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Abstract

This paper describes the statistical properties of a new set of zero-

coupon bond yields constructed from New Zealand Government Bond

market data. These yields are constructed following the method of

Nelson and Siegel (1987) and the extension by Svensson (1994). Trends

in the shape of the zero-coupon curve since 1993 are documented.

Despite several notable differences between the shapes of the yield

curves derived for New Zealand and those for other OECD economies,

results in this paper generally confirm that movements in the returns

on New Zealand government bonds can be decomposed into the same

level, slope, and curvature principal-components that a large literature

has documented for various other economies. However, we do find some

evidence that a fourth principal-component may also be important in

explaining bond return variation.

∗This research was conducted while the author was on leave from the Reserve Bank

of New Zealand. The views expressed in this paper are those of the author and do not

necessarily reflect those of the Bank for International Settlements or the Reserve Bank of

New Zealand.
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1 Introduction

This paper describes the statistical properties of a new data-set of zero-

coupon bond yields constructed from New Zealand Government Bond market

data. Such yields are a cornerstone of fixed income analysis, where they are

used to price a variety of derivative instruments, and are also an essential

input in the estimation of structural models of yield curve dynamics. Though

zero-coupon yields can be derived from interest rates on corporate debt or

from swap rates, these rates are subject to credit risk and cannot be directly

used to price other securities or in arbitrage-free models of the yield curve. In

contrast, zero-coupon curves derived from yields to maturity on government

bonds are risk-free by definition – insofar as there is negligible risk of sovereign

default – and so provide reference rates ideally suited to the uses noted

above. However, the estimation of these curves is complicated by the fact

that there are typically a large number of government bonds on issue, each

differing in maturity and the coupon offered, and which do not always trade

in sufficiently liquid secondary markets. Finally, in the absence of a complete

set of government debt securities for all maturities, zero-coupon curves must

instead be estimated by fitting to the available yield data.

Though there are several alternative approaches to estimating zero-coupon

yields, two types of methods have become especially popular. Function-based

methods – including the particular form proposed by Nelson and Siegel (1987)

and extended by Svensson (1994) – rely on fitting a single mathematical

model to yield data on bonds of different maturities. Though the Nelson and

Siegel specification and its extensions are the most commonly used functional

forms for deriving zero-coupon yields, there is, in principle, no restriction on

the choice of function. The key requirement is that that various parameteri-

sations of the function must permit representations of the various shapes of

Treasury yield curves over the business cycle.

The other major class of methods relies on fitting piecewise polynomials –

usually quadratic, cubic or exponential – to bond yield data, with parameters

governing the degree of smoothness of the fitted curve. The choice between

these two methods will often depend on whether the researcher is interested

in obtaining a higher degree of smoothness in the estimated curve or in better

fit to the raw yields.1

1For a selection of alternative methods used see Bolder et al. (2004) (Canada), Schich

(1997) (Germany), Ricart and Siscic (1995) (France), Svensson (1994) (Sweden), Anderson
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This paper focuses on the evolution of the New Zealand yield curve since

1993. The approach is similar to that of Bolder et al. (2004) who study the

Canadian yield curve. We describe the changing distributional properties of

the levels of short- and long-term New Zealand interest rates and of their

daily changes. We also consider how measures of the slope and curvature of

the yield curve have changed over time, and perform a principal-components

analysis to determine the common factors that influence the shape of the

yield curve. The chief motivation for this paper is that this data-set should

prove useful input in more structural investigations of the New Zealand yield

curve, with the conclusions of the principal-components analysis in section 4

providing a statistical benchmark for evaluation of results from these inves-

tigations.

