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Abstract

This paper proposes a method for measuring volatility risk premiums using option
prices and high-frequency intra-day price data, which then apply to stock indices in
Japan, Europe, and the US. The paper also investigates how volatilities and volatility
risk premiums propagate among the markets and how the interdependency through the
propagation changes during the course of the global financial market turmoil after the
summer of 2007. Our studies reveal that the return shocks and the successive increases
in volatilities and the volatility risk premiums evolved through global equity markets.
Specifically, we identify i) our estimate of the volatility risk premiums show stronger
correlation with market risk indicators than those reported in earlier studies, ii) the
positive spillover effects among equity returns remain positive with additional counter
feedback to the US market during the turmoil, iii) the volatility shows strong reciprocal
dependency among the three markets after the Lehman Brothers bankruptcy. As for
the contagion of volatility risk premiums, iv) while the interdependency is weakened
after the summer of 2007, it grows stronger after the Lehman Brothers bankruptcy in
most of the directions, particularly from Europe to US.
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1 Introduction

The turmoil of global financial markets since 2007 exhibited the existence of various con-
tagion channels through which a plunge of an asset price in a region triggered subsequent
falls in asset prices in the other regions across borders. Propagations of collapse in financial
markets were accelerated by de-leverage or risk reduction at globally active financial insti-
tutions. There are many arguments on the propagation mechanisms. Some argue that large
financial institutions play important rolls in various financial markets including mortgages,
credit derivatives, corporate loans, commodities and money markets all over the world,
and that large losses from an asset might lead to fire sales of other assets independent of
their fundamental values. Others point out that globally active financial institutions unin-
tentionally made up tightly connected network of debts and credits through risk transfer
businesses, namely “originate and distribute” model.

While these arguments describe credit or liquidity channels of contagion, another chan-
nel of contagion exists, that is contagion of volatilities and risk premiums across financial
markets. The volatility addresses the magnitude of shocks. The risk premium includes
market participants’ view for uncertainty in asset prices, more accurately, their expecta-
tion for future volatility, along with risk aversion defined in an investor’s utility function.
In addition to uncertainty in future asset price levels, market participants face another
uncertainty in future volatilities. The fluctuating secondary moment requires the volatility
risk premium (VRP) in the same way as the first moment requires the general (first order)
risk premium.

This paper examines how volatilities and VRPs in three major equity markets are
affected each other in the period of the global market turmoil including the highly volatile
period of post Lehman Brothers bankruptcy. VRP is simply defined by the difference
between the squared implied volatility under the risk neutral measure and the squared
volatility under the real measure given a period of observation. The VIX index traded in
the Chicago Board Options Exchange is such an implied volatility measure on the S&P500
stock index. The realized volatility (RV) is such a volatility measure under the real measure.

The concept of VRP has been well known and earlier studies have already examined
VRPs in different manners from our approach. Scott [1987], Wiggins [1987] and Hull and
White [1987] introduced the stochastic volatility (SV) model with a VRP, while Wiggins
[1990] derived a VRP from the partial differential equation for a derivative price on the
assumption that an underlying asset price followed the SV model. Bakshi and Kapadia
[2003] applied this method and showed that the VRP was negative for options buyers
and that the absolute value of the VRP was likely to remain quite large in periods of
marked volatility. Uchida and Miyazaki [2008] have applied the same method as Bakshi
and Kapadia [2003] to the Japanese stock market with similar findings.

On the other hand, some recent works such as Carr and Wu [2009] and Bollerslev,
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Tauchen, and Zhou [2009] have examined non-parametric estimates for a VRP defined by
the difference between the model-free integrated implied variance, thereafter IIV, and inte-
grated realized variance, thereafter IRV. IIV is a variance under the risk neutral measure,
which is estimated from European option prices with different strike prices without any
specific models for underlying asset price processes. IIV is called “integrated” due to the
integration of instantaneous implied volatilities from current date to the option maturity.
IRV is a non-parametric estimator of the variance under the real measure, which is the
sum of daily RVs up to the maturity. RV is calculated from high-frequency intra-day price
data. Matching integration periods for IIV and IRV makes it possible to estimate the VRP
defined by the difference between the risk neutral measure and the real measure.

This paper analyses the non-parametric estimate of VRP. While the non-parametric
estimation is easier to implement than the parametric approach using a SV model, a
filtration inconsistency problem stems from the application of IRV in the non-parametric
approach. Market expected IRV cannot be obtained from market data on date t while IIV
can be estimated on the date t from option prices with expiration date T (> t). If we
employ an ex post IRV obtained at the date T , the filtration for IRV does not match the
filtration for IIV on the date t. To determine the expected IRV under the information set
with the same time span for IIV, we assume the market participants’ expectation for future
realized volatility is described by time series models for RV on daily basis. We choose the
Heston [1993]’s model and the ARFIMAX (autoregressive fractionally integrated moving
average plus X) model proposed by Giot and Laurent [2004] for such models. The expected
VRP is identified as the gap between the model-base estimate for IRV and the current IIV.
For comparison, we examine a VRP on an alternative assumption that future volatilities,
in average, keep the same level as the previous period with the same integration length.

This paper applies the methods to major stock indices and their options in Japan,
Germany, and the US from July 2003 to October 2008 and compares our proposed VRP
measure with the VRP measures based on earlier studies. The paper also examines how RVs
and VRPs, along with the equity return of the underlying asset prices, propagated among
the three major equity markets in the period of the global financial market turmoil. The
evaluation of the spillover is conducted by the time-varying-parameter structural vector
autoregressive model with stochastic volatility in the residuals, which seems to be a new
approach for the spillover evaluation as far as the author knows.

The analyses reveal that the synchronicity of equity returns, RVs, and VRPs among the
three markets. The positive spillover effects among the equity returns remain positive with
reinforcement of the counter feedback to the US market during the turmoil. The volatility
shows reciprocal dependency among the three markets after the Lehman shock. As for the
risk premium contagion, while the interdependency is weakened during the period from the
summer of 2007 to the Lehman shock, it grows stronger after the Lehman shock in most
of the directions, particularly from Europe to US. The strong dependency of volatilities
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reinforces the magnitude of returns propagated from overseas markets, along with the
up-welling market sentiments evaluated by VRPs. This cyclical propagation seemed to
maintain high volatility in the global equity markets and lead to consecutive escalation of
risk premium the market participants required. Our studies shed light on the two aspects
of contagion among financial markets; namely contagion of shock’s magnitude measured
by RV and contagion of the magnitude’s uncertainty measured by VRP. Our empirical
studies supports that our proposed method of volatility risk premium are informative to
identify contagion in volatility uncertainty which plays a complement roll in spreading
market turmoil.

The remainder of this paper is organised as follows: Section 2 defines the IIV and the
IRV. Section 3 describes the four measures of VRP and discusses the filtration inconsistency
problem arising from the mismatch of integration period. We also discuss how these VRPs
relate to the VRP under the SV model which is often used in the parametric approach.
Section 4.1 explains the data and basic statistics of IIV, RV, and VRP, and Section 5
discusses propagation among the global equity markets in the financial turmoil after the
sub-prime mortgage loan crisis with respect to RV contagion and VRP contagion. Lastly,
Section 6 offers a conclusion regarding these discussions.

2 Integrated Implied and Realized Variances

Suppose an asset price at time t, St, generates i.i.d. instantaneous returns. The integrated
quadratic variation for St at time t until time T (T > t) is defined as:

⟨S⟩t,T =
1

T − t

∫ T

t

(
dSu

Su−

)2

=
1

T − t

∫ T

t

1
S2

u−
d[S, S]u, (1)

where 1/(T−t) is an annualizing conversion coefficient and St− is the stock price just before
the time t. The expected value of the future quadratic variation is estimated by option
prices, and the realized value of the past quadratic variation is estimated by the underlying
asset processes. The former estimator is the IIV, defined as the expected variance under
the risk neutral measure Q by

σ2
IIV (t, T ) = EQ[⟨S⟩t,T |Ft], (2)

where Ft is the filtration generated by the asset prices process until time t. The latter
estimator is the IRV, defined as a consistent estimator of the realized variance under the
real measure P by

σ2
IRV (t, T ) = EP [⟨S⟩t,T |FT ] = ⟨S⟩t,T . (3)

Note that the IRV is a time-T value, hence not observable at time t.
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The IIV is estimated from out-of-the-money European put and call options prices across
all strikes. Demeterfi et al. [1999] and Britten-Jones and Neuberger [2000] derived the IIV
by option prices as

σ2
IIV (t, T ) =

2
(T − t)B(t, T )

(∫ F (t,T )

0

P (t, T,K)
K2

dK +
∫ ∞

F (t,T )

C(t, T,K)
K2

dK

)
, (4)

where B(t, T ), F (t, T ), P (t, T,K) and C(t, T,K) denote a risk-free discounted bond price,
a forward price, and a put and a call option price at time t with a maturity time T ,
and a strike price K, respectively. See Appendix A for the derivation of Eq.(4). The
IIV represents the aggregated expectation of the future volatility in the options market.
The volatility index on the S&P500, the VIX index traded on the Chicago Board Options
Exchange, is based on the discretised formula of Eq.(4).

