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Abstract

This paper defines systemic risk as the conditional probability of failure of a
large number of financial institutions, and develops maximum likelihood estimators
of the term structure of systemic risk in the U.S. financial sector. The estimators are
based on a new dynamic hazard model of failure timing that captures the influence
of time-varying macro-economic and sector-specific risk factors on the likelihood of
failures, and the impact of spillover effects related to missing/unobserved risk factors
or the spread of financial distress in a network of firms. In- and out-of-sample tests
demonstrate that the fitted risk measures accurately quantify systemic risk for each
of several risk horizons and confidence levels, indicating the usefulness of the risk
measure estimates for the macro-prudential regulation of the financial system.
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1 Introduction

The systemic risk in the financial sector is difficult to measure. This makes it hard for

regulators and policy makers to address it effectively. A major challenge is to take account

of potential spillover effects when quantifying systemic risk. Information based spillover

effects are related to omitted or imperfectly observed risk factors influencing several firms,

and the associated Bayesian learning at failure events. Spillover effects may also be caused

by contagion in an increasingly opaque network of interbank loans, derivative trading rela-

tionships, and other links between firms. The Lehman Brothers and AIG events highlight

the importance of these network effects. Spillover concerns were arguably at the center of

the government’s decision to bail out AIG, whose collapse would presumably have caused

a major market disruption.

This paper develops maximum likelihood estimators of the term structure of systemic

risk, defined as the conditional probability of failure of a sufficiently large fraction of

the total population of financial institutions. Its main contribution over prior work is to

incorporate the statistical implications of spillover effects when measuring systemic risk.

Unlike the existing estimators, which focus on the influence of observable risk factors on

systemic risk, the estimators developed in this paper also account for the role of omitted

or imperfectly observed risk factors influencing several firms, and the potential feedback

effects from failure events. Applying these estimators to the U.S. financial system during

1987–2008, we find that the part of systemic risk not explained by the variation of the

trailing return of the S&P 500, the lagged slope of the U.S. yield curve, the default and

TED spreads, and other observable variables can be substantial, and tends to be higher in

periods of adverse economic conditions. The results indicate that the systemic risk in the

U.S. financial sector can be much greater than would be estimated under the standard

assumption in the bank failure prediction literature that bank failure clusters arise only

from exposure to observable risk factors common to many firms.

Our estimators are based on a new dynamic hazard model of correlated failure timing

that extends the traditional proportional hazards specification used by Das, Duffie, Kapa-

dia & Saita (2007), Duffie, Saita & Wang (2007), McDonald & Van de Gucht (1999) and

others to predict non-financial corporate default, and by Brown & Dinc (2005), Brown

& Dinc (2009), Lane, Looney & Wansley (1986), Whalen (1991), Wheelock & Wilson

(2000) and others to forecast bank failures. The distinguishing feature of our formulation

is an additional hazard term designed to capture the statistical implications of spillover

effects within and between the real and financial sectors. While controlling for the in-

fluence of observable risk factors, our specification also incorporates the implications of

missing or incompletely observed risk factors, a source of spillover effects emphasized by

Collin-Dufresne, Goldstein & Helwege (2009), Duffie, Eckner, Horel & Saita (2009) and

others for the real sector, and by Acharya & Yorulmazer (2008), Aharony & Swary (1983),

Cooperman, Lee & Wolfe (1992) and others for the financial sector. It also addresses the

implications of spillover effects channeled through the complex web of derivatives counter-
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party relations, interbank loans, trade credit chains, parent-subsidiary relationships, and

other links between firms. A traditional proportional hazard formulation ignores spillover

effects; it focuses on the dependence of default timing on observable explanatory variables

whose dynamics are assumed to be unaffected by failure events.

We estimate our extended hazard model using data on economy-wide default expe-

rience in the U.S. for the period January 1987 to December 2008, and a collection of

time-varying explanatory covariates that capture the influence of economic conditions on

failure timing. To address the implications of industrial defaults for bank failures and

vice versa, we develop a two-step maximum likelihood estimation approach. In contrast

to a traditional one-step estimation method, our approach does not treat the sequence

of financial failure events in isolation, but in the context of the sequence of defaults in

the wider economy. It seeks to extract the information contained in industrial defaults

relevant for predicting financial failures, and allows us to capture the dynamic interaction

between the real and financial sectors when measuring systemic risk.

Statistical tests demonstrate the in-sample fit of our new hazard model of correlated

failure timing, the significance of the additional hazard term, and the out-of-sample pre-

dictive power of our fitted measures of systemic risk. For example, the fitted measures

accurately forecast the quantiles of the fraction of failures in the U.S. financial system

during 1998–2009, for each of several confidence levels and forecast horizons. These tests

validate our modeling approach and the two-step inference procedure. They indicate that

our approach leads to useful measures of systemic risk.

The proven predictive power of our estimators makes them well-suited for monitoring

the level of systemic risk in the U.S. financial sector. The estimators provide time-series

and term-structure perspectives of systemic risk, information that regulators and policy

makers can use to implement a macro-prudential approach to supervising the financial

system. The estimators indicate that systemic risk increased dramatically during the

second half of 2008, and reached unprecedented levels towards the end of 2008. While the

magnitude of economy-wide default risk in 2008 is roughly comparable to the level during

the burst of the internet bubble around 2001, the estimators suggest that the systemic

risk during that period is dwarfed by the magnitude of systemic risk in 2008. During the

entire sample period, the failure of a financial firm is estimated to have a relatively greater

impact on systemic risk than the default of an industrial firm.

The remainder of this introduction discusses the related literature. Section 2 intro-

duces our measures of systemic risk and discusses their properties. Section 3 develops the

statistical methodology. Section 4 describes our data, the basic estimation results, and

their statistical evaluation. Section 5 analyzes the behavior of systemic risk during 1987–

2008, provides risk forecasts for future periods, and evaluates these forecasts. Section 6

assesses the impact on systemic risk of the failure of an industrial firm or a financial

institution. Section 7 concludes. There are several appendices.
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1.1 Related literature

There is a substantial literature on bank failure prediction, which includes Brown & Dinc

(2005), Brown & Dinc (2009), Cole & Wu (2009), Lane et al. (1986), Whalen (1991),

Wheelock & Wilson (2000) and many others. These papers employ traditional hazard

models, in which the timing of bank failures is influenced by observable explanatory co-

variates, which may be time-varying. They focus on predicting individual bank failures,

and do not directly address the correlation between failures, which is the driving force

behind systemic risk. To incorporate the different sources of this dependence, we sig-

nificantly extend the traditional hazard model. Our formulation assumes that firms are

exposed to common, time-varying risk factors. Movements of these observable factors af-

fect firms across the board, and induce failure clusters. Our formulation also includes an

additional “spillover hazard” term, which seeks to address the clustering of failures not

due to the variation of observable risk factors. The spillover hazard depends on the timing

of past defaults and the volume of defaulted debt. It models the influence of past defaults

on failure timing, with a role for the size of a default. This influence can be caused by in-

formation based spillover effects, i.e., Bayesian learning at defaults about risk factors that

are unobserved or missing from the list of explanatory covariates as in Aharony & Swary

(1996), Collin-Dufresne et al. (2009), Duffie et al. (2009), Giampieri, Davis & Crowder

(2005), Giesecke (2004), Koopman, Lucas & Monteiro (2008) and others. It can also be

due to the spread of distress from one firm to another, as in Azizpour & Giesecke (2008),

Jorion & Zhang (2007), Lando & Nielsen (2009) and others. Distress may be channeled

through trade credit or buyer/supplier relationships in the real sector, and derivatives

counterparty relations and interbank loans in the financial sector (see Upper & Worms

(2004) and others in this regard). The goal of our dynamic hazard model is to capture the

statistical implications of spillover effects for failure timing without needing to be precise

a priori about the economic mechanisms behind them. Accordingly, we do not provide a

decomposition of the spillover effects implied by the data.