2 Estimating zero-coupon curves for New Zealand

We use the method of Nelson and Siegel (1987) and the extension by Svensson

(1994) to construct zero-coupon curves. Given the ubiquity of the method,

only a brief sketch of the method is presented here.2 Following Svensson, we

assume that the instantaneous forward rate at maturity m is given by the

function:

fm = β0 + β1exp

(

−

m

τ1

)

+ β2

(

m

τ1

)

exp

(

−

m

τ1

)

+ β3

(

m

τ2

)

exp

(

−

m

τ2

)

(1)

where β0, β1, β2, β3, τ1 and τ2 are parameters to be estimated. Continuous

compounding of the instantaneous forward rate to maturity results in the

zero-coupon (or spot) interest rate. Consequently, the latter is defined as the

et al. (1999) (United Kingdom) and Fama and Bliss (1987) (United States). See BIS (2005)

for a discussion of the relative merit of different techniques in use at various central banks.
2In surveying central banks on the technical details of their derivations of zero-coupon

curves, BIS (2005) notes that the majority of reporting banks have adopted variants of

the Nelson and Siegel method.
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The original Nelson and Siegel specification is achieved by setting β3 = 0.

In this case, the infinite-maturity spot rate is β0, and the starting point of

the curve, i.e. as m → 0, is given by (β0 + β1). The spot rate can take on a

range of common yield curve shapes including those that are monotonically

increasing or decreasing, and convex or concave shapes where the location,

size and direction of the hump is determined by the sign and magnitude

of β2 and τ1. (These facts point to one additional advantage in our use of

the Nelson and Siegel method. The three parameters – β0, β1 and β2 can

be directly interpreted in terms of terms of the level, slope and curvature

principal-components derived in section 4.) The additional parameters β3

and τ2 introduced by Svensson allow for the possibility of a second hump,

a feature that turns out to be especially important in estimating the New

Zealand term structure.

The discount function – that is, the price of a dollar delivered at maturity m

– is given by:

dm = exp

(

−msm

100

)

, (3)

and the theoretical price and yield of a bond can then be written in terms of

this discount function, the coupon rate and a given set of parameters for the

spot rate.3 Given observations on the prices and yields on bonds of different

maturities, estimating the zero-coupon curve, sm, for a particular trade date

is a matter of determining the set of parameters that minimises the sum of

squared differences between the theoretical and observed price, or between

the theoretical and observed yield to maturity.

3See Svensson (1994) for algebraic expressions.
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2.1 Data

We use maximum likelihood to fit the model to yield data on government

bonds and bills made available by the Reserve Bank of New Zealand. We

minimise yield errors following the oft-reported observation that the alterna-

tive of minimising price errors can result in loss of fit (as measured by yield

errors) for instruments with very short maturities. Svensson also makes the

argument that minimising yield rather than price errors is more natural for

monetary policy analysis.

The data used for estimation consists of 3724 daily observations on secondary

market yields from 01 March 1993 to 08 November 2007 on 1-, 2-, 3-, 5-

and 10-year benchmark government bonds that pay variable coupon semi-

annually.4 We also use yields on Treasury bills with 1-, 2- and 3- and 6-

months to maturity that pay no coupon, and the interest rate on overnight

inter-bank transactions. The short end of the estimated zero-coupon curve

on any given day is restricted to equal the prevailing overnight rate.5

Figure 1 provides a composite picture of New Zealand Government bond yield

curves over the sample period. Dividing the sample into halves, government

bond yield levels are generally lower and much less volatile at all maturities

in the period 2000-07 than between 1993-99 (see table 1). We continue to

contrast between these two subsamples in the analysis below.

2.2 Estimation process

The procedure we adopt for estimating zero-coupon yields from government

bond data is simple. For every trading date in our sample we fit the origi-

nal Nelson and Siegel model to the yields on bonds for the maturities noted

above. We use the estimated parameters on date t − 1 as the starting val-

ues for the maximum likelihood estimation of the term structure on date

t. For some dates in our sample, the original specification results in yield

errors that are very high in comparison to those for neighbouring dates or

4A formal 3-year benchmark for New Zealand government bonds was discontinued

in November 2006. To determine the appropriate benchmark from November 2006 to

November 2007 we use the bond with the shortest maturity beyond three years.
5Though the maturity profile in our estimations is skewed to short-term maturities, this

can be justified by the fact that much of the variation in the yield curve shapes actually

occurs at these shorter maturities.
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Figure 1: New Zealand Government bond yield curves: 1993–2007.

in atypical curve shapes. These errors and atypical shapes are likely to be

a consequence either of errors in our estimation data or due to unusual pre-

vailing market conditions. Given that is impossible to distinguish between

the two possibilities ex post we do not censor any of the estimation results in

constructing the data-set, leaving subsequent research projects to filter the

results as necessary.