The IRV is estimated from high-frequency ex post intra-day stock returns by discretising
the integral in Eq.(1). Assume we have M days from time t to time T and let {ti}M

i=1 denote
a set of days from t to T where t0 = t and tM = T . The IRV is estimated as

σ2
IRV (t, T ) =

1
T − t

M∑
i=1

σ2
RV (ti), (5)

where σ2
RV (ti) is the RV on day i. Further assuming there are N i.i.d. intra-day returns

on each day i, {rj,i}N
j=1, we can estimate σ2

RV (ti) as

σ2
RV (ti) =

N∑
j=1

r2
j,i. (6)

Theoretically, when N is large enough, the right hand side of Eq.(5) converges in probability
to Eq.(1), i.e.,

plim
N→∞

σ2
IRV (t, T ) = ⟨S⟩t,T . (7)

However, many earlier studies showed that, when the data frequency, or N , is too high,
Eq.(6) is likely to overestimate RV because of an increase in market microstructure noises
such as a price reciprocal development between the bid and offer prices within a short time
period, so-called “bid ask bounce.”
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3 Volatility Risk Premiums

3.1 The definitions and filtration inconsistency problem

Using IIV and IRV defined in Section 2, this paper defines the VRP as the gap between
them, i.e.,

VRP = IRV − IIV. (8)

VRP is equivalent with the covariance between the pricing kernel and the quadratic vari-
ation defined in Eq.(1). Let ξt denote the Radon-Nikodým derivative process as

ξt = E

[
dQ
dP

∣∣∣∣Ft

]
, (9)

and let {Mt,u}u≥t the pricing kernel process as

Mt,u = ξu/ξt (u ≥ t). (10)

Note that ξt is a martingale under the real measure P, i.e., EP [Mt,u|Ft] = 1 for any u > t.
Then IIV and IRV have the following relationship.

σ2
IIV (t, T ) = EQ[⟨S⟩t,T |Ft]

= EP
[∫ T

t
Mt,u⟨S⟩t,udu

∣∣∣∣Ft

]
= EP [⟨S⟩t,T |Ft] +

∫ T

t
CovP [Mt,u, ⟨S⟩t,u|Ft] du,

= σ̃2
IRV (t, T ) − λ̃(t, T ), (11)

where σ̃2
IRV (t, T ) = EP [⟨S⟩t,T |Ft], and λ̃(t, T ) = −

∫ T
t CovP(Mt,u, ⟨S⟩t,u|Ft)du denotes the

true VRP at time t integrated from time t to time T . In Eq.(11), we add a tilde ·̃ on the IRV
to emphasise the difference in filtration from our previously defined IRV; σ2

IRV (t, T ) defined
in Eq.(3) is FT -measurable, whereas σ̃2

IRV (t, T ) in Eq.(11) is Ft-measurable. σ̃2
IRV (t, T ),

and hence λ̃(t, T ), cannot be computed from historical market data.
Alternatively, we define the realized VRP, λ(t, T ), hereafter rVRP, using FT -measurable

variance as:

λ(t, T ) = EP [⟨S⟩t,T |FT ] − EQ[⟨S⟩t,T |Ft]

= σ2
IRV (t, T ) − σ2

IIV (t, T ), (12)

which is computed from historical market data any time after time T . The rVRP are
knows to be related to the delta-hedged gain of options. Though we can conduct an ex
post calculation of Eq.(12), rVRP is still not a market expected VRP.
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Figure 1: The concept of eVRP

In order to evaluate VRP which reflects market expectations, the filtration inconsistency
should be resolved, which arises from the difference in the measurement periods of IIV
and IRV. Because this problem stems from the prediction of the future real measure, we
introduce a model to predict the future IRV based on the past time series of RV. This
approach gives a new VRP, namely a model-base expected VRP, or eVRP.

In the estimation for eVRP, we model RV process rather than IRV process to avoid the
overlapping observation problem discussed by Christensen, Hansen, and Prabhala [2002],
that is the adjacent IRVs share the same RVs in integration. We simply assume the model
that best fit to the past RV process is a natural estimate of the future real measure. Let
S̃u denote the model-based estimation of the future prices at time u(> t) under the real
measure, and let GT = σ

(
{Su}t

u=0, {S̃u}T
u>t

)
, then eVRP, λ(t, T ), is defined under the

filtration GT as:
λ(t, T ) = EP [⟨S⟩t,T |GT ] − σ2

IIV (t, T ), (13)

or

λ(t, T ) = −
∫ T

t
CovP(Mt,u, ⟨S⟩t,u|Gu)du. (14)

The concept of eVRP is displayed in Figure 1.
The simplest estimation of GT is the linear estimation; simply set S̃u = St−(T−t)+u−t

using lagged RVs in the period [t− (T − t), t]. We call this IRV the trailed IRV denoted as
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Table 1: The definition, notation and difference of VRPs

term notation explanation
true VRP λ̃(t, T ) True expected VRP, unobservable at any time.

realized VRP (rVRP) λ(t, T ) Ex-post VRP, related to delta-hedged gain of
options, observable after time T .

trailed VRP (tVRP) λ(t, T ) Expected VRP under static expectation as-
sumption on future IRV, observable at time t.

expected VRP (eVRP) λ(t, T ) Expected VRP using model-base forcast of IRV,
observable at time t.

σ2
IRV (t, T ) and defined as:

σ2
IRV (t, T ) = ⟨S⟩t−(T−t),t. (15)

The trailed VRP, or tVRP hereafter, is defined as:

λ(t, T ) = σ2
IRV (t, T ) − σ2

IIV (t, T ). (16)

tVRP is the expected VRP under the assumption that the IRV in the adjacent one month
is the best prediction of the IRV in the following one month.

So far, we have introduced four types of VRPs. The definitions and the differences of
VRPs are summarised in Table 1.

3.2 Valuation method for expected VRP

Two models to forecast future RV process are introduced in this section, which is then
applied to eVRP evaluation defined in Section 3.1. The first model is the Heston [1993]’s
type model, where RV process is subject to χ2 distribution. The second model is ARFIMAX
model proposed by Giot and Laurent [2004], which provides a good fit to the Japanese RV
time series according to Watanabe and Sasaki [2007] or Shibata [2008].

3.2.1 Two models for RV forecasting

The first model is the Heston type model defined as:

dSt = µStdt + σRV (t)StdW 1
t ,

dσ2
RV (t) = κ(θ − σ2

RV (t))dt + σV σRV (t)
(
ρdW 1

t +
√

1 − ρ2dW 2
t

)
, (17)

where dW 1
t , dW 2

t are independent Weiner processes and µ, κ, θ, σV , ρ are parameters that
satisfy σV > 0, |ρ| ≤ 1, σ2

V /(κθ) ≥ 2. The original model of Eq.(17) was proposed by Heston
[1993], which is the stochastic volatility model with the mean-reverting square root volatil-
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ity process. The model in Eq.(17) is constructed just by substituting the volatility process
in the original Heston model for RV. Since the Heston model is commonly used among
practitioners, eVRP based on the model is expected to represent the market expectation.

The second model for RV forecast is the ARFIMAX model

Rt = σRV (t)zt,

(1 − L)d{ln(σ2
RV (t)) − µ0 − µ1|Rt−1| − µ21{Rt−1<0}|Rt−1|} = (1 + δL)ut, (18)

zt ∼ N(0, σ2
z), ut ∼ N(0, σ2

u),

where L is a lag operator1, Rt = ln(St/St−1) is the one-day return on day t, and µ0, µ1, µ2, δ, σz

and σu (σz, σu > 0) are parameters.
Though both the Heston type and ARFIMAX models have mean-reverting property, the

levels of the mean differs; the Heston type model has a fixed and deterministic mean of RV,
whereas the ARFIMAX model has a stochastic mean which varies based on the previous
day’s return. The ARFIMAX model takes into account the volatility’s persistence and
asymmetric features. The former is the feature that the present level of volatility depends
on the past level of volatilities, which is expressed in the fractionally integration in Eq.(18).
The latter is the feature that the volatility is normally higher when the previous day’s
return is negative than when it is positive. This feature is expressed by the µ3 parameter
and 1{Rt−1<0} in Eq.(18) which takes non-zero value only when the previous day’s return
was negative. The “X” in ARFIMAX addresses this asymmetry. We assume the mean-
reverting property of RV in those models can better express the market expectation for
the future RV than the simple static expectation assumption in tVRP.