Our measures of systemic risk are related to alternative measures discussed in the lit-

erature. Adrian & Brunnermeier (2009) propose a family of quantile measures of systemic

risk that are based on the distribution of the change of the market value of total financial

assets of public financial institutions. They estimate these risk measures from time series

of equity returns and balance sheet information using quantile regressions. Acharya, Ped-

ersen, Philippon & Richardson (2009) develop and estimate expected shortfall measures

of systemic risk that are based on the distribution of market equity returns of financial

institutions. Lehar (2005) takes a related structural perspective, and defines systemic risk

in terms of adverse changes in the market values of several institutions.

We propose quantile measures of systemic risk that are predicated on the conditional

distribution of the failure rate in the financial system, and are estimated from actual

failure experience. This is an important difference to Adrian & Brunnermeier (2009),

Acharya et al. (2009) and Lehar (2005), who assess systemic risk in terms of adverse
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asset price changes across the financial sector, and use equity price data to estimate the

corresponding risk measures. By tying systemic risk to clustered failures in the financial

sector and focusing on actual failure timing data, our measures tend to be less susceptible

to equity market factors unrelated to systemic risk. Nevertheless, they incorporate market

information through the explanatory variables.

Since they summarize the relevant properties of a conditional distribution, our risk

measures are dynamic, and vary through time with the available information. They also

define a term structure of systemic risk over multiple future periods that incorporates

the dynamics of the explanatory macro-economic and sector-wide variables. The basic

risk measures extend naturally to co-risk measures à la Adrian & Brunnermeier (2009).

A co-risk statistic quantifies the impact on systemic risk of an adverse event, such as the

collapse of an industrial firm or financial institution.

Avesani, Pascual & Li (2006), Bhansali, Gingrich & Longstaff (2008), Chan-Lau &

Gravelle (2005), Huang, Zhou & Zhu (2009) and others estimate alternative risk measures

from market rates of credit derivatives. These measures quantify systemic risk relative to

a risk-neutral pricing measure, and incorporate the risk premia investors demand for

bearing correlated default risk. Our measures are based on actual failure behavior rather

than market prices, and do not reflect risk premia.

Elsinger, Lehar & Summer (2006) develop and estimate a static network model of

the interbank lending market to incorporate spillover phenomena induced by interbank

loans when quantifying systemic risk; see also Eisenberg & Noe (2001).

Staum (2009) considers the total premium required to insure all deposits in the

banking system as a measure of systemic risk. A bank’s contribution to this risk measure

is proposed as the bank’s deposit insurance premium.

2 Measures of systemic risk

This section discusses our definition of systemic risk, describes a measure to quantify

systemic risk, and examines the basic properties of this measure.

We define systemic risk in the financial sector as the conditional probability of failure

of a sufficiently large fraction of the total population of institutions in the financial system.

This definition targets the scenario of a failure cluster of financial institutions, potentially

as part of a larger cluster of economy-wide defaults. Such a cluster could be due to a

severe macro-economic shock, or a contagious spread of distress from one institution to

another. Financial distress can be propagated through the informational and contractual

relationships within the financial system, or the relationships between financial institu-

tions and other non-financial firms. Lehman Brothers is an example of how the collapse

of a single institution can induce distress at multiple other entities.

To provide a quantitative measure of systemic risk, consider the process N counting
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defaults in the financial system.1 The value Nt represents the number of defaults in the

financial system observed by time t. For a given horizon T , consider the conditional

distribution at time t < T of the default rate in the financial system, given by Dt(T ) =

(NT − Nt)/Wt, where Wt denots the number of financial institutions existing at t. This

distribution gives the likelihood of failure by T of any fraction of the population of financial

institutions at t. The right tail of this distribution reflects the magnitude of systemic

risk. To measure this magnitude more precisely, we consider statistics that summarize

the information in the tail of the distribution. A standard statistic is a quantile of the

distribution, or value at risk. The value at risk Vt(α, T ) at level α ∈ (0, 1) is the smallest

number x ≥ 0 such that the conditional probability at t that the default rate Dt(T ) during

(t, T ] exceeds x is no larger than (1− α).

The value at risk Vt(α, T ) of the financial system is intuitive and easily communi-

cated, relying on the popularity of value at risk in the financial industry. There are other

advantages. As indicated by the notation, Vt(α, T ) depends on the conditioning time t,

and thus changes over time as new information is revealed. This leads to a dynamic risk

measure. The value Vt(α, T ) also depends on the risk horizon T . By varying T for fixed

t we obtain a term structure of systemic risk. Further, as shown in Section 6, Vt(α, T )

extends naturally to a co-risk measure that quantifies the contribution to systemic risk of

a particular event, such as the default of a financial institution.

The quantification of systemic risk need not be predicated on the value at risk. Our

statistical methodology focuses on the entire conditional distribution of Dt(T ), so our

analysis extends to alternative downside risk measures such as the expected shortfall

measure estimated by Acharya et al. (2009). This measure is defined as the conditional

mean of Dt(T ) given Dt(T ) ≥ c, where c is some high level, such as Vt(α, T ). While the

value at risk is silent about the magnitude of the failure rate in excess of Vt(α, T ), expected

shortfall provides more detailed information about the severity of large failure clusters.

More generally, our analysis extends to any statistic of the conditional distribution at t of

the system-wide default rate Dt(T ), including the moments and other tail risk measures.

Moreover, our analysis extends to risk measures of the conditional distribution of the

value-weighted default rate, which takes account of the default volume.

The measures of systemic risk we propose are distinct from the measures discussed in

the literature. The fundamental difference is the underlying distribution. While we define

systemic risk in terms of the distribution of the failure rate in the financial system, Adrian

& Brunnermeier (2009), Acharya et al. (2009) and Lehar (2005) relate systemic risk to

the distribution of the change of the market equity value of financial institutions. Avesani

et al. (2006), Chan-Lau & Gravelle (2005), Huang et al. (2009) and others define systemic

risk in terms of a risk-neutral probability, which reflects the risk premia investors demand

for bearing correlated default risk.

1We fix a complete probability space (Ω,F , P ) with an information filtration (Ft)t≥0 that satisfies the
usual conditions. Here, P denotes the actual (empirical) probability measure.
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3 Statistical methodology

This section develops a likelihood approach to estimating the measures of systemic risk

proposed in Section 2. In a first step, we formulate and estimate a new hazard, or intensity-

based, model of economy-wide default timing. In a second step, we extract the system-wide

failure intensity from the economy-wide default intensity. The fitted system-wide intensity

then leads to estimators of our systemic risk measures.