However, there are also some years in our sample (such as the 2003-07 period)

when the yield errors are systematically large for a prolonged period of time

suggesting that the Nelson and Siegel specification is not a good fit to the

observed yield for that period. Consequently, for these years we estimate the

model using the extended Svensson specification instead. Table 2 provides a

summary of the fit of the model.

Bolder et al. (2004) find a near-secular improvement in the fit of an ex-

ponential spline model to Canadian data over the period 1986-2003. The

authors attribute this to improvements in bond issuance and trading proce-

dures which allow for more efficient pricing across all maturities. No such
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Table 1: Summary of New Zealand Government bond yields (percent)

O/Na 1m 2m 3m 6m 1y 2y 3y 5y 10y

1993- Mean 7.07 7.27 7.30 7.31 7.30 7.14 7.09 7.10 7.12 7.15

1999 SD 1.98 1.85 1.79 1.73 1.60 1.45 1.18 1.07 0.97 0.87

2000- Mean 6.37 6.53 6.54 6.55 6.56 6.06 6.00 6.05 6.08 6.11

2007 SD 0.99 1.03 1.04 1.05 1.04 0.76 0.61 0.53 0.43 0.36

1993- Mean 6.74 6.93 6.94 6.96 6.96 6.63 6.58 6.61 6.63 6.66

2007 SD 1.64 1.57 1.54 1.50 1.42 1.29 1.10 1.00 0.93 0.85
aOvernight interbank rate

Table 2: Model fit: Root-mean square yield errors (censored, annual means)

Year RMSYE (bps) Year RMSYE (bps)

1993 10.25 2000 4.43

1994 12.31 2001 9.63

1995 6.46 2002 15.82

1996 10.42 2003 8.55

1997 7.18 2004 8.25

1998 11.77 2005 8.75

1999 14.67 2006 13.58

2007 23.35

1993-99 10.44 2000-07 11.54

7



trend is apparent from table 2 for New Zealand data, where the smallest

errors are in 2000, and the largest in 2007.6 With respect to the rationale

noted above, this may well be because the New Zealand Debt Management

Office had already completed an overhaul of bond issuance procedures by

1993, moving away from a program of ad-hoc issuance of bonds with irreg-

ular maturities that traded in illiquid markets to a program developed in

consultation with financial markets participants featuring regular issuance of

benchmark bonds that are actively traded in secondary markets.

3 Summary statistics

In summarising the statistical properties of the estimated zero-coupon yields

over the sample period, we focus on the 1-year and 10-year yields as rep-

resentative short- and long-term interest rates, and define the slope of the

curve as the difference between these two yields. We also consider a measure

of the degree of curvature of the yield curve, defining this (in terms of a

duration-neutral portfolio choice) as the difference between the 5-year rate

and the average of the 1- and 10-year rates.

Figure 2: New Zealand zero-coupon bond yields: sample averages
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6It is not unreasonable that the errors are largest in 2007, a year that featured several

liquidity crunches, especially in the second half, causing short-term spreads to spike well-

above historical averages.
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Figure 2(a) shows the mean yield curve over the full sample with one stan-

dard deviation bounds, and the adjacent panels shows the same data for

the periods 1993-1999 and 2000-2007. The average zero curve over the full

sample features interest rates that rise above the overnight rate in the very

short-term, which then decline for maturities from about three months to

about two years, before beginning to rise again (marginally) for maturities

through to 10 years. Standard errors around the estimated yield curves are

large in the full sample: the average 3-month rate is 7.0 percent over the full

sample, and the one standard deviation band is large and ranges from 5.3

to 8.5 percent. The bands do become narrower for maturities up to about 3

years, before stabilising to encompass a range of about 1.75 percent.

