, the aggregate liquidity
shortfall is non-positive by (11), and it is feasible for banks to set βnL

1s + (1− β)nH
1s = n0.

Thus pb = v2b is an equilibrium price, and will be selected by Assumption 3. Second, suppose
the planner’s choices do not satisfy (11). Then for all p ≤ pb ≤ v2b, the aggregate liquidity
shortfall is positive, because it is positive for pb = v2b and decreasing in pb. All feasible bank
choices then have βnL

1s + (1− β)nH
1s < n0. Thus pb = p is the only equilibrium price.
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Proposition 3

(i) Generic inefficiency. I show that for R and δ sufficiently close to Rf and qf , there exists
a choice xA

0 ∈ B0 such that the planned equilibrium induced by xA
0 yields higher profits for

the banks than the competitive equilibrium. Define

σ̂ = min
pb∈[p,v2b]

(n?
0 + n̄?

0) [1− pb (1− h)− v1b]− (1− pb) (1− h) n̄?
0 − e0

and let p̂ denote any minimiser of the right-hand side. From the definition of Rf and qf

(see the proof of Proposition 1) and Berge’s maximum theorem, it follows that σ̂ ↓ 0 as
(R, q) ↓ (Rf , qf ), and that p̂ converges to some p̂f ∈

[
p, v2b

]
. I prove that there is a welfare-

improving choice in two steps.

First, suppose p̂f > p. Making the dependence of optimal choices on prices explicit, consider
the choice xA

0 , defined by nA
0 = n?

0 (p̂)−ε and n̄A
0 = n̄?

0 (p̂), where ε ≥ 0 is chosen to ensure that
the choices satisfy the no fire sale condition if necessary. Define the bank’s indirect utility
as W (pb) = maxx0∈B0 V (x0, pb). I show that as (R, q) ↓ (Rf , qf ), the planned equilibrium
yields higher limiting profits than the competitive equilibrium. It is easy to see that ε ↓ 0, so
that the planned equilibrium induced by xA

0 yields limiting profits equal to W (p̂f ), whereas
the competitive equilibrium yields W

(
p
)
. It remains to be shown that W (p̂f ) > W

(
p
)

in the limit. By the envelope theorem and the fact that σ̂ ↓ 0, the limiting case satisfies
W ′ (pb) > 0 for all pb < p̂f , which implies W (p̂f ) > W

(
p
)
as required.

Second, suppose p̂f = p. Suppose the social planner picks nA
0 = n?

0 (p̂) and n̄A
0 = n̄?

0 (p̂). For
R and q sufficiently close to Rf and qf , these choices satisfy the no fire sales condition, so
that the planned equilibrium yields profits V

(
xA

0 , v2b

)
> W (p̂). The competitive equilibrium

yields W
(
p
)
. It remains to be shown that W (p̂) ≥ W

(
p
)
. By the envelope theorem, we

have W ′ (pb) > 0 for all pb > p, which implies W (p̂) ≥ W
(
p
)
as required.

(ii) Characterisation of optimum. By Lemma 2, the planner knows his choices will induce
pb ∈

{
p, v2b

}
. For pb = p, the highest welfare possible is W

(
p
)
, which is equal to welfare

in competitive equilibrium. This is inefficient by assumption, so a choice inducing pb = v2b

must be optimal. The planner then maximises V (x0, v2b) subject to (11) as required.

Proposition 6

(i) κ = 0. By assumption, the efficient choice maximises bank profits, which are zero in
states where the bank defaults, subject to (11), which continues to guarantee no fire sale due
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to the assumptions about resolution. This again coincides with the bank’s objective when
constraint Qmacro

0 is imposed.

(ii) κ large. The efficient choice maximises bank profits minus κ times the measure of
defaulting banks, subject to (11). It is easy to see that as κ→∞, since profits are bounded
above, this converges to a choice where default is ruled out. This choice must maximise bank
profits subject to (11) and the requirement that the bank’s continuation value is positive in
every state at t = 1. Since vtg > vtb and εH > εL, it is sufficient that the continuation
value is positive in state (b, L). Given that (11) is satisfied, we have pb = v2b, and positive
continuation value is equivalent to

(v1b + εL + v2b) (n0 + n̄0) + c0 − (1− h) (n0 + n̄0)− r (n̄0) ≥ 0

By the budget (2), this is in turn equivalent to the proposed requirement Qmicro
0 .

Lemma 3

(i) Qmicro
0 ( Qmacro

0 . Consider n̄0 = 0, n0 = e0/ (1− v1b − εL − v2b). This choice satisfies the
requirement in Qmicro

0 with equality, but lies outside Qmacro
0 if and only if (using εL < 0 )

e0
1− v1b − v2b (1− h)
1− v1b − εL − v2b

> e0

⇔ |εL| < hv2b

(ii) Qmacro
0 ( Qmicro

0 . Consider c0 = 0, which implies n0 + n̄0 = e0/h, and n0 chosen to satisfy
the requirement in Qmacro

0 with equality. This choice lies outside Qmicro
0 if and only if

e0

h
(1− v1b − εL − v2b) + r (n̄0) > e0

⇔ |εL| > v1b + v2b − (1− h)− hr (n̄0)

So both lack of sufficiency and lack of necessity are guaranteed by the proposed condition
(using r (n̄0) > 0 for the second part).

B Conditions for interior solutions

This appendix derives parametric restrictions under which the bank’s first-order conditions
(9) and (10) are necessary and sufficient for optimality. By the concavity of the bank’s
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problem, this is the case as long as the choices they imply are feasible. The feasibility
conditions, implied by the budget constraint (2) and non-negativity of the bank’s choices,
are

0 ≤ n?
0 + n̄?

0 ≤
e0

h
0 ≤ n̄?

0 ≤ n?
0 + n̄?

0

For the total investment in (10) to satisfy the first condition for all pb ∈
[
p, v2b

]
, we need

R− φ
(
p
) [

1− p (1− h)− v1b

]
≥ 0

R ≤ g′
(
e0

h

)

The investment funded short-term debt satisfies n̄?
0 ≥ 0 since r′ (0) = 0. Thus, to obtain

n̄?
0 ≤ n?

0 + n̄?
0 for all pb ∈

[
p, v2b

]
, we need

(r′)−1 (
φ
(
p
) (

1− p
)

(1− h)
)
≤ (g′)−1 (

R− φ
(
p
) [

1− p (1− h)− v1b

])

Since r and g are strictly convex, r′, g′ and their inverses are strictly increasing functions.
It is then easy to see that the above can be guaranteed by a suitable upper bound on
φ
(
p
)

= α
v2b−p

ph
.
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