3.1 Economy-wide default timing

Consider the process N∗ counting defaults in the economy. The value N∗t is the number

of defaults observed by time t. We suppose that N∗ has hazard rate or intensity λ∗, which

represents the conditional mean default rate in the economy and is measured in events

per year. We assume that the intensity evolves through time according to the model

λ∗t = exp(β∗X∗t ) +

∫ t

0

e−κ(t−s)dJs (1)

where X∗ is a vector of time-varying explanatory covariates specified in Section 4.2, β∗ is

a vector of constant parameters, κ is a strictly positive parameter, and

Jt = ν1 + · · ·+ νN∗
t

(2)

where νn = γ+δmax(0, logD∗n). Here, γ and δ are non-negative parameters, and D∗n is the

default volume, i.e. the total amount of debt outstanding at default of the n-th defaulter,

measured in million dollars.2

The intensity (1) is the sum of two terms. The first term, called baseline hazard below,

takes a standard Cox proportional hazards form. It models the influence on default arrivals

of explanatory covariates X∗, and captures the clustering of defaults due to the exposure

of different firms to variations in X∗. The proportional hazards formulation is used by

Das et al. (2007), Duffie et al. (2007), McDonald & Van de Gucht (1999) and many others

to predict industrial defaults, and by Brown & Dinc (2005), Brown & Dinc (2009), Cole

& Wu (2009), Lane et al. (1986), Whalen (1991), Wheelock & Wilson (2000) and others

to predict bank failures. We follow these references and estimate the coefficient β∗ under

the assumption that the dynamics of the variables X∗ are not affected by defaults.

The second term, called spillover hazard, is not present in the traditional proportional

hazards formulation. It models the influence of past defaults on current default rates,

which is not captured by the baseline hazard term. At an event, the default rate jumps,

with magnitude given by γ plus δ times the positive part of the logarithm of the defaulter’s

total outstanding debt, which is a proxy of the defaulter’s firm size.3 Thus, the bigger a

2We assume that each variable max(0, logD∗n) has finite mean, and that each component of X∗t is
finite almost surely. Under these conditions, the process N∗ is non-explosive.

3For the purposes of our analysis, we found the total amount of debt outstanding at default to be a
better measure of firm size than market capitalization, which was used by Shumway (2001) and others
to predict non-financial corporate default.
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defaulter the greater the impact of the event, with minimum impact governed by γ. After

an event, the intensity decays to the baseline hazard, exponentially at rate κ.

The spillover hazard term is motivated by the results of the empirical analyses of

Aharony & Swary (1996), Azizpour & Giesecke (2008), Collin-Dufresne et al. (2009), Das

et al. (2007), Duffie et al. (2009), Lando & Nielsen (2009) and others. For U.S. corporate

defaults, these papers found evidence of the presence of spillover effects related to conta-

gion and unobserved or missing explanatory covariates, called frailties. With contagion,

a default increases the likelihood of additional defaults, a process that may be channeled

through trade credit or buyer/supplier relationships in the real sector, and derivatives

counterparty relations and interbank loans in the financial sector. With frailty, Bayesian

updating of the conditional distribution of the relevant but omitted or unobserved ex-

planatory variables leads to a jump of the econometrician’s intensity at a default. The

spillover hazard term in (1) seeks to capture the statistical implications of these spillover

effects for failure timing, by letting the intensity λ∗ jump at a default. In particular, it

is designed to replicate the excess default clustering not caused by the variation of the

observable covariates X∗ defining the baseline hazard. An advantage of this reduced-form

formulation is that we do not need to be precise a priori about which of the economic

mechanisms is behind the spillover effects. On the other hand, when taken to the data,

this formulation does not offer information about the relative importance of the sources

of the spillover effects. For an analysis of these sources for U.S. corporate defaults, see

Azizpour & Giesecke (2008).

The inference problem for the default timing model (1)–(2) is addressed as follows.

Letting θ = (β∗, κ, γ, δ) be the set of parameters of the intensity λ∗ = λ∗(θ), Θ be the

set of admissible parameters, and [0, t] be the sample period, we solve the log-likelihood

problem

sup
θ∈Θ

∫ t

0

(log λ∗s−(θ)dN∗s − λ∗s(θ)ds). (3)

The calculation of the likelihood function is based on a measure change argument. Given

a trajectory of X∗, the log-likelihood function takes a closed form, allowing for computa-

tional tractability of estimation. Under technical conditions stated in Ogata (1978), the

maximum likelihood estimator of θ is asymptotically normal and efficient.

We have experimented with several alternative model formulations, including a con-

ventional proportional hazards model in which average spillover effects are captured by a

covariate given by the trailing 1-year default rate, as in Duffie et al. (2009). We have also

tested alternative specifications of the impact variables νn in (2). However, based on the

in- and out-of-sample tests described in Section 4.3 below, we found these alternatives to

be statistically inferior to the model (1)–(2).
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3.2 System-wide default timing

Next we extract from the fitted economy-wide model λ∗ the dynamics of system-wide

defaults, i.e., failures in the financial system. This is based on the following result.

Proposition 3.1. There is a (predictable) process Z taking values in the unit interval,

such that the intensity λ of system-wide failures is given by λ = λ∗Z.

Proof. The system-wide failure times form a subsequence of the economy-wide default

times. The existence and uniqueness of Z follows from the Radon-Nikodym theorem ap-

plied to the random measures associated with the time-integrals of the intensities λ∗ and

λ. The predictability of Z follows from the predictability of the processes generated by

these time-integrals.

The value Zt is the conditional probability at t that a firm in the financial system

defaults next, given a default in the economy in the next instant. For a precise statement,

see Proposition 3.1 in Giesecke, Goldberg & Ding (2009). We formulate and estimate a

parametric model of Z, which then leads to λ via Proposition 3.1.

We use probit regression to estimate the process Z from the observed economy- and

system-wide default counting processes N∗ and N , respectively. Letting Yn be a binary

response variable equal to one if the n-th defaulter belongs to the financial system and

0 otherwise, we obtain a value Yn for each economy-wide default time T ∗n in the sample.

Each Yn is a Bernoulli variable with success probability ZT ∗n , where4

Zt = Zt(β) = Φ(βXt−) (4)

and where Φ is the cumulative distribution function of a standard normal variable, Xt is

a vector of time-varying explanatory covariates specified in Section 4.2, and β is a vector

of constant parameters. Given observations (Yn)n=1,...,N∗
t

and (Xs)s≤t during the sample

period [0, t], we estimate β by solving the log-likelihood problem

sup
β∈Σ

N∗
t∑

n=1

[
YT ∗n log(ZT ∗n (β)) + (1− YT ∗n ) log(1− ZT ∗n (β))

]
(5)

where Σ is the set of admissible parameters. The maximum likelihood estimator of β is

consistent, asymptotically normal and efficient if the covariance matrix of the vector of

regressors exists and is non-singular. See McCullagh & Nelder (1989) for details. It can

also be shown that the log-likelihood function is globally concave in β, and therefore a

standard numerical optimization routine converges quickly to the unique maximum.