The dispersion about the mean zero curve is much larger in the 1990s than

in the 2000s for all maturities. The other major difference between the sub-

samples is that the short-term hump is dated at an average maturity of 9

months in the 1990s and at only 2 months in 2000s; a likely consequence of

the Reserve Bank’s move to use the OCR as the monetary policy instrument

in 1999 giving it greater influence on short term interest rates.

Figure 3 and 4 show the slope and curvature of the zero curve (as defined

above) over the full sample and we see that both of these yield curve measures

become markedly less volatile in the 2000s. Though the volatilty decreases,

the properties of the levels are much the same: the zero curve was negatively

sloped on 55 percent of all trading dates between 1993 and 1999, while the

corresponding figure for 2000-2007 is 57 percent. In contrast to the experience

of many other countries, yield curve inversions do not appear to have become

less common with time. The middle-maturity curvature (by our definition) of

the yield curve is generally negative, suggesting a convex hump in the curve is

the most likely out-turn, which is corroborated by the average curves shown

in figure 2.

Table 3 provides a summary of the descriptive statistics on the five measures

of the yield curve considered in this section, including Jarque-Berra prob-

abilities for normality of the measures in the final column. The downward

level shift and the reduction in volatility of yields are apparent, especially at

the long end of the curve. We reject the normality hypothesis (on the basis

of the Jarque-Berra statistics at the 5% level) for all measures of the yield

curve in both sub-periods.
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Table 3: Summary of New Zealand zero-coupon yields–levels
Variable Mean Max Min Std Dev Skew Kurtosis JB Prob

1. 1993-2007

3-month yield 7.00% 10.67% 3.93% 1.55% 0.22 2.03 0.000

1-year yield 6.83% 10.50% 4.49% 1.30% 0.40 2.37 0.000

10-year yield 6.62% 9.44% 4.99% 0.87% 0.82 3.22 0.000

Slope -0.21% 2.31% -3.76% 0.95% -0.00 2.67 0.000

Curvature -0.16& 0.61% -1.65% 0.32% -0.41 3.01 0.000

2. 1993-1999

3-month yield 7.34% 10.67% 3.93% 1.76% -0.13 1.78 0.000

1-year yield 7.28% 10.50% 4.49% 1.44% -0.11 2.04 0.000

10-year yield 7.08% 9.44% 4.99% 0.90% 0.17 2.78 0.003

Slope -0.21% 2.31% -3.76% 0.92% -0.14 3.24 0.000

Curvature -0.13% 0.61% -1.65% 0.34% -0.73 3.50 0.000

3. 2000-2007

3-month yield 6.59% 9.54% 4.77% 1.13% 0.32 2.07 0.000

1-year yield 6.30% 8.40% 4.78% 0.86% 0.30 2.26 0.000

10-year yield 6.09% 7.12% 5.04% 0.41% 0.51 2.42 0.000

Slope -0.21% 2.2% -2.1% 0.98% 0.15 2.16 0.000

Curvature 0.19% 0.56% -0.85% 0.30% 0.03 2.43 0.000
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Figure 3: 3m-10y slope of the New Zealand zero coupon curve
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Figure 4: Curvature of the New Zealand zero coupon curve
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3.1 Yield curve measures–first differences

We have already noted that zero-coupon yields derived from government

bond yields are useful for pricing other securities, and have used this fact to

motivate the analysis. As Bolder et al. (2004) explain, the first difference (or

daily change) of the yield curve is considered by many market analysts and

traders to be synonymous with the short-term risk and return on government
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bonds. This is because a zero-coupon bond carries no interest payment and

over a very short period of time, the contribution to the price of the bond

from its accretion to par value is negligible, leaving yield changes as the only

fundamental driver of price changes. Bolder et al. go on to note that most

security-pricing and risk-management models assume that these returns are

normally distributed and show that this assumption is rejected on the basis of

the zero-coupon yields they determine from Canadian data, concluding that

“models that make the assumption of normality could be producing results

that provide inaccurate prices or risk measures”.