3.2.2 The calculation procedures

eVRP is computed by the following procedures.
First, IIV is estimated by applying option prices data to Eq.(4). IIV with one-month-

terms to maturity is calculated by interpolating market-traded terms. For the risk-free
discount bond prices B(t, T ), the interpolated rate of LIBOR and swap rates, or government
bond prices, are used. 2

Second, RV is computed from intra-day stock price data by Eq.(6). The appropriate
choice of N , or the choice of a time interval to measure returns, is an ongoing issue for RV
estimation. Because five-minute returns are widely used in earlier studies, we follow this
choice of N . Note that the return during lunch break3 and the return from closing to the
next morning’s opening are included in the daily RV. The first sample, j = 1 in Eq.(6),

1 Lxt = xt−1.
2 See Section 4.1 for the computation procedures for IIV.
3 Lunch break exist only for Japanese data.
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corresponds to the nighttime return from the last day’s closing to the next morning’s
opening.

Third, the parameters of the two models are estimated. The parameters are estimated
at each day ti by the quasi-maximum likelihood method using the previous one-year of
ex post RV data including the day t0 itself. 4 Based on the analyses in Sugihara [2010],
market’s volatility expectation relies on the recent level of RV, the parameters are updated
daily for better tracking the level.

Forth, RV process is simulated from the day t0 to day tM using the estimated parame-
ters, and based on the simulated results, IRV is computed under the information Ft ∨Gt,T ,
by ten thousand times of Monte Carlo simulation on each day.

Lastly, eVRP is computed from IIV on day t0 and the simulated IRV. The Monte Carlo
simulation is again used for the calculation of eVRP. We repeat the above process for each
day to get the time series of eVRP.

4 Data and basic statistics

4.1 Data

Before discussing empirical analyses, we briefly summarise the data used in the analyses.
We analyse volatility of major stock indices in Japan (JP), Europe (EU) and the US (US),
selecting the Nikkei 225 Stock Index (Nikkei), the DAX Index (DAX) and the S&P 500
Stock Index (S&P500). The Nikkei is the arithmetic mean of prices for 225 stocks for
major Japanese corporations. The DAX is the total return for 30 major stock prices listed
on the Frankfurt Stock Exchange. The S&P500 is the market-value weighted average of
prices for 500 major stocks traded in the US.5

IIV is calculated much the same way among the Nikkei, DAX and S&P500. IIV on
Nikkei is computed directly from a tick-by-tick options prices database 6 based on the
computation method proposed by Jiang and Tian [2007]. In brief, the method involves
interpolation and extrapolation implemented by a cubic spline function after converting
option prices to Black-Scholes implied volatilities. We interpolate in the Black-Scholes
implied volatilities rather than directly in option prices because the implied volatility sur-
face is smoother and more readily interpolated by a cubic spline function; additionally, we
can thereby avoid negative interpolated option prices. For the Nikkei, the range of strikes
traded or priced is mostly from 11-tick ups and downs from at the money with a tick size
of 500 yen.7 For risk-free discount bond price B(t, T ), we use the interpolated rate for Yen

4 The reason for the inclusion of the day t0 is that the options market for the Nikkei closes at 15:10 whereas
the stock market closes at 15:00. By comparing the closing IIV with the IRV, which are computed with
past data including the current day, an unbiased VRP can be computed.

5 Those price data set of indices used for RV calculation is obtained from Nexa Technologies Inc.
6 Data is obtained from Nikkei Media Marketing Inc.
7 The option market system has changed in Japan since September 2008 in such a way that the options
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LIBOR and swap rates. For IIV on S&P and DAX, we use the VIX Index and VDAX
Index. The VIX Index and VDAX Index are calculated and disseminated each trading day
by the Chicago Board Options Exchange and by the Deutsche Boerse Market Data and
Analytics, respectively. 8 See CBOE [2003] for detailed information on the VIX Index.

The time frame examined in this paper begins from July 2003 for RV, IRV, rVRP and
tVRP data, and from July 2004 for eVRP data, since we need one year RV data for the
previous year to compute eVRP. We compute data up to the end of October 2009.

All integrated data (IRV, IIV and VRPs) are exactly one-month-term to maturity. We
assume 21 trading days per month, setting M = 21 in Eq.(5). For IIV on Nikkei, we
compute exactly one-month-term IIV by interpolating IIVs with market-traded terms IIVs
with a cubic spline function. For IIVs on S&P500 and DAX, linear interpolation is used.

Note that all data are computed daily as the closed price in each region. In local time,
this is 15:00 for Japanese RV data (GMT+9 hours), 15:10 for Japanese IIV data, 17:30 for
European data (GMT+1 hour), and 15:00 for US data (GMT−5 hours).

4.2 IIV and IRV time series

Figure 2 shows the time series for IIV and IRV for the Nikkei, DAX and S&P500 for all the
sample period, plotted in the dimension of volatility – i.e., the square root of the integrated
variance in Eq.(4) and Eq.(5). Two types of IRV are shown: future one-month IRVs and
past one-month IRVs. The former covers the same integration period as the IIV, whereas
the latter uses lagged samples for the daily RV. Future IRV is σIRV (t, t + 1month), while
past IRV is σIRV (t − 1month, t).

On the one hand, we see two characteristics: i) both IIV and IRV levels go up after
September 2008, and surge prominently after October 2008, ii) IIV levels exceed those
of IRVs through much of the time until September 2008; iii) IIV generally moves more in
parallel to past IRV than to future IRV; iv) future IRV sometimes exceeds IIV, prominently
in October 2008 for DAX and S&P500; and v) the gap between IIV and IRVs is greater in
Japan than in Europe or the US.

The gap between IIV and IRVs corresponds to the VRP. 9 According to the definitions
from Section 3.1, we consider the gap between future IRV and IIV to be rVRP and that

with maturity less than 3 month have strike prices with 250 yen tick while the options other than that
have 500 yen tick strikes. In order to keep consistency, we only use 500 yen tick of strike prices for
Japanese options.

8 The procedures used to calculate VIX and VDAX differs slightly from the method used by Jiang and
Tian [2007] to calculate IIV for the Nikkei. The primary difference lies in how market traded option prices
are interpolated and extrapolated. VIX and VDAX simply discretise Eq.(4) with the market-traded tick
size of strike prices and provide a summary without interpolating option prices. According to the analysis
by Jiang and Tian [2007], this method, when applied to VIX, may leads to results that are skewed high.
We disregard this potential bias on the assumption that the bias would prove negligible compared to the
volatility risk premiums.

9 These values are computed in the dimension of volatility and may be somewhat apart from the square
root of the VRP. We disregard such differences for the purpose of this discussion.
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between past IRV and IIV to be tVRP. Based on the definition of Eq.(8) and above char-
acteristic i), the signs for the VRPs are generally negative. Note that based on Eq.(??),
the negative VRP reduces the risk premium on an underlying asset price itself, since the
vega of European options is positive.

The negative sign on the VRPs indicates that option sellers require a premium for
uncertainties in future volatility, or volatility risk. The above characteristics ii) and iii) lead
to the following hypotheses: a) option sellers require a premium determined by observing
past IRV to compensate for future volatility risk, and option buyers are willing to pay the
premium; and b) the premium covers the volatility risk for option sellers most of time,
but is sometimes undervalued. Particularly in late 2008 (more precisely, after the Lehman
shock), IRV surged so rapidly and dramatically that IIV levels failed to follow or cover
realized levels of IRV (i.e., future IRV) in Europe or the US, resulting in large positive
realised VRP.

These results show the risk aversion of the financial markets and how market par-
ticipants form expectations. Hypothesis a) supports our assumptions regarding tVRP
calulation and eVRP calculation as well since eVRP is evaluated by ex post RV samples;
expectations for future RV appears to be based on past developments in RV. We would
surmise that model-base eVRP is a better estimate of expected VRP than tVRP based on
static expectations for future RV.

4.3 Basic statistics

Table 2 summarises basic statistics for RV, IRV, IIV and VRPs. Those for IRV, IIV, rVRP,
tVRP, eVRP-Heston and eVRP-ARFIMAX in Japan, Europe and the US are displayed in
top-down fashion. The samples are divided into the three periods: A) from July 2003 to
July 2007 (or from July 2004 to July 2007 for VRPs); B) from August 2007 to September
2008; and C) from October 2008 to October 2009. During the first period, A), the gravity
of the problem in the US mortgage market was not yet fully recognised. We call this
the “ordinary” period. We set the boundary of the phases of the subprime mortgage
problem at August 2007, when global equity prices dropped dramatically in response to
the announcement that cash withdrawals from funds managed by BNP Paribas had been
frozen due to illiquidity in the US mortgage-backed securities market, so-called the ”Paribas
shock”. The second period, B), marks the period following the severe recognition of the
problem. We refer to this period as “Post Paribas Shock” The third period, C), which
we call “Post Lehman Shock,” is period after the dramatic spike in volatility following the
Lehman Brothers’ filing for Chapter 11 bankruptcy on September 15, 2008, so-called the
“Lehman shock”, up to the end of our sample period.