The two-step approach to estimating λ has a significant advantage over an alterna-

tive one-step approach in which λ would be estimated directly based on the historical

default experience in the financial system. The two-step approach allows us to extract the

4We experimented with several alternative link functions, including a logit model. All these alternatives
were found to be statistically inferior to the probit model.
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information contained in the observed default times of non-financial firms, which other-

wise would not be utilized in the estimation process. Financial firms are intertwined with

the real sector, so defaults in that sector clearly have an influence on financial firms, and

vice versa. Our estimation approach seeks to capture this influence. It responds to an

argument made by Schwarcz (2008) and many others that systemic risk measures should

account for the relationship between financial institutions and industrial firms.

The two-step approach has another, statistical advantage. Failures in the financial

system are relatively rare. The number of economy-wide defaults is much larger, leading

to a greater sample size and more accurate inference.5

3.3 Measures of risk

The intensity λ = λ∗Z governs the dynamics of the system-wide default process N , and

hence the measures of systemic risk introduced in Section 2. Given the fitted models of

λ∗ and Z, we estimate the entire conditional distribution at t of the system-wide default

rate Dt(T ) by exact Monte Carlo simulation of default times during (t, T ].6 From the

conditional distribution we obtain unbiased estimates of the value at risk Vt(α, T ) or any

other risk measure based on the distribution of Dt(T ) or related quantities, including the

value-weighted default rate.

The risk measure estimates take account of the idiosyncratic and clustered default risk

of financial institutions. They capture several sources of default clustering, including the

exposure of institutions to the common risk factors represented by the covariate vector X∗,

and spillover effects within the financial sector and between the industrial and financial

sectors. The risk measure estimates reflect the time-variation of X∗ and the cross-sectional

variation of the default volume D∗n. As detailed in Appendices A and B, this is based on a

vector autoregressive time-series model of the covariates, and a generalized Pareto model

of the default volume. The importance for industrial default prediction of incorporating

the time-series dynamics of explanatory covariates was emphasized by Duffie et al. (2007).

4 Empirical analysis

This section describes the default timing data, the data on explanatory covariates, our

basic estimation results, and their statistical evaluation.

5For our sample period 1987-2008, the number of system-wide failures is 83 while the number of
economy-wide defaults is 1193.

6The simulation is based on an acceptance/rejection scheme. Details are available upon request.
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4.1 Default timing data

Our sample period is 1/1/1987 to 12/31/2008.7 Data on U.S. corporate default timing

were obtained from Moody’s Default Risk Service. For our purposes, a “default” is a

credit event in any of the following Moody’s default categories: (1) A missed or delayed

disbursement of interest or principal, including delayed payments made within a grace

period; (2) Bankruptcy (Section 77, Chapter 10, Chapter 11, Chapter 7, Prepackaged

Chapter 11), administration, legal receivership, or other legal blocks to the timely payment

of interest or principal; (3) A distressed exchange occurs where: (i) the issuer offers debt

holders a new security or package of securities that amount to a diminished financial

obligation; or (ii) the exchange had the apparent purpose of helping the borrower avoid

default. A repeated default by the same issuer is included in the set of events if it was

not within a year of the initial event and the issuer’s rating was raised above Caa after

the initial default. This treatment of repeated defaults is consistent with that of Moody’s.

This leaves us with 1193 economy-wide defaults.

For the purpose of analyzing systemic risk, we take the U.S. financial system to be

the set of firms classified in Moody’s industry category “Banking” or “FIRE” (Finance,

Insurance and Real Estate).8 This set includes commercial and investment banks, bank

holding companies, credit unions, thrifts, investment management, trading, leasing, mort-

gage and securities firms, financial guarantors, insurance and insurance brokerage firms,

and REITs and REOCs. Figure 1 shows the 1-year economy- and system-wide default

rates during the sample period, along with default volume information obtained from

Moody’s Default Risk Service.9

4.2 Covariates

We examine the influence on systemic risk of two types of macro-economic and sector-wide

variables, which are measured monthly. These include:

(1) The trailing 1-year return on the S&P500 index, obtained from Economagic. Duffie

et al. (2007) found this variable to be a significant predictor of industrial defaults.

(2) The 1-year lagged slope of the yield curve, computed as the spread between 10-year

and 3-month Treasury constant maturity rates, as a forward-looking indicator of

7This period was determined by the availability of data for the covariates specified in Section 4.2.
Default data for the period 1/1/2009 to 6/30/2009 were used for the out-of-sample analysis.

8Moody’s uses several industry classifications. Our analysis is based on the “Moody’s 11” scheme,
which specifies 11 industries: 1. Banking, 2. Capital Industries, 3. Consumer Industries, 4. Energy and
Environment, 5. FIRE, 6. Media and Publishing, 7. Retail and Distribution, 8. Sovereign and Public
Finance, 9. Technology, 10. Transportation, and 11. Utilities.

9As explained by Hamilton (2005), the volume reported by Moodys excludes debt obligations that do
not reflect the fundamental default risk of the obligor such as structured finance transactions, short-term
debt (e.g., commercial paper), secured lease obligations, and so forth.
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Figure 1: Default timing and volume data. Left panel : 1-year economy-wide default rate

in the universe of Moody’s rated issuers. Right panel : 1-year system-wide default rate.

The defaults of Lehman Brothers and Washington Mutual contributed to over 80% of the

system-wide default volume in 2008. Source: Moody’s Default Risk Service.

real economic activity. Estrella & Trubin (2006) found this variable to have strong

predictive power for future recessions. We obtained the H.15 release of Treasury

rates from the website of the Federal Reserve Bank of New York.

(3) The default spread, defined as the yield differential between Moody’s seasoned Aaa-

rated and Baa-rated corporate bonds. Chen, Collin-Dufresne & Goldstein (2008)

argue that the default spread is a measure of aggregate credit risk that is largely

unaffected by bond market frictions such taxes and liquidity. The data were obtained

from the website of the Federal Reserve Bank of New York. The left panel of Figure

2 shows the time series of the default spread and the slope of the yield curve.

(4) The TED (Treasury-Eurodollar) spread, defined as the difference between the 3-

month LIBOR and 3-month Treasury rates, as an indicator of credit risk in the

financial system.10 We obtained the historical LIBOR rates from Economagic. Figure

3 shows the TED spread during the sample period, with significant events indicated.

(5) The trailing 1-year returns on banking and FIRE portfolios, as a proxy for business

cycle activity in the financial system. The data were obtained from the website of

Kenneth French.11 The right panel of Figure 2 shows the return series.

10An increase of the TED spread is a sign that lenders believe that the risk of default on interbank
loans is increasing. In that case, lenders demand a higher rate of interest, or accept lower returns on
risk-free Treasuries. The 3-month LIBOR-OIS (overnight index swap) spread is a similar indicator.

11http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Figure 2: Time-series of explanatory covariates. Left panel : The 1-year lagged slope of

yield curve and the default spread, given by the difference between Moody’s seasoned

Baa-rated and Aaa-rated corporate bond yields. Right panel : The trailing 1-year returns

on the S&P500 index and the banking and FIRE portfolios.