Table 4 contains summary statistics for the first differences of the five mea-

sures of the yield curve we consider, and again the hypothesis of normality

is rejected for all yield curve measures for all periods. More interestingly, we

find that the results for New Zealand echo those for Canada where the yield

differences are highly leptokurtic and subject to extreme outliers (evidenced

by the fact that the standard deviations are several orders of magnitude larger

than the means.) The implication of these results for asset- and risk-pricing

models is that assumptions of normality are likely to result in underestimat-

ing the probabilities of both very small and very large changes in yields,

unless appropriate hedging strategies are in place.7

4 Principal-components analysis

In the previous section, we noted that hedging instruments are often neces-

sary to hedge against the risk that pricing models underestimate very low

and very high returns to holding bonds. A common hedging strategy is based

on the idea of Macaulay duration which assumes that yield changes on bonds

of all maturities are very similar. However, several authors have shown that

though bond yield changes do often occur in parallel, they have done so by

different amounts for different maturities at various times in history, implying

that slope and curvature, and perhaps other, considerations are also likely to

be important in designing interest rate derivatives and hedges.

In this section, we use a common non-parametric statistical technique –

principal-components analysis (PCA) – to explore the dynamic behaviour

of bond yields in New Zealand.

7See Bliss (1997), Bolder et al. (2004), and Anderson et al. (1999).
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Table 4: Summary of New Zealand zero-coupon yields–first differences
Variable Mean Max Min Std Dev Skew Kurtosis JB Prob

1. 1993-2007

3-month yield 0.00% 1.35% -0.77% 0.10% 0.92 27.88 0.00

1-year yield 0.00% 1.03% -1.00% 0.09% 0.03 27.28 0.00

10-year yield -0.00% 0.71% -0.61% 0.08% 0.59 15.53 0.00

Slope -0.00% 1.05% -0.91% 0.11% 0.88 29.06 0.00

Curvature -0.00% 0.59% -0.44% 0.04% 0.90 34.52 0.00

2. 1993-1999

3-month yield -0.00% 1.35% -0.77% 0.13% 0.76 16.65 0.00

1-year yield -0.00% 1.03% -0.96% 0.12% 0.48 16.37 0.00

10-year yield -0.00% 0.71% -0.61% 0.09% 0.40 12.67 0.00

Slope -0.00% 1.05% -0.91% 0.14% 0.32 19.07 0.00

Curvature -0.00% 0.59% -0.44% 0.06% 0.29 21.68 0.00

3. 2000-2007

3-month yield 0.00% 0.32% -0.38% 0.03% -0.80 36.54 0.00

1-year yield 0.00% 0.31% -1.00% 0.05% -6.01 112.5 0.00

10-year yield 0.00% 0.69% -0.28% 0.06% 1.32 16.61 0.00

Slope -0.00% 1.02% -0.46% 0.07% 5.00 74.48 0.00

Curvature 0.0% 0.56% -0.21% 0.03% 5.49 106.5 0.00
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4.1 An overview of the method

Following Litterman and Scheinkman (1991), changes in bond yields of dif-

ferent maturities over time have often been assessed by extracting principal-

components (or factors) of the data. That is, though bond yield dynamics re-

flect a multitude of macroeconomic and financial markets developments, they

are correlated across different maturities. Consequently, principal-components

analysis aims to decompose these dynamics in terms of a new, smaller set of

linearly independent random variables.8

Again, given the wealth of literature detailing the use of principal-components

for examining bond yield dynamics, we provide only the essential elements

of the technique.9

Let X be an n × T matrix of standardised bond yield changes where n is

the number of instruments under consideration (ten in this case) and T is

the number of observation dates. We seek an orthonormal matrix M which

yields a transformation MX = Y such that the covariance of Y is a diagonal

matrix. (This transformation allows us to translate a matrix of correlated

bond yield data into an uncorrelated matrix.) The principal components of

X are given by the rows of M .