First, we see how realized volatility changes before and after the Paribas shock by
comparing mean values of RV and IRV in Japan, Europe and the US. The values are
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Figure 2: Time series of square root of IRV and IIV from July 2003 to October 2009

Notes: Thick dark line, thick light line, thin red line indicate square root of IIV, past IRV,
and future IRV, respectively, with 1 month term plotted in percent scale. The future
IRV is σIRV (t, t + 1month), and the past IRV is σIRV (t − 1month, t).
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highest in Japan before the Paribas shock. However, the mean values in Europe and the
US increase after the Paribas shock, beating in the levels of Japan after Lehman shock.
On the contrary, mean values of IIV are highest in Japan and lowest in Europe or the US.
As a result, mean values of negative VRP are largest in Japan and smallest in Europe in
any periods.

According to “standard deviation,” the sixth column in each row of RV and IRV, we see
the standard deviation for RV and IRV, the volatility’s volatility, increases dramatically
following the Paribas shock in every region. Particularly, it is prominent in Europe and in
the US, which leads to positive means and positive skews for realised VRP. This indicates
that VRP levels in Europe and in the US are sometimes turned out to be insufficient and
that option sellers experience losses due to unexpected spikes in future volatility. On the
contrary, the VRP in Japanese market is set high enough to cover unexpected increases in
volatility, even after the Lehman shock.

4.4 Difference in VRPs

This section considers which VRP should be referred to in the four types of VRPs defined
in Section 3. The discussion in this section is not based on a rigorous theory but from an
intuitive approach since the true level of VRP is not rigorously known.

Figure 3 plots the time series of four types of VRPs. The magnitude of the change in
VRP is quite large for all equity indices just after the Lehman shock. And at the same time,
rVRP surge to the positive region in all indices, followed by tVRP’s increase in Europe
and US after a few months’ interval. However, the absolute value of eVRP jumps up but
stays negative in most of the period after the Lehman shock for any indices. This implies
that negative eVRP is consistent with the intuitive movement of risk aversion which is
considered to become larger in the turmoil.

We then compare VRPs to certain risk indicators regarded to reflect market risk ap-
petite/aversion. The Citi Macro Risk Index (CMRI), 10 credit default swap indices (CDS
indices), 11 and swap spreads 12 with five years to maturity are chosen as risk indica-
tors. CMRI measures overall risk aversion of global investors, CDS indices measure credit

10 The Citi Macro Risk Index is an equally weighted index of emerging market sovereign spreads, US credit
spreads, US swap spreads and implied FX, equity and swap rate volatilities. The index is expressed in
a rolling historical percentile and ranges between 0 (low risk aversion) to 1 (high risk aversion). Data
source is Citibank Ltd.

11 The iTraxx Japan, iTraxx Euro and CDX North America are chosen for the CDS indices. Those refers
around 50 to 150 of most liquid investment grade credit default swap premiums on Japanese, European
and North American entities, respectively. The indication is arithmetic average of index CDS premiums
collected from broker dealers. It starts to be computed from July 2004 for iTraxx and November 2003 for
CDX. All have five years term to maturity. Data source is Markit Group Ltd.

12 The swap spread is computed by subtracting government bond rates from swap rates with same term to
maturity. For swap rate, LIBOR (London inter-bank offered rate) are chosen for Japan and German data
and US money market fixing rate is used for the US data. All have five years term to maturity. Data
source is Bloomberg.
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Table 2: Basic Statistics

mean
standard

median
standard excess

skewness
number of

error deviation kurtosis samples

A) Ordinary period (Jul-03 ∼ Jul-07)

RV [%2]

JP 1.02 0.03 0.80 0.80 6.70 2.05 1, 003
EU 0.86 0.03 0.61 0.81 12.13 2.86 1, 043
US 0.39 0.01 0.32 0.30 21.05 3.41 1, 028

√
IRV [%]

JP 15.44 0.12 15.14 3.90 −0.69 0.16 982
EU 14.01 0.12 12.92 3.96 −0.06 0.88 1, 021
US 9.64 0.06 9.14 1.85 −0.13 0.77 1, 006

√
IIV [%]

JP 19.87 0.15 18.78 4.62 −0.93 0.27 1, 002
EU 17.27 0.13 16.14 4.31 0.06 0.85 1, 043
US 14.29 0.09 13.75 2.74 −0.15 0.66 1, 028

rVRP [%2p]

JP −160.39 4.19 −146.87 132.62 −0.18 −0.17 1, 003
EU −72.39 2.91 −78.37 81.83 2.40 0.56 791
US −83.93 2.45 −84.21 68.24 9.46 1.35 776

tVRP [%2p]

JP −121.06 2.62 −113.06 72.16 3.48 −1.19 759
EU −76.15 2.05 −73.88 56.93 2.63 −0.14 769
US −91.79 1.73 −82.69 47.66 6.74 −1.71 756

eVRP [%2p]
JP −75.30 5.14 −32.76 141.64 0.88 −1.18 758

(Heston)
EU −42.06 3.13 −33.56 87.93 2.39 −1.20 789
US −83.54 2.08 −68.75 57.81 8.14 −1.98 776

eVRP [%2p]
JP −85.66 7.65 −43.73 210.75 0.46 −0.88 758

(ARFIMAX)
EU −46.88 4.34 −53.28 121.77 3.92 0.18 789
US −84.94 2.16 −69.56 60.11 8.50 −2.25 775

B) Post Paribas Shock (Aug-07 ∼ Sep-08)

RV [%2]

JP 1.94 0.09 1.55 1.45 7.77 2.36 287
EU 1.75 0.17 1.12 2.87 104.46 8.77 297
US 1.80 0.14 1.14 2.39 21.84 4.25 295

√
IRV [%]

JP 21.26 0.22 20.59 3.70 −0.11 0.62 287
EU 19.40 0.37 18.60 6.40 1.33 1.23 297
US 19.21 0.31 18.68 5.37 0.98 0.92 295

√
IIV [%]

JP 29.52 0.35 28.12 5.96 0.72 0.94 287
EU 21.81 0.21 21.40 3.68 −0.04 0.60 297
US 23.49 0.24 23.12 4.13 3.73 1.25 295

rVRP [%2p]

JP −340.38 28.46 −335.32 482.15 3.19 0.47 287
EU 116.49 46.82 −125.54 806.93 15.24 3.75 297
US 33.43 43.64 −172.33 749.47 10.92 3.26 295

tVRP [%2p]

JP −441.65 17.69 −369.12 299.74 5.51 −1.72 287
EU −71.88 13.05 −115.89 224.86 6.34 2.32 297
US −170.94 8.88 −167.30 152.56 0.68 0.11 295

eVRP [%2p]
JP −510.06 22.86 −388.94 387.24 2.08 −1.31 287

(Heston)
EU −129.89 9.97 −103.63 171.83 −0.61 −0.34 297
US −256.05 11.32 −239.52 194.43 1.75 −0.83 295

eVRP [%2p]
JP −671.31 22.51 −596.28 381.41 1.82 −1.24 287

(ARFIMAX)
EU −292.39 10.22 −240.22 176.14 0.94 −1.01 297
US −436.53 14.39 −415.79 247.07 7.08 −1.40 295
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mean
standard

median
standard excess

skewness
number of

error deviation kurtosis samples

C) Post Lehman Shock (Oct-08 ∼ Oct-09)

RV [%2]

JP 3.69 0.28 2.31 4.57 13.54 3.32 264
EU 5.59 0.59 2.62 9.83 30.24 5.06 275
US 5.05 0.47 2.38 7.77 38.56 4.97 274

√
IRV [%]

JP 28.63 0.72 28.21 11.68 0.85 1.24 264
EU 33.92 1.02 29.71 16.85 1.53 1.49 275
US 32.41 1.02 28.74 16.82 −0.22 0.90 274

√
IIV [%]

JP 44.12 1.09 38.49 17.71 −0.06 0.92 264
EU 35.71 0.63 34.45 10.46 0.52 0.98 275
US 39.20 0.85 37.41 14.10 −0.18 0.78 274

rVRP [%2p]