(6) The default ratio (Nt − Nt−h)/(N
∗
t − N∗t−h + 1), which for fixed h > 0 relates the

number of failures in the financial system during (t−h, t] to one plus the number of

economy-wide defaults during that period. It increases at a failure in the financial

system, and decreases at a default of a non-financial firm.

We have also considered, and rejected for lack of significance in the presence of the

above variables, a number of additional covariates, including the 3-month, 1-year, 10-year,

30-year Treasury rates, the spread between Moody’s Baa rate and the 10 year treasury

rate, the monthly VIX, and the 3-month LIBOR rate.

4.3 Economy-wide intensity

We start by addressing the likelihood problem (3) for the economy-wide intensity (1),

taking the covariate vector X∗ to include a constant, the trailing return on the S&P 500,

the lagged slope of the yield curve, and the default spread. We have also considered, but

rejected for lack of significance in the presence of these variables, the other covariates

discussed in Section 4.2. The other covariates are used for the estimation of the process

Z in Section 4.5 below.

Table 1 reports the parameter estimates, along with estimates of asymptotic standard

errors.12 The intensity is increasing in the default spread, and decreasing in the trailing

12The parameter space Θ = (−5, 5)4×(0, 15)×(0, 5)2. The fmincon routine of Matlab was used to search
for the optimal parameter set. We performed a search for each of 10 randomly chosen initial parameter
sets. Each of these searches converged to the values reported in Table 1.
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Figure 3: TED spreads during the sample period, along with significant events.

return on the S&P 500 and the lagged slope of the yield curve. The jump of the intensity

at a default, measured in events per year, is estimated to be 2.3 plus roughly one half of

the logarithm of the default volume, measured in million dollars. The impact of an event

fades away exponentially with time: the fitted half life is log(2)/6.0592 = 0.1144 years.

To develop some insight into the relative statistical importance of the baseline and

spillover hazard terms for model fit, we take a Bayesian perspective, following Duffie et al.

(2009), Eraker, Johannes & Polson (2003) and others. Specifically, we consider the Bayes

factor, given by the ratio of the likelihood of a benchmark model to the likelihood of an

alternative model, both evaluated at their respective estimators. The test statistic Ψ is

given by twice the natural logarithm of the Bayes factor. According to Kass & Raftery

(1995), a value for Ψ between 2 and 6 provides positive evidence, a value between 6 and

10 strong evidence, and a value larger than 10 provides very strong evidence in favor of

the benchmark model. Due to the marginal nature of the likelihoods used for computing

Ψ, this criterion does not necessarily favor more complex models.

We first test our model against an alternative specification that does not include a

spillover hazard term (i.e., a traditional proportional hazards model). When the covariate

set of the alternative model includes a constant, the trailing return on the S&P 500,

the lagged slope of the yield curve, and the default spread, then the outcome of Ψ is

213.4, providing extremely strong evidence in favor of including the spillover hazard term.

When the alternative model is based on an unconstrained covariate set that includes, in

addition to the variables just mentioned, the TED spread, the trailing 1-year returns of

banking, financial, insurance and real-estate portfolios,13 then the outcome of Ψ is 131.4,

13The parameter estimates are as follows (SE in parentheses): Constant 4.1597 (0.1443), S&P 500
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Baseline Hazard Spillover Hazard

Constant S&P500 Yield Slope Baa-Aaa κ γ δ

MLE 2.3026 −0.4410 −0.2140 0.5092 6.0592 2.3205 0.4781

SE 0.0605 0.0524 0.0336 0.0534 0.1108 0.0811 0.0233

t-stat 38.04 −8.42 −6.37 9.53 54.71 28.60 20.56

Ψ
0.1298 3.0987 1.8310

213.4039
26.5308

Table 1: Maximum likelihood estimates (MLE) of economy-wide intensity parameters,

asymptotic standard errors (SE), t-statistics (t-stat), and Bayes factor statistics (Ψ).

still providing strong evidence in favor of including the spillover hazard term. Testing

our model against one that does not include the baseline hazard term, the outcome of

Ψ is 26.5, providing very strong evidence in favor of including the baseline hazard term.

The test results suggest that the default clustering in the data cannot be explained by

variations in the observable explanatory variables alone.

The left panel of Figure 4 shows the fitted economy-wide intensity against the number

of economy-wide defaults. The fitted intensity tracks the observed arrivals well. The right

panel of Figure 4 graphs the decomposition of the fitted intensity into baseline and spillover

hazards. The time series behavior of the components is similar. However, during clustering

periods, the spillover hazard represents a relatively larger fraction of the total default

hazard than the baseline hazard.

4.4 Goodness-of-fit tests

We test the fit of the economy-wide intensity model λ∗ to the historical default timing

data. The tests are based on a result of Meyer (1971), which implies that the default

arrivals follow a standard Poisson process under a change of time given by the cumulative

intensity λ∗. Thus, if λ∗ is correctly specified, then the time-scaled inter-arrival times are

independent standard exponential variables.

The properties of the time-scaled arrival times can be analyzed with a battery of

alternative tests. We use a family of tests of the binned arrival time data, following Das

et al. (2007) and Lando & Nielsen (2009). For given bin size c, we denote by Un the number

of observed events in the n-th successive time interval lasting for c units of transformed

time. With a total of K bins, the null hypothesis is that the U1, . . . , UK are independent

Poisson variables with mean c. We consider bin sizes c = 2, 4, 6, 8 and 10.

We start with Fisher’s dispersion test. Under the null, W =
∑K

n=1(Un − c)2/c has a

chi-squared distribution with K − 1 degrees of freedom. Table 2a indicates that there is

−2.1542 (0.3036), Yield Slope −0.2346 (0.0272), Baa-Aaa 0.4612 (0.1370), TED −0.8716 (0.3040), Bank-
ing 0.5059 (0.2606), Financial 1.5882 (0.3551), Insurance −0.7845 (0.1548), Real Estate −0.6032 (0.1054).
The default ratio was found to be insignificant in the presence of these covariates.
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Figure 4: Fitted economy-wide intensity λ∗. Left panel : Yearly defaults and fitted in-

tensity. Right panel : Intensity decomposition: fitted baseline hazard vs. fitted spillover

hazard.

no evidence against the null for bin sizes 4 through 10, at standard confidence levels.

To examine the extent to which our intensity model captures the clustering of de-

faults, we perform an upper tail test developed by Das et al. (2007). We generate 10,000

data sets by Monte Carlo simulation, each consisting of K iid Poisson random variables

with mean c. The p-value of the test is the fraction of the simulated data sets whose

sample upper-quantile mean (or median) is above the actual sample mean (or median).

The p-values reported in Table 2b suggest that there is no significant deviation of the

upper-quartile tails from the theoretical Poisson tails for bin sizes 4 through 10, at stan-

dard confidence levels. Furthermore, the null hypothesis cannot be rejected by the joint

test across all bin sizes, at conventional confidence levels.

Finally we test for serial dependence of the Uk. To this end, we estimate an autore-

gressive model, given by Uk = A + BUk−1 + εk for coefficients A and B. Under the null,

A = c, B = 0, and the εk are independent, demeaned Poisson random variables. Table

2c shows that the fitted coefficients are not significantly different from their theoretical

values for bin sizes 4 through 10, at standard confidence levels.