The matrix M is easily constructed using an eigenvector decomposition. To

see this, note that E(Y Y ′) = E(MXX ′M ′) = MΩM ′ where E is the expec-

tations operator and Ω is the covariance matrix of X and will be positive

definite so long as none of the yield changes are an exact linear combina-

tion of the others. We can diagonalise Ω using the factorisation, Ω = FDF ′

where F is the orthogonal matrix of eigenvectors of Ω and D consists of the

corresponding (strictly positive) eigenvalues, arranged in decreasing order on

the diagonal. Then, making the substitution F ′ = M , we have Ω = M ′DM

and Cov(Y ) = D.

In summary, the principal-components of X are given by the rows of M and

the ith diagonal element of D is the variance of X along the ith principal-

component. Given that we have ordered the eigenvalues of D, the largest

proportion of covariance in X is explained by the first row of M – that is, by

8PCA simply involves restating the data in terms of a new basis to help reveal the

underlying dependencies and structure. From this perspective, PCA is closely linked to

singular value decompositions of the data.
9See Bliss (1997) for a different approach to understanding the common drivers of bond

yields using factor analysis.
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Table 5: Zero coupon yield changes: percentage variation explained by

principal-components (full and sub-sample)

Period 1st PC 2nd PC 3rd PC 4th PC Total

1993-1999 55.8 21.3 12.7 6.0 95.9

2000-2007 44.2 29.5 12.9 8.5 95.2

1993-2007 54.2 23.0 12.4 6.1 95.8

the first principal-component – and so on. The first k principal-components

explain much of the correlation in the rows of X if the remaining n − k

eigenvalues are relatively small.

The original data can be retrieved from the principal-components by X =

M−1Y = M ′Y since M is orthogonal. Therefore, the ith zero-coupon bond

return can be recovered as:

Xi = µi +

n
∑

j=1

σim
′

i,jYi (4)

where µi is the sample mean of the ith series of bond returns and σi its sample

standard deviation.10 If only the first k principal-components are found to

explain much of the variation in bond returns then the above summation

need only be over j = 1, 2, ..., k elements of ith row of M .

4.2 Results

We extract principal-components from standardised zero-coupon daily yield

differences for each year in our sample, and then again for the full sample. We

calculate the individual and cumulative variation explained by the principal-

components (as measured by the ratio of each eigenvalue of Ω to the sum

of all eigenvalues), and figure 5 contains a year-by-year plot of the results,

while table 5 contains a summary of full- and sub-sample results.

Similar analyses for other economies commonly report that the first three

principal-components explain more than 95 percent of the variation in bond

returns.11 To arrive at this threshold for our full sample of New Zealand

10See Bolder et al. (2004) for this expansion.
11See, for example, Litterman and Scheinkman (1991), Bliss (1997), and Diebold and

Li (2004).
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Figure 5: Zero-coupon yield changes: variation explained by principal-

components (annual)
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bond yields, we need four principal-components, a fact also true of both sub-

samples. Turning to the year-by-year evidence in figure 5, the evidence is

less clear cut with three principal-components appearing to suffice to explain

95 percent of variation in some years, and four components being necessary

in others – 1994, 95, 98, 2005, 06, and 07.

Between the two subsamples, it appears that the first PC explains much less

bond return variation in the 2000s than in the 1990s, and the second and

fourth PCs explain more. The year-by-year results provide finer detail: the

first PC has tended to explain less of the variation over time from a high

of 68 percent in 1997 to a low of 39 percent in 2006. The second PC has

become more important, especially in recent years. It is interesting to note

that the first principal-component contributes much less to the explanation of

variation in bond returns than the results in Bolder et al. (2004) for Canada

or Bliss (1997) for the US, where it is typically found to explain around 90

percent of the variation by itself. In contrast to these studies, the higher

order PCs are significantly more important.