JP −644.68 51.53 −394.04 905.76 17.67 −4.00 309
EU −185.24 68.76 −378.56 1, 140.18 17.89 4.10 275
US −655.62 51.57 −576.13 853.61 8.94 1.07 274

tVRP [%2p]

JP −1, 303.87 70.40 −742.96 1, 143.83 3.06 −1.65 264
EU 49.79 58.94 −231.37 977.42 11.51 3.16 275
US −402.39 36.87 −379.41 610.27 8.89 1.56 274

eVRP [%2p]
JP −1, 746.59 109.27 −883.12 1, 775.41 1.51 −1.45 264

(Heston)
EU −257.03 54.39 −92.04 901.88 1.27 −0.48 275
US −31.88 64.58 309.30 1069.04 3.67 −1.57 274

eVRP [%2p]
JP −1, 616.78 120.14 −899.09 1, 952.11 2.04 −1.55 264

(ARFIMAX)
EU −525.74 116.96 −778.08 1, 939.51 10.21 2.43 275
US −911.32 125.48 −1, 013.56 2, 076.99 3.10 1.03 274

Notes: “JP” refers to Japanese data, “EU” for European data and “US” the US data. See
Section 4.1 for details of data. Number of samples differs due to the difference in
integration periods and national holidays. The pre-integrated data of all except for
RV are overlapped and may be autocorrelated.
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risk in the referenced major enterprises, and swap spreads measure counter-party risk for
major inter-bank market players (more accurately, the differences in credit risk between
government and those players). All indicators rise as market risk appetite or sentiment
deteriorates. Since risk preference in the stock market generally parallels risk preference
in the credit or inter-bank markets, volatilities or VRPs are expected to exhibit stronger
correlation with those indicators.

Table 3 displays correlations of IIV, IRV, VRPs with the risk indicators. Comparing
IIV and IRVs (the first eleven rows), we see that IIV shows a relatively stronger correlation
with risk indicators. Specifically, IIV strongly correlates with CDS indices for every region,
which suggests that implied volatilities are priced by accounting for the credit risk of major
enterprises. Hence, IIV is good metrics for market risk aversion. Comparing correlations
for each VRP, we see that tVRP and eVRPs are negatively correlated with risk indicators,
particularly in Japan, but it does not hold for rVRP. The negative correlation indicates
that risk aversion among option sellers matches market sentiments. Comparing trailed,
realized and expected VRPs, we see that eVRPs show an even stronger correlation with
risk indicators, attributable to the coherent cycle of eVRPs and the risk indicators, which
indicates that eVRP is a better measure of market risk aversion than trailed or realized
VRPs.

5 Global contagion

This section evaluates interdependencies of equity markets in Japan, Europe, and US. In
particular, we determine the country which originates shocks (i.e., increase or decrease
in volatilities or risk premiums), and the direction of contagion during the course of the
financial turmoil.

For this purpose, we apply the time-varying-parameter structural vector autoregressive
models (TVP-VAR) to evaluate the interdependencies. TVP-VAR has recently became
popular in economic literatures such as Cogly and Sargent [2005], Primiceri [2005], or
Nakajima, Kasuya, and Watanabe [2009]. While those literatures examine macroeconomics
data, we apply the model to examine spillovers of financial markets. We consider two types
of TVP-VAR: the constant volatility type where the volatility of the structural shock is a
constant over time, and the stochastic volatility type where the volatility varies over time
as well.

5.1 Model and parameter estimation

5.1.1 The model to evaluate contagion

Suppose we have T + 1 samples of end-of-the-day market data vector set {yt}T
t=0 from day

0 to day T with yt = (yJ
t , yE

t , yU
t )⊤ where yJ

t , yE
t , and yU

t denote market data of Japan,
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Figure 3: VRP time series
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Table 3: Correlation with risk indicators

CMRI CDS Index Swap Spread
JP 0.55 0.79 0.47

IIV EU 0.42 0.88 0.73
US 0.52 0.91 0.57
JP 0.54 0.70 0.47

past IRV EU 0.45 0.79 0.73
US 0.56 0.87 0.63
JP 0.58 0.60 0.49

future IRV EU 0.46 0.70 0.74
US 0.00 0.79 0.68
JP −0.33** −0.66** −0.29**

rVRP EU 0.19 −0.02 0.23
US 0.00 −0.39 0.08
JP −0.42** −0.70** −0.34**

tVRP EU 0.20 0.15 0.30
US −0.08** −0.40** −0.04

eVRP
JP −0.47** −0.66** −0.35**

(Heston)
EU −0.35** −0.31** −0.33**
US −0.49** −0.15** −0.52**

eVRP
JP −0.52** −0.60** −0.39**

(ARFIMAX)
EU −0.41** −0.39** −0.42**
US −0.47** −0.52** −0.52**

Notes: The correlations to CMRI and swap spreads are computed using data from July
2003 to October 2009 (for eVRPs from July 2004), whereas those to CDS indices
use data from July 2004 to October 2009. “JP” stands for Japanese data (iTraxx
Japan and Yen LIBOR swap spreads from Japanese government bonds), “EU” for
German data (iTraxx Euro and Euribor spreads from German government bonds),
and “US” stands for North American data (CDX North America and US dollar swap
spreads from US government bonds). CDS indices and swap spreads are five years
to maturity. Numbers with ** indicate statistically significant negative correlations
with 1% significance level.
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Europe, and US at the end of the day t. Considering the time difference among those
regions, we examine the interdependency by the following model.

yJ
t = cJ

0 + cJJ1
t yJ

t−1 + cEJ1
t yE

t−1 + cUJ1
t yU

t−1 + · · · + cJJs
t yJ

t−s + cEJs
t yE

t−s + cUJs
t yU

t−s + εJ
t ,

yE
t = cE

0 + cJE0
t yJ

t + cEE1
t yE

t−1 + cUE1
t yU

t−1 + · · · + cJEs−1
t yJ

t−s−1 + cEEs
t yE

t−s + cUEs
t yU

t−s + εE
t ,

yU
t = cU

0 + cJU0
t yJ

t + cEU0
t yE

t + cUU1
t yU

t−1 + · · · + cJUs−1
t yJ

t−s−1 + cEUs−1
t yE

t−s−1 + cUUs
t yU

t−s + εU
t ,

(19)

(t = 1, . . . , T )

where εt’s are stationary and independent shocks, c0 = (cJ
0 , cE

0 , cU
0 )⊤ is a constant vector,

and c∗∗it (∗ = J,E,U ; i = 0, . . . , s; t = 1, . . . , T ) are time-varying parameters which
indicate spillover effects with i days lag. The first and the second characters in the over-
script of ct’s indicate an origin and a destination of spillover, respectively, and the third
number i indicates the lag. The larger c∗∗it implies the higher effect of spillover from the
origin to the destination on the day t with i days lag. We consider lags of dependency up
to s (s ≥ 1) days, assuming the spillover effect in the global financial markets vanishes in
s days. εt = (εJ

t , εE
t , εU

t )⊤ denotes the structural shock.
In the constant volatility type, the volatility of the structural shocks are simply con-

sidered to be a constant vector, hence

εt ∼ N(0, Σε), Σε = diag((σJ
ε )2, (σE

ε )2, (σU
ε )2),

where diag(x) denotes a diagonal matrix with the diagonal elements of x. Whereas in
the stochastic volatility type, we assume the logarithm of variances follow random walk
processes. By letting Var(ε∗t ) = (σ∗

t )
2 (∗ = J,E,U) and ht = (ln(σJ

t )2, ln(σE
t )2, ln(σU

t )2)⊤

denote the log variances of shocks and the logarithm vector, respectively, we assume ht

obeys
ht = ht−1 + ut, ut ∼ N(0,Σh), Σh = diag((σJ

h )2, (σE
h )2, (σU

h )2), (20)

where σ∗
h’s are constant parameters which indicate volatilities of shocks’ volatilities.

Let xt = (xJ
t , xE

t , xU
t )⊤ denote the deviation from the sample mean, i.e., xt = yt −∑T

t=0 yt/(T +1) composed of Japanese, European and US data on day t. Suppose the data
process is covariance-stationary, then, Eq.(19) is written in the matrix form as

Atxt = B1txt−1 + B2txt−2 + · · · + Bstxt−s + εt, εt ∼ N(0, Σεt), (21)

where Σεt = diag((σJ
t )2, (σE

t )2, (σU
t )2),

At =

 1 0 0
−cJE0

t 1 0
−cJU0

t −cEU0
t 1

 , Bit =

cJJi
t cEJi

t cUJi
t

cJEi
t cEEi

t cUEi
t

cJUi
t cEUi

t cUUi
t

 (i < s),
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Bst =

cJJs
t cEJs

t cUJs
t

0 cEEs
t cUEs

t

0 0 cUUs
t

 ,

and c0 = (At −
∑s

i=1 Bit)
∑T

t=0 yt/(T + 1) for any t.
The time-varying parameters should also be modelled in TVP-VAR. We simply assume

that all the parameters obey independent random walk processes as

c∗∗it = c∗∗it−1 + u∗∗i
t , u∗∗i

t ∼ N(0, (σ∗∗i
u )2), (∗ = J,E, or U ; i = 0, 1, . . . , s) (22)

which is suggested by Primiceri [2005] and is also used in Nakajima, Kasuya, and Watanabe
[2009].