The results of these tests suggest that the fitted λ∗ time-scales most arrival times

correctly, indicating a good overall fit of our default timing model (1). Additional exper-

iments suggest that the rejections of the null for bin size 2 are due to events arriving in

very short time intervals. On the time scale of the sample period, which stretches over 21

years, these are almost simultaneous arrivals. It appears difficult to match, at the same

time, the few extremely short inter-arrival times, and the many longer inter-arrival times

that constitute the vast majority of the sample.
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Bin Size Number of Bins χ2 Statistic p-Value

2 596 838.50 0.0000

4 298 332.75 0.0751

6 198 207.17 0.2956

8 149 167.38 0.1316

10 119 125.70 0.2967

(a) Fisher’s Dispersion Test

Mean of Tails Median of Tails

Bin Size Data Simulation p-Value Data Simulation p-Value

2 3.9694 3.6740 0.0000 4.0000 3.0524 0.0000

4 6.1739 6.1575 0.3092 6.0000 5.9956 0.0476

6 8.5676 8.8643 0.6254 8.0000 8.5337 0.5419

8 11.6667 11.3794 0.2190 11.0000 10.9284 0.0916

10 14.0313 13.7454 0.2459 13.5000 13.2444 0.2899

All - - 0.2799 - - 0.1942

(b) Mean and Median of Default Upper Quartile Tail Test

Bin Size Number of Bins A (tA) B (tB) R2

2 596 2.3634∗ (3.4556) −0.1847∗ (−4.5767) 0.0341

4 298 4.0348 (0.1321) −0.0121 (−0.2074) 0.0001

6 198 6.1971 (0.4250) −0.0372 (−0.5203) 0.0014

8 149 8.8132 (1.1613) −0.1074 (−1.3032) 0.1115

10 119 10.3584 (0.3650) −0.0378 (−0.4018) 0.0014

(c) Excess Default Autocorrelation Test (t-statistics for A are presented for the test A = c and
asterisks indicate significance at the 5% level.)

Table 2: Goodness-of-fit tests of the economy-wide intensity.

4.5 System-wide intensity

Next we address the likelihood problem (5) for the process Z in (4). The value Zt represents

the conditional probability at t that the next defaulter is a financial firm, given that there

is a default in the economy in the next instant. We take the covariate vector X to include

a constant, the 1-year lagged slope of the yield curve, the TED spread, the trailing 1-year

returns of banking and real-estate portfolios, and the default ratio for h = 1/12.14 We

have also considered, but rejected for lack of significance in the presence of these variables,

the other covariates discussed in Section 4.2.

Table 3 provides the estimates of the coefficient vector β, along with asymptotic

standard errors and t-statistics. A likelihood ratio test indicates that the covariates are

14We experimented with different window sizes h, but found h = 1/12 to work best. This window size
is consistent with the frequency of the observations of the other covariates.
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Covariate Coefficient SE t-statistic p-value Ψ

Constant −2.0873 0.1484 −14.0659 0.0000

Yield Slope 0.1256 0.0585 2.1469 0.0318 4.6502

TED Spread 0.3710 0.1506 2.4632 0.0138 5.8223

Banking 0.8952 0.3462 2.5856 0.0097 6.6832

Real Estate −0.8073 0.2973 −2.7218 0.0065 7.4439

Default Ratio 1.4171 0.4351 3.2572 0.0011 10.1015

Model Fit LR-ratio (χ2) = 36.8117 p-value < 0.0001

Table 3: Maximum likelihood estimates of the coefficients β of the covariate process X

governing the thinning process Z in (4), asymptotic standard errors (SE), t-statistics,

p-values, and Bayes factor statistics (Ψ).

informative. The coefficient linking the trailing 1-year return of the banking portfolio

to the probability Zt is positive, and of unexpected sign by univariate reasoning. With

multiple covariates, however, the sign need not be evidence that a good year in the banking

sector foreshadows a higher fraction of bank defaults.

The time-series behavior of the fitted process Z, shown in the left panel of Figure 5,

indicates the dramatic increase during the second half of 2008 of the number of defaults

in the financial sector relative to the total number of events in the economy.

To measure how accurately the fitted model of Z distinguishes between economy- and

system-wide events out-of-sample, we construct a power curve, shown in the right panel of

Figure 5. The diagonal line represents an uninformative model that sorts events randomly.

The larger the area under the curve (AUC), the more accurate the model predictions. For

our model, the AUC is 0.7076, with 95% confidence interval given by [0.6433, 0.7719]. The

standardized AUC is 6.3283, implying that the area is statistically greater than 0.5 with

p-value less than 0.0001.

5 Systemic risk

This section analyzes the behavior of systemic risk during the sample period, provides

risk forecasts for future periods, and evaluates these forecasts.

5.1 Risk measures

We start by examining the fitted system-wide intensity λt, which measures the level of

instantaneous systemic risk prevailing at time t. It is calculated as the product of the

economy-wide intensity λ∗t and the thinning variable Zt, as explained in Section 3. The

time-series behavior of λt, shown in the left panel of Figure 6, indicates that the level

of instantaneous systemic risk reached unprecedented levels during the fall of 2008. The

right panel of Figure 6 shows the fitted fraction of λt tied to the spillover hazard term,
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Figure 5: Left panel : Observed binary response variables Yn and fitted process Z. Right

panel : Power curve for the fitted process Z.

calculated as the fitted ratio of the spillover hazard to the total default intensity λ∗t .

The estimators provide strong evidence for the presence of failure clustering not caused

by variations in the observable explanatory covariates. The fraction of systemic risk tied

to the spillover term can be substantial, and tends to be higher in periods of adverse

economic conditions. Moreover, financial firms tend to fail when the fitted contribution

of spillovers to instantaneous systemic risk is relatively large.

Next we estimate the conditional distribution at time t of the default rate in the

financial system during the period (t, t+ ∆], for given ∆. As indicated in Section 3.3, this

is done by exact Monte Carlo simulation.15 The estimation is based on the models for λ∗

and Z, fitted with data observed from 1/1/1987 to t. As explained above, the estimation

takes account of the time-variation of the covariates during the forecast period, and the

cross-sectional variation of the default volume.

Figure 7 shows the conditional distribution of the system-wide default rate Dt(t+0.5)

for conditioning times t varying semi-annually between 12/31/1997 and 12/31/2008, for

a 6-month horizon. As explained in Section 2, the system-wide default rate is obtained by

normalizing the number of system-wide defaults during (t, t+ 0.5] by the number of firms

in the financial system at t. The right tail of the distribution indicates the magnitude of

systemic risk. The fatter the tail, the greater the likelihood that a large fraction of the

financial system fails. The time series behavior suggests that systemic risk has increased

very sharply during the second half of 2008.

We contrast the system-wide distribution with the distribution of the economy-wide

default rate, shown in Figure 8. While the increase of aggregate default risk in the second

half of 2008 is clearly visible, the magnitude of risk is only somewhat greater than that

15The estimates are based on 100,000 Monte Carlo replications.
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Figure 6: Left panel : Fitted system-wide failure intensity λ, based on the parameter

estimates reported in Tables 1 and 3. Right panel : Fitted fraction of λ tied to the spillover

hazard term, with default events indicated.

during the internet bubble. This is in stark contrast to the behavior of systemic risk shown

in Figure 7: the systemic risk during the burst of the internet bubble is dwarfed by the

systemic risk prevailing at the end of 2008.