In summary, the first three principal-components explain over 90 percent of

the correlation between New Zealand zero-coupon yields (though four are

necessary to unequivocally explain more than 95 percent), and make more

equal contributions to explained variances than found in results for other

countries where the first component dominates.
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Figure 6 shows how interest rates at each maturity respond to a change in

a given principal-component for the full sample while figure 7 contains the

same information on a year-by-year basis. Assessing the full-sample results

first, we see that an increase in the first PC results in zero-coupon bond

returns across all maturities: a level shift in the terminology of Litterman

and Scheinkman (1991).

Figure 6: Response of zero-coupon rates to changes in first four PCs: full

sample
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An increase in the second PC causes a decay across the term-structure and

has been interpreted as a slope factor in that an increase in this PC causes

short-maturity returns to rise and long-maturity returns to fall.12 Conversely,

a decrease in this PC can be expected to flatten the curve. This component

appears to become much more important in the second sub-sample, when it

explains almost two-thirds of the variation in bond returns explained by the

first PC. This result of a decay across the term-structure is in contrast to

the findings of Bliss (1997) and Bolder et al. (2004) and others who find the

second PC to result in an increase in the term-structure with maturity.

The third PC conforms with what has been termed the ”curvature factor”

in the literature: an increase in this PC causes the yield curve to fall at the

short- and long-ends while pushing up the curve at maturities between one

12The statement on the uniform decay of bond yield changes in response to changes in

the second PC ignores the initial increase in very short term returns which may be due to

the fact that we restrict the short end of the curve to the overnight interbank rate.
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and three years. The importance of this PC has stayed relatively constant

between the two sub-samples.

Finally, the fourth PC – which has been considered unimportant in describing

movements in the term-structure of interest rates in other studies – appears

to shift the curve down in the very short term, then up for maturities between

two- and six-months, down again for maturities upto three years, before again

positively influencing the longer end of the curve. This PC has also become

a more important influence on the New Zealand curve in recent years.13

The characteristic level, slope, curvature and ‘double-hump’ effects of the four

principal-components noted above are generally observed in the year-by-year

results too in figure 7, though there are discrepancies with the findings above.

For example, in some years the first PC can no longer be interpreted as a

level factor (such as in 1999), while in others it changes sign (as in 1993 or

2003). The slope factor also changes sign, but has generally tended to follow

the full-sample profile in later years.

5 Conclusion

In this paper, we have described the properties of a new data-set of zero-

coupon yield curves. The curves are constructed by fitting a function to

yields on coupon-bearing New Zealand government and Treasury bills. Our

preliminary statistical analysis suggests that the model of Nelson and Siegel

(1987) fits well to New Zealand data in the period since 1993. We further

confirm that the assumptions of normality of bond yield levels or in bond

returns (as measured by the first difference of the yields) do not hold true of

the data. In the case of the latter the distribution is found to exhibit high

kurtosis and to be subject to extreme outliers. This implies that portfolios

constructed to manage bond risk are unlikely to perform adequately if they

only account for changes in the level of returns across the New Zealand yield

curve.

Using principal-components analysis, we further show that four principal-

components are necessary to explain more than 95 percent of the variation in

the New Zealand term structure of interest rates. This is in contrast to studies

13This may prove useful in examining the suggestion that international financial condi-

tions and monetary policy have had a much larger influence on the longer end of the New

Zealand yield curve, as compared to domestic policy, in recent years.
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on other sovereign yield curves that find evidence for the importance of only

three factors in explaining the variation. The first principal-component – the

level – explains much less of this variation in the second half of our sample

than in the first half, while the second principal component – the slope –

becomes increasingly important.

The statistical results in this paper should prove useful as a benchmark for

more analytical investigations of yield curve dynamics that employ this new

set of zero-coupon yields.
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Figure 7: Response of zero-coupon rates to changes in first four PCs: year-

by-year
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