5.1.2 The estimation procedures

The time-varying parameters (c∗∗t ) and volatilities (σ∗
t ) are estimated via Markov chain

Monte Carlo (MCMC) method as explained in Nakajima, Kasuya, and Watanabe [2009].
In the stochastic volatility type, our estimation procedures are closer to theirs. While
Nakajima, Kasuya, and Watanabe [2009] generate a sample of elements in At and Bt by
transforming the structural VAR model to a reduced one, we generate a sample directly
from the structural VAR form as explained in Appendix B. This is because the identification
of structural parameters from a reduced form becomes problematic if we sample after
transforming to the reduced form, since the matrix Bst is upper-triangular in our model.
This is not the case for Nakajima, Kasuya, and Watanabe [2009] since they consider a
non-triangular matrix for any Bit. We follow the method used in Nakajima, Kasuya, and
Watanabe [2009] when sampling the stochastic volatility ht.13

The prior distribution should be set carefully for σu’s, and for Σε in the constant
volatility type, or for Σh in the stochastic volatility type. We assume priors of either
(σ∗∗i

u )2, Σε, or Σh obey inverse Gamma distributions with degree of freedom 2 and mean
20. Robustness of this prior is confirmed by Nakajima, Kasuya, and Watanabe [2009].
Initial value of c∗∗i1 and h0 are set to be the OLS estimators.

We generate 10, 000 samples after the initial 1, 000 samples are discarded for burn-in.
The simulation is executed using Ox version 5.0 developed and distributed by Doornik
[2006]. If one of the three markets does not open, the whole data of the day is excluded
from inputs.

13 Jochi Nakajima gave us many advices regarding the estimation procedures. We also referred to and used
some part of the MCMC program developed by Nakajima, Kasuya, and Watanabe [2009].
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5.1.3 Impulse responses

In order to examine impulse responses of pure contagion effects, we compute impulse
responses in a different manner from the usual way. While the estimation of parameters
is conducted on the full matrix base, all of the diagonal elements in Bit (i = 1, . . . , s), or
autoregressive parameters, are replaced by 0 in the successive computation of the responses.
This procedure excludes the propagation of a shock from a country to the same country
on the next day. For instance, responses to the US shock on the next day’s US data is
excluded up to s days lag.

In the stochastic volatility type model, the size of the shocks are given as the mean
of the time-varying volatility in each country. In the constant volatility model, the size is
equivalent with the constant volatility in each country. Hence the size of the shock is not
time-varying in both models.

5.2 Result and analysis

Analyses of global contagion are provided in this section using the TVP-VAR model. Par-
ticularly, we focus on the level shifts of time-varying parameters c∗∗it and the changes in
time-varying impulse response functions before and after the financial turmoil. We first
analyse the interdependency of returns, then volatilities, and lastly VRPs.

5.2.1 Contagion of returns

First, we analyse the contagion of returns. Since volatilities of equity returns are non-
constants, and since the spillover effect of equity returns is likely to diminish on the next
day, we conduct analysis using the stochastic volatility type TVP-VAR with one day lag.14

The panels in Figure 4 (i) display the time series of estimated parameters ĉ∗∗t , and
those in (ii) plot the impulse responses from July 2003 to October 2009.15 The solid lines
in the upper panel in (i) indicate parameters that show spillovers to Japan, those in the
middle panel to Europe, and those in the bottom panel to US. The dotted lines indicate
a band with the estimated two standard deviations 2σ̂u from each estimate. The impulse
responses in Figure 4 (ii) are evaluated by the response to the standardised shock with a
size of the mean of the estimated volatilities in each country.

From panels in (i), we detect the following. First, all the coefficients except for ĉJU
t are

positively estimated in most of the period, whereas ĉJU
t are almost zero. This shows that

the equity returns in Europe and the US are positively affected each other at any time
whereas the contagion between Japan and the US is one way. Those effects do not change
during the course of the financial turmoil after the summer of 2007. Second, ĉUE

t drops

14 Though we have tried three days lag and five days lag, those results are quite similar to the one day lag
case.

15 The third number i in the superscript of ct is omitted in this section since we only consider one day lag.
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while ĉEU
t rises after the middle of 2007, showing that the spillover of returns from the

European market to the US market is strengthened while that in the opposite direction
weakened.

We examine those characteristics from the impulse response of returns to the struc-
tural shocks displayed in Figure 4 (ii). While the level of time-varying parameters indicate
direct contagion on the next day, the impulse responses encompass not only the direct
contagion but also indirect contagion which goes through the other region. First, almost
all the responses are positively estimated between any regions, which confirms the positive
spillover among global equity returns. Second, the level of US response to the European
and Japanese markets increases after the middle of 2007, and the interdependency between
the Japanese and the European markets is strengthened as well.16 Third, the responses
are weakened after the second day in any directions, indicating the return’s spillover ef-
fect diminishes quickly. Putting the above analyses altogether reveals that the positive
spillover effects of returns remain positive and are strengthened in some directions during
the financial turmoil.

5.2.2 Contagion of volatilities

We then examine the contagion of volatilities. While examinations in the previous section
revealed the positive spillover of shocks in equity returns, we investigate the interdepen-
dencies of the magnitude of those shocks evaluated by RV in this section. Since RV is not
stationary covariance, we take logarithm of RV in the evaluation; i.e., xt in Eq.(21) is set
to be ln σ2

RV (t). We apply TVP-VAR model with stochastic volatility type with three days
lag,17 since the levels of volatilities are known to persist for several days after it spikes up.
We only analyse the impulse response for RV.

The panels in Figure 5 displays the impulse responses. Those formats are the same
as Figure 4 (ii). First, the Japanese responses to shocks in Europe or US are positive
in most of the period, and the level of the response to the US grows stronger after the
summer of 2007. In other words, the Japanese volatility is linked to the European and
the US volatility regardless of examined periods, and the linkage to the US grows stronger
during the financial turmoil. Second, the European RV positively responds to the US
shock while the opposite direction is not significant. Those summarise that the shock
generated in the US propagates to Japan and Europe while the Japanese volatility is also
sensitive to the European volatility. Third, responses in any direction grow stronger after
the Lehman shock in 2008 which gradually goes back to neutral in one year. The responses

16 This indicates that the Japanese and European market become gradually volatile due to concerns for
the US problem after the Paribas shock, which may sometimes generate the counter feedback to the US
market.

17 We also analyse the constant volatility type, but does not find significant differences. We set three
days lag here though technically the lag dimension should be determined by the difference in marginal
likelihood values.
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of two or three days later are also strengthened after the Lehman shock. Those confirm
that the positive feedback loop exists among RVs in those countries and that the positive
interdependency strengthened after the Lehman shock. The surging volatility goes through
the global equity market.

5.2.3 Contagion of VRPs

Lastly, we analyse the contagion of VRPs. We examine the interdependencies of tVRP,
and eVRP with ARFIMAX model using the stochastic volatility type TVP-VAR.18 Since
VRPs are one-month integrated values, we input monthly data (end of month data) in
TVP-VAR with one month lag for the evaluation.

The panels in Figure 6 (i) and (ii) plot the impulse responses for tVRP and eVRP,
respectively. Though figures in (i) and (ii) show different features, we detect the following
three trails common to those. First, the Japanese VRP has stronger effect on the Euro-
pean or the US VRPs, while the US VRP has relatively weaker effect on the Japanese or
European VRPs. Secondly, the interdependency is weakened during the period from the
summer of 2007 to the Lehman shock, though after the Lehman shock it grows stronger in
most of the directions, particularly from Europe to US.