Next we consider the value at risk Vt(α, t + ∆) of the system-wide default rate. For

a given level of confidence α ∈ (0, 1), the conditional probability at time t that the

system-wide default rate Dt(t+ ∆) exceeds Vt(α, t+ ∆) is 1− α. For conditioning times

t varying semi-annually between 12/31/1997 and 12/31/2008, the left panel of Figure 9

shows Vt(α, t + 0.5), along with realized default rates. The right panel of Figure 9 plots

the value at risk for economy-wide defaults, defined similarly.

The value at risk defines a term structure of systemic risk. To illustrate this, the left

panel of Figure 10 plots Vt(α, t + ∆) on 12/31/2008, the end of the sample period, as a

function of ∆, for each of several α.

There are alternative measures of systemic risk that may be of interest. An example

is the conditional probability at t of no failures in the financial system during (t, T ]. This

measure does not require the choice of a confidence level. The right panel of Figure 10

shows this probability during the sample period, for each of several horizons ∆.

5.2 Forecast evaluation

We evaluate the out-of-sample forecast accuracy of the fitted value at risk Vt(α, t+ ∆) by

comparing it to the realized default rate. Our selection of tests is informed by the results

of the test performance analysis in Berkowitz, Christoffersen & Pelletier (2009).

Let n be the number of forecast periods. Further, let n1 ≤ n be the number of

periods for which the corresponding value at risk forecast was violated, i.e. the number
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Figure 7: Fitted conditional distribution (kernel-smoothed) of the system-wide 6-month

default rate Dt(t+0.5) for conditioning times t varying semi-annually between 12/31/1997

and 12/31/2008.

of periods for which the realized default rate was strictly greater than the fitted value at

risk Vt(α, t+ ∆). Then, n0 = n− n1 denotes the number of periods for which the realized

rate was less than or equal to the fitted value at risk. We test whether the actual violation

rate n1/n is significantly different than the theoretical violation rate (1−α), as in Kupiec

(1995). Fixing a level α ∈ (0, 1) and assuming violations are independent of one another,

the log-likelihood ratio test statistic

LRUC = −2 log

(
αn0(1− α)n1

(n0/n)n0(n1/n)n1

)
(6)

has, asymptotically, a chi-squared distribution with 1 degree of freedom under the null

hypothesis of the theoretical (1− α) violation rate.16

A test based on the statistic (6) does not address the time-series properties of the

sequence of “hit” indicators associated with violations in different periods. The hit in-

dicator It for the forecast period (t, t + ∆] is equal to 1 if the realized default rate for

the period is greater than the fitted value at risk Vt(α, t + ∆), and 0 otherwise. A more

stringent conditional coverage test with higher power tests whether the indicators are in-

16In case of n1 = 0, we follow the convention 00 = 1 so that the test statistic is well-defined.
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Figure 8: Fitted conditional distribution (kernel-smoothed) of the economy-wide 6-month

default rate for conditioning times t varying semi-annually between 12/31/1997 and

12/31/2008. The default rate is obtained by normalizing the number of economy-wide

defaults during (t, t+ 0.5] by the total number of firms in the economy at t.

dependent and identically distributed Bernoulli variables with success probability (1−α).

We consider two alternative tests of this property, a Markov test due to Christoffersen

(1998) and the CAViaR test of Engle & Manganelli (2004). According to the performance

analysis in Berkowitz et al. (2009), the CAViaR test has particularly high power for the

relatively small sample sizes we encounter here, for both the 99% and 95% levels.

The Markov test of Christoffersen (1998) tests the Bernoulli distribution of the actual

hit indicators and their independence. The test of the Bernoulli property relies on the

statistic (6). The independence is tested against an explicit first-order Markov alternative,

with log-likelihood ratio test statistic given by

LRInd = −2 log

(
(1− π1)n00+n10πn01+n11

1

(1− π01)n00πn01
01 (1− π11)n10πn11

11

)
. (7)

Here, nij denotes the number of periods with a state of j following a state of i, πij =

nij/(ni0+ni1), and π1 = (n01+n11)/(n00+n01+n01+n11).17 Under the null of the indicators

forming a first-order Markov chain, this statistic has a limiting chi-squared distribution

17In case of n10 + n11 = 0, we suppose π11 = 0 so that the test statistic is well-defined.
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Figure 9: Left Panel: Fitted value at risk Vt(α, t+0.5) of the system-wide default rate, for

conditioning times t varying semi-annually between 12/31/1997 and 12/31/2008, versus

realized default rate. Right Panel: Fitted value at risk of the economy-wide default rate

versus realized default rate.

with 1 degree of freedom. The combined test of the coverage ratio and independence is

based on the statistic

LRM = LRUC + LRInd,

which has a limiting chi-squared distribution with 2 degrees of freedom.18

The CAViaR test described in Berkowitz et al. (2009), which is based on Engle &

Manganelli (2004), considers a first-order autoregression for the hit indicator:

It = γ + β1It−∆ + β2Vt(α, t+ ∆) + εt (8)

where the error term εt has a logistic distribution. We test whether the βi coefficients

are statistically significant and whether P (It = 1) = eγ/(1 + eγ) = 1− α. Denote the ith

response variable by Yi and the corresponding vector of regressors by Xi, for i = 1, . . . , n−
1. Also, let πi = ebγ+bβXi/(1 + ebγ+bβXi), where (γ̂, β̂) is the maximum likelihood estimator

of (γ, (β1, β2)) obtained by logistic regression. Then, under the null of β1 = β2 = 0 and

γ = log
(

1−α
α

)
, the log-likelihood ratio test statistic

LRCAViaR = −2 log

(
n−1∏
i=1

(1− α)Yiα1−Yi

πYii (1− πi)1−Yi

)
(9)

has a limiting chi-squared distribution with 3 degrees of freedom.

Table 4 reports the test results for the system-wide value at risk Vt(α, t+∆), for each

of several forecast horizons ∆ and confidence levels α.19 None of the null hypotheses can

18This ignores the first observation in the hit sequence.
19We also use 2009 default data in the tests: we validate the forecasts obtained on 12/31/2008 on the

realized default rates in 2009, which are available for the first 1, 3, and 6 months of 2009.
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Figure 10: Left Panel: Term structure of systemic risk on 12/31/2008: fitted value at risk

Vt(α, t+∆) on 12/31/2008 as a function of ∆. Right Panel: Fitted conditional probability

at t of no failures in the financial system during (t, t+∆], for conditioning times t varying

quarterly between 12/31/1997 and 12/31/2008, for each of several horizons ∆.

be rejected at the 10% level. This suggests that the fitted measures accurately quantify

systemic risk, for each of several risk horizons and confidence levels, and this validates our

default hazard model (1)–(2) and our two-stage inference procedure. We conclude that

the risk measures developed in this paper are useful for monitoring the level of systemic

risk in the U.S. financial system by regulators and other supervisory authorities.

6 Sensitivity of systemic risk

We show how to measure the impact of a hypothetical default event on systemic risk. This

analysis could be useful to regulatory authorities. For example, regulators could estimate

the potential impact on systemic risk of a default of a given financial institution.

Fix a conditioning time t, horizon ∆ and confidence level α. We consider the change

∆Vt(α, t + ∆) of the value at risk Vt(α, t + ∆) at t in response to a default at t, which

measures the event’s impact on systemic risk. To estimate the change, we first estimate

the time t value at risk Vt(α, t+ ∆) based on data up to t. Next we enlarge the data set

by including a hypothetical default event at t, and then re-estimate Vt(α, t+ ∆) based on

the enlarged data set. Finally we calculate ∆Vt(α, t + ∆) as the difference between the

two risk measure estimates.

The change ∆Vt(α, t + ∆) reflects the influence of the hypothetical event on the

other firms in the financial system and the economy at large, including potential spillover

effects. It depends on the characteristics of the hypothetical event, including the sector

of the defaulter (industrial vs. financial) and the total debt outstanding at default, which
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Uncond. Coverage Markov CAViaR

∆ Obs. LR p-value LR p-value LR p-value

1Y 11 0.3153 0.5744 0.5157 0.7727 2.3203 0.5086

95% 6M 23 2.3595 0.1245 2.3595 0.3074 2.2569 0.5208

VaR 3M 45 0.9143 0.3390 0.9609 0.6185 5.5926 0.1332

1M 133 2.6284 0.1050 2.6900 0.2605 4.5851 0.2048

1Y 11 0.2211 0.6382 0.2211 0.8953 0.2211 0.9741

99% 6M 23 0.4623 0.4965 0.4623 0.7936 0.4422 0.9314

VaR 3M 45 0.9045 0.3416 0.9045 0.6362 0.8844 0.8292

1M 133 0.0905 0.7636 0.1057 0.9485 0.6689 0.8805

Table 4: Out-of-sample tests of the forecast accuracy of the fitted system-wide value at

risk, for each of several horizons. The period considered is January 1998 to June 2009.

proxies the size of the defaulter.

We calculate the change for each of two hypothetical events, a default of a financial

institution, and a default of an industrial firm. The left panel of Figure 11 shows the

absolute change ∆Vt(0.95, t+1) for each of the two events, for conditioning times t varying

quarterly between 12/31/1997 and 12/31/2008. The right panel of Figure 11 shows the

impact of each of these events on term structure of the value at risk Vt(0.95, t + ∆) on

12/31/2008. The total debt outstanding at default is taken to be the sample mean of the

default volumes observed to the conditioning time, for the respective firm class.

The failure of a financial institution has a higher impact on systemic risk than the

default of an industrial firm. This means the financial system is more vulnerable to the

collapse of a financial firm. The impact of a financial firm default is also more volatile

during the sample period. If measured on an absolute scale, the impact of a default has

increased dramatically during the second half of 2008, indicating the vulnerability of the

financial system during that period.

The sensitivity analysis can be extended to measure the impact on systemic risk of

a hypothetical adverse shock to the explanatory covariates (risk factors), along the lines

of Avesani et al. (2006), Huang et al. (2009), and others.

7 Conclusion

This paper provides an econometric method for estimating the term structure of systemic

risk over multiple future periods. The maximum likelihood estimators incorporate the

dependence of failure timing on time-varying macro-economic and sector-specific risk fac-

tors. Unlike traditional estimators, they also capture the impact of spillover effects related

to missing or unobserved risk factors, and the spread of distress in a network of firms.

Applying our method to data on U.S. firms over 1987 to 2008, we find that the level
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Figure 11: Impact of a default on systemic risk. Left Panel: Absolute change ∆Vt(0.95, t+

1) for conditioning times t varying quarterly between 12/31/1997 and 12/31/2008. Right

Panel: Term structure of value at risk Vt(0.95, t+∆) on 12/31/2008, for different scenarios.

and shape of the term structure of systemic risk in the U.S. financial sector depend on the

timing and severity of past financial and industrial failures, as well as the current values

of observable risk factors including the trailing S&P 500 index return, the lagged slope

of the U.S. yield curve, the default and TED spreads, and other sector-wide variables.

We find that the variation of these risk factors generally has a less significant impact on

systemic risk than spillover effects associated with failures in the past. This highlights the

importance of addressing spillovers when managing systemic risk.

Several topics are left for future research, including the estimation of premia for

systemic risk. The estimates provided in this paper can be compared to estimates of the

risk-neutral probability of failure of a large number of financial institutions, obtained

from market rates of credit derivatives contracts. This analysis would shed light on the

magnitude of the premia investors demand for bearing systemic risk.

Our econometric method has potential applications in other subject areas requiring

estimates of event probabilities in situations where network or information effects may

play a role. These applications include the analysis of market transaction data, the anal-

ysis of purchase-timing behavior of households, the analysis of unemployment timing,

and many others. The extant analyses of these applications in Engle & Russell (1998),

Seetharaman & Chintagunta (2003), and Lancaster (1979), respectively, employ standard

proportional hazard formulations. Our generalized hazard model could be used to study

the implications of network and information effects in these settings.
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Figure 12: Realized vs. VAR(1) predicted time series (monthly) of covariate components.

A Covariate time-series model

We formulate a vector autoregressive VAR(1) time-series model for the covariates. This

model incorporates the dynamic relationships between the different variables. Let Φt de-

note the (n× 1) vector of covariate values at t. We suppose that

Φt = Π0 + Π1Φt−1 + εt (10)

where Π0 is an (n × 1) vector, Π1 is an (n × n) coefficient matrix and εt is a (n × 1)

zero mean vector of error processes that is serially uncorrelated, and has time-invariant

covariance matrix Σ. Table 5 reports the estimators Π̂i of Πi for i = 0, 1, which are based

on monthly observations of Φt during the sample period. Given the Φt and the Π̂i, we

recover the corresponding values of εt. From these values, we estimate the covariance

matrix Σ, assuming weak stationarity. The fitted Σ is reported in Table 6. An analysis of

the error series indicates the appropriateness of the model (10) for our covariates. Figure

12 visualizes the goodness-of-fit by plotting the predicted vs. the realized covariates.
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Figure 13: Left panel : Empirical default volume distribution vs. fitted generalized Pareto

distribution as of 12/31/2008. Right panel : Empirical quantiles of the observed default

volumes vs. quantiles of realizations of variables from the fitted Pareto distribution.

B Default volume model

We adopt a simple but empirically meaningful model of default volumes. We assume that

each D∗n has a generalized Pareto distribution with shape parameter ξ > 0 and scale

parameter σ > 0. We have

P (D∗n > x) =
(

1 + ξ
x

σ

)− 1
ξ

(11)

for all x ≥ 0. The maximum likelihood estimators of (ξ, σ) are given by (0.5960, 225.8828),

with standard errors (0.0427, 10.9864) as of 12/31/2008. The left panel of Figure 13 con-

trasts the fitted Pareto distribution with the empirical distribution of default volumes.

The right panel of Figure 13 compares the observed default volumes to the realizations of

variables from the fitted Pareto distribution. The plots indicate the statistical appropri-

ateness of our model.
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