Examining in detail, we detect several differences between panels in (i) and those in (ii).
The impulse responses evaluated by tVRP shows a small but negative link between Japan
and Europe before the turmoil while US and Japan have a positive link, though we do
not see such a relationship in eVRPs. And the impulse responses evaluated by eVRPs are
positively estimated in any directions, indicating the positive feedback loop resides among
eVRPs all through the examined period. Taking the above analyses together, we permit
the following assessment. Firstly, the weakening VRP contagion during the Post Paribas
Shock period indicates that the speed of market risk aversion to the future volatile market
varies country by country. The concerns for the US subprime mortgage loan problem are
gradually prevailing in the global market while each option market reacts differently to
various policy responses adopted in each country. After the Lehman shock, however, the
interdependency among VRPs grew stronger. The market participants become sensitive
to the volatility risk which may result in the increase in strength of the positive feedback
loop among global VRPs during the period. Additionally, contrary to the direction of RV
contagion, the shock in VRP generated in Japan mostly affects the European and US VRPs
all through the examined period. This may be explained by the fact that the Japanese
VRP is largest than those in Germany or the US, hence the shock given in the impulse
response is large.

18 Though we investigate the constant volatility type TVP-VAR and obtain different results, the stochastic
volatility type is examined in this section as that is a more comprehensive model.
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(i) Time series of estimated TVP coefficients ĉ∗∗t
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(ii) Impulse responses
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Figure 4: Time-varying coefficient estimates and impulse responses of equity return conta-
gion

Notes: Dotted lines in panels in (i) indicate two standard deviation bands calculated by estimator of
σ̂u. Solid lines, dashed lines, and dotted lines in panels (ii) indicate impulse responses with
1 day, 2 days, and 3 days lag, respectively. The shocks for the response calculation are given
in percent scale. The stochastic volatility type model with one day lag is applied.
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Figure 5: Time-varying impulse responses of log RV contagion

Notes: Solid lines, dashed lines, and dotted lines indicate impulse responses with 1 day, 2 days,
and 3 days lag, respectively. The stochastic volatility type TVP-VAR with three days lag is
applied. The shocks for the response calculation are given in the scale of the log of squared
percent.

6 Summary

This paper has proposed the evaluation method of volatility risk premiums, seeking for
improvement on methods applied in earlier studies. It analyses those volatility risk premi-
ums on the global stock indices, along with volatility developments. The analyses focus on
how those volatilities and the risk premiums propagated among the global equity markets
during the global financial market turmoil after the summer of 2007. In the analyses, this
paper has tried to apply the time-varying-parameter structural VAR model to evaluate the
change of spillover effects of equity returns, volatilities, and risk premiums.

Our proposed measure of the volatility risk premium addressed the filtration inconsis-
tency problem ignored in earlier studies to better reflect market expectations for future
volatility risk. By our method, the premium is identified as the gap between the current
integrated implied volatility and the integrated future volatility estimated by a time series
model applied to preceding realized volatilities. We estimated two types of premiums on
the assumption that one-day realized volatility behaves according to the Heston model
or the ARFIMAX model. Analyses indicate that the premium obtained by our method
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(i) Impulse responses of tVRP contagion
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(ii) Impulse responses of eVRP (ARFIMAX) contagion
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Figure 6: Time-varying impulse responses of tVRP and eVRP (ARFIMAX) contagion

Notes: Solid lines, dashed lines, and dotted lines in each panel indicate impulse responses with 1
month, 2 months, and 3 months lag, respectively. The stochastic volatility type TVP-VAR
with three days lag is applied. The shocks for the impulse response calculation are given in
in the normal scale though figures in the other tables/figures are shown in squared percent
scale.
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more strongly correlates with market risk indicators which generally used to measure risk
aversion/appetite than those based on earlier methods.

We also applied the time-varying-parameter structural VAR model with stochastic
volatility of residuals to analyse the spillover effects of equity returns, volatilities, and
the volatility risk premiums among Japan, Europe, and the US. Using this model for the
evaluation of market contagion is new as far as the author knows. Examination revealed
that the positive spillover among the equity returns remained positive with reinforcement
of the counter feedback to the US market during the turmoil. The contagion of shocks
in volatilities, which had mainly originated in the US market before the turmoil, became
reciprocal after the Lehman shock. As for the risk premium contagion, while the interde-
pendency is weakened after the Paribas shock, it grows stronger after the Lehman shock in
most of the directions, particularly from Europe to US. The enhanced propagation of re-
turns, volatilities, and volatility risk premiums made markets more volatile, and let option
market participants highly risk averse. These contagion effect may result in the dramatic
increase in the level of volatility and volatility risk premiums during the turmoil.

Our proposed measure of volatility risk premium, along with volatility itself, seems
to be useful to monitor investors risk aversion and the market sentiments. It does matter
especially in disordered markets and attains to the knowledge of its propagation. Addition-
ally, our new approach of using the time-varying-parameter structural VAR model brings
useful scheme of evaluating such propagation dynamics.
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A The derivation of IIV (Eq.(4))

A.1 Natural assumptions on underlying price processes

In this section, we derive Eq.(4), the representation of expected quadratic variation under
risk neutral measure Q, using European option prices. Suppose the forward price process
at time t, F (t, T ) = Ft, obeys the general jump diffusion process:

dFt = Ft−σ(t−, ·)dWt + Ft−

∫ ∞

−∞
(ez − 1)[µ(dz, dt) − ν(dz, t)dt], (B-1)

where t−, σ, dWt and z denote the time just before t, a diffusion coefficient, Weiner process
and a jump size, respectively. The coefficient σ is assumed to be a function of time and any
other variables. z is the jump size when µ(z, t) = 1 and satisfies z = ln Ft

Ft−
. By integrating

in terms of z, the price can include every possible size of the jumps. µ(z, t) is an arbitrary
process and ν(z, t) denotes a compensation process of the jump process:

Jt =
∫ t

0

∫ ∞

−∞
Fs−(ez − 1)µ(dz, ds), (B-2)

which satisfies
EQ̃

s µ(dz, dt) = EQ̃
s ν(dz, t)dt (∀s < t).

Here, we define the T -forward measure Q̃, such that Ft is martingale under Q̃. And for
simplicity, we write EQ̃

t [·] = EQ̃[·|Ft] and Ft = σ(Fs; s ≤ t).
Furthermore, in order to restrict the variance of Ft not to diverge, we assume ν(z, t)

should satisfy

ν(0, t) = 0,

∫ ∞

−∞
(e2z ∧ 1)ν(z, t)dz < ∞, ∀t ∈ [0,∞). (B-3)

A.2 Expansion of European type payoff

First we show any type of C2 European payoff f(y) (y > 0) can be expanded as the
following using the strictly positive value x.

f(y) = f(x) + f ′(x)(y − x) +
∫ x

0
f ′′(K)(K − y)+dK +

∫ ∞

x
f ′′(K)(y − K)+dK (B-4)

(proof)

By simple mathematics,

f(y) − f(x) = 1{y ≥ x}
∫ y

x
f ′(u)du − 1{x > y}

∫ x

y
f ′(u)du

can be derived for any C2 function f(·) and strictly positive variables x, y. Transforming
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the above equation yields

f(y) = f(x) + 1{y ≥ x}
∫ y

x

[
f ′(x) +

∫ u

x
f ′′(v)dv

]
du

− 1{x > y}
∫ x

y

[
f ′(x) −

∫ x

u
f ′′(v)dv

]
du

= f(x) + f ′(x)(y − x) + 1{y ≥ x}
∫ y

x
f ′′(v)

∫ y

v
dudv + 1{x > y}

∫ x

y
f ′′(v)

∫ v

y
dudv

= f(x) + f ′(x)(y − x) + 1{y ≥ x}
∫ y

x
(y − v)f ′′(v)dv + 1{y < x}

∫ x

y
(v − y)f ′′(v)dv

= f(x) + f ′(x)(y − x) +
∫ ∞

x
(y − v)+f ′′(v)dv +

∫ x

0
(v − y)+f ′′(v)dv.

When v = K, we get Eq.(B-4). ¥

A.3 Synthesis of the present value of any European-type payoff

The present value of any European type payoff f(FT ), Vt = B(t, T )EQ̃
t f(FT ), can be

synthesised by the riskless bond price B(t, T ), the forward price Ft, and put and call
option values C(t, T,K), P (t, T,K) as follows.

Vt = f(Ft)B(t, T ) +
∫ Ft

0
f ′′(K)P (t, T,K)dK +

∫ ∞

Ft

f ′′(K)C(t, T,K)dK. (B-5)

Specifically, the present value of the log type payoff can be decomposed as

B(t, T )EQ̃
t

[
− ln

FT

Ft

]
=

∫ Ft

0

P (t, T,K)
K2

dK +
∫ ∞

Ft

C(t, T,K)
K2

dK. (B-6)

(proof)

Let x = Ft and taking expectation at time t under the T -forward measure in Eq.(B-4)
as

EQ̃
t f(FT ) = f(Ft) + f ′(Ft)(EQ̃

t FT − Ft)

+EQ̃
t

∫ Ft

0
f ′′(K)(K − FT )+dK + EQ̃

t

∫ ∞

Ft

f ′′(K)(FT − K)+dK.

Here, the second term is zero since Ft is martingale under T -forward measure. Therefore,
the present value become

Vt = f(Ft)B(t, T ) +
∫ Ft

0
f ′′(K)P (t, T,K)dK +

∫ ∞

Ft

f ′′(K)C(t, T,K)dK,

which results in Eq.(B-5). Additionally, when the payoff function has the form f(x) =
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lnx, Eq.(B-5) can be rewritten as

EQ̃
t lnFT = lnFt −

∫ Ft

0

P̃ (t, T,K)
K2

dK −
∫ ∞

Ft

C̃(t, T,K)
K2

dK,

which is Eq.(B-6). ¥

A.4 Synthesis of IIV

We lastly derive Eq.(4), or the following equation, from Eq.(B-6).

σ2
IIV (t, T ) =

2
(T − t)B(t, T )

(∫ Ft

0

P (t, T,K)
K2

dK +
∫ ∞

Ft

C(t, T,K)
K2

dK

)
+ ε,

ε ∼ o

((
dFs

Fs−

)3
)

. (B-7)

(proof)

By the assumption in Eq.(B-3),

σ2
IIV (t, T ) =

1
T − t

EQ̃
t

∫ T

t

(
dFs

F−
s

)2

=
1

T − t
EQ̃

t

∫ T

t

(
1

Fs−

)2

d[F, F ]s

=
1

T − t
EQ̃

t

∫ T

t

[
σ2(s−, ·)ds +

∫ ∞

−∞
(ez − 1)2µ(dz, ds)

]
.

Applying Ito’s formulae to lnFs, we get

d lnFs =
dFs

Fs−
− 1

2
σ2(s−, ·)ds +

∫ ∞

−∞

[
ln(Fs−ez) − lnFs− − Fs−ez − Fs−

Fs−

]
µ(dz, ds).

Substituting σ2(s−, ·) in the above two equations yields

σ2
IIV (t, T ) =

2
T − t

EQ̃
t

[
− ln

FT

Ft

]
+

2
T − t

EQ̃
t

∫ T

t

dFs

Fs−

+
1

T − t
EQ̃

t

∫ T

t

∫ ∞

−∞

(
e2z − 4ez + 2z + 3

)
µ(dz, ds).

The second term is zero as Ft is martingale under the T -forward measure. Applying
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Eq.(B-6) to the first term yields

σ2
IIV =

2
(T − t)B(t, T )

[∫ Ft

0

P (t, T,K)
K2

dK +
∫ ∞

Ft

C(t, T,K)
K2

dK

]
+

1
T − t

EQ̃
t

∫ T

t

∫ ∞

−∞

(
e2z − 4ez + 2z + 3

)
µ(dz, ds)

=
2

(T − t)B(t, T )

[∫ Ft

0

P (t, T,K)
K2

dK +
∫ ∞

Ft

C(t, T,K)
K2

dK

]
+ ε.

As shown, Eq.(4) is satisfied.
Note that the error ε is the accumulation of the third moment of price jumps from

time t to time T . This is because, since we know ez = 1 + z + z2/2 + o(z3) by Taylor
expansion, ε can be computed as

ε =
1

T − t
EQ̃

t

∫ T

t

∫ ∞

−∞

(
e2z − 4ez + 2z + 3

)
µ(dz, ds)

=
1

T − t
EQ̃

t

∫ T

t

∫ ∞

−∞

{
(1 + 2z + 2z2 + o(z3)) − 4(1 + z + z2/2 + o(z3)) + 2z + 3

}
µ(dz, ds)

∼ 1
T − t

EQ̃
t

∫ T

t

∫ ∞

−∞
o(z3)µ(dz, ds). ¥

B MCMC sampling scheme for estimating parameters

We explain the MCMC sampling scheme for the parameter estimation in Eq.(19) or Eq.(21).
The model is

Atxt =
s∑

i=1

Bitxt−i + εt,

where xt = (xJ
t , xE

t , xU
t )⊤ is a 3-by-1 data vactor At is a lower triangular matrix whose

diagonal elements are 1, Bit (i = 1, . . . , s − 1) are 3-by-3 square matrices, and Bst is 3-
by-3 upper triangular matrix. Let bt denotes row stacked vector of the 3-by-3s matrix
(B1t, B2t, . . . , Bst) excluding 0 elements in the lower triangular of Bst, defined by,

bt = (cJ1
t , cJ2

t , . . . , cJs
t , cE1

t , . . . , cEs−1
t , cEEs

t , cUEs
t , cU1

t , . . . , cUs−1
t , cUUs

t , )⊤,

where c∗it (∗ = J,E,U ; i = 1, . . . , s) denotes the coefficient vector of i-th lag to the country
∗, i.e., c∗it = (cJ∗i

t , cE∗i
t , cU∗i

t ). And let at denote row stacked vector of At, i.e.,

at = (−cJE0
t ,−cJU0,−cEU0

t )⊤.

We apply the following algorithm of Gibbs sampler recursively.

1. Initialise {at}T
t=1, {bt}T

t=1, {ht}T
t=1 and set priors as σ2

u ∼ IG(n0/2,m0/2), and also

32



set σ2
h ∼ IG(n2/2,m2/2) for stochastic volatility case, or σ2

ε ∼ IG(n4/2, m4/2) for
constant volatility case.

2. Generate sample {bt}T
t=1 | {xt}T

t=0, {at}T
t=1, {ht}T

t=1, σu by applying the method
explained in B.1.

3. Generate sample {at}T
t=1 | {xt}T

t=0, {bt}T
t=1, {ht}T

t=1, σu by applying the method
explained in B.2.

4. Generate sample σ2
u | {at}T

t=1, {bt}T
t=1 ∼ IG(n1/2,m1/2), where n1 = n0 + T − 1

and m1 = m0 +
∑

t c
⊤
t ct.

5. Generate sample {ht}T
t=1 | {xt}T

t=0, {at}T
t=1, {bt}T

t=1, {σh}T
t=1 by applying the method

explained in B.3 for the case of stochastic volatility. Generate sample σ2
ε | {at}T

t=1, {bt}T
t=1 ∼

IG(n5/2,m5/2), where n5 = n4 + T − 1 and m5 = m4 +
∑

t ε⊤t εt for the case of con-
stant volatility.

6. Generate sample σ2
h | {ht}T

t=1 ∼ IG(n3/2, m3/2) where n3 = n2 + T − 1 and m3 =
m2 +

∑
t h

⊤
t ht for the case of stochastic volatility.

7. Go to 2.

B.1 Sampling elements in Bt

In order to sample elements in Bt, we rewrite Eq.(21) in a state space form as{
x̃t = Xbbt + εt,

bt = bt−1 + ub
t ,

where x̃t = Atxt, and

Xb =

⟨xt−1,t−s⟩ x⊤
t−s 0 · · · 0

0 0 ⟨xt−1,t−s−1⟩ xE
t−s xU

t−s 0 0
0 · · · 0 ⟨xt−1,t−s−1⟩ xU

t−s

 ,

where ⟨xt−1,t−i⟩ = (x⊤
t−1, . . . ,x

⊤
t−i) (i > 1). Since εt and ub

t are normally distributed inde-
pendently, samples of bt are generated using Kalman filter and the simulation smoother.
Those algorithms are explained in Chapter 13 in Hamilton [1994], or Appendix A.1 in
Nakajima, Kasuya, and Watanabe [2009].
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B.2 Sampling elements in At

To sample elements in At from a posterior distribuiton, we rewrite Eq.(21) in another state
space form. Since At = I + Āt where

Āt =

 0 0 0
−cJE

t 0 0
−cJU

t −cEU
t 0

 , and I =

1 0 0
0 1 0
0 0 1

 ,

we transform Eq.(21) to x̄t = −Ātxt + εt where x̄t = xt − Xbbt. It can be further
rewritten as {

x̄t = Xaat + εt,

at = at−1 − ϵa
t ,

where at = (−cJE
t ,−cJU

t ,−cEU
t )⊤, and

Xa =

 0 . . . 0
−xJ

t 0 0
0 −xE

t −xU
t

 .

We apply Kalman filter and the simulation smoother as in Section B.1 to generate samples
of At.

B.3 Sampling ht

For the stochastic volatility type, we generate the sample of the volatility process ht. The
algorithm of multi-move sampler for non-linear Gaussian state space model is applied. We
set block size of 100 which is roughly equivalent to 15 times division of sample set in the
estimation of return and RV contagion. In the estimation of monthly VRP contagion, we
set block size 3 which is roughly equivalent to 20 times division of samples. See Appendix
A.3 in Nakajima, Kasuya, and Watanabe [2009] for the procedure. We apply the program
of generating ht developed by them.
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