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Abstract 

Open-end mutual funds expose themselves to liquidity risk by granting their investors the right to 
daily redemptions at the fund's net asset value. We assess how swing pricing can dampen such 
risks by allowing the fund to settle investor orders at a price below the fund's net asset value. This 
reduces investors' incentive to redeem shares and mitigates the risk of large destabilising outflows. 
Optimal swing pricing balances this risk with the benefit of providing liquidity to cash-constrained 
investors. We derive bounds, depending on trading costs and the share of liquidity-constrained 
investors, within which a fund chooses to swing the settlement price. We also show how the 
optimal settlement price responds to unanticipated shocks. Finally, we discuss whether swing 
pricing can help mitigate the risk of self-fulfilling runs on funds. 
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1 Introduction

A key role of �nancial intermediaries is to provide liquidity � essentially, on-demand access to cash

� to their investors. Typically, �nancial intermediaries that provide liquidity also engage in maturity

transformation. For example, banks issue long-term loans but grant their depositors the right to withdraw

their funds on demand. Similarly, open-end mutual funds ("funds") that invest in comparatively illiquid

securities, such as corporate bonds, give their investors the option of redeeming their shares in cash every

day. Daily redemptions allow fund investors to insure against their liquidity needs while participating

in the higher return their fund earns on less liquid assets. At the same time, funds need to adequately

insure the residual liquidity risk that they incur.1 Insu¢ ciently insured liquidity risk can trigger and

amplify �nancial crises.

In this paper, we assess the e¤ect of swing pricing �a tool for managing liquidity risk in funds, which

several types of US funds will be able to use from November 2018 onwards.2 Swing pricing permits a

fund to pay out less than net asset value (NAV3) per share when net redemptions are large. It thereby

alleviates a situation in which the fund, in the absence of swing pricing, would have to sell assets at a

large discount to generate su¢ cient cash to pay out its redeeming shareholders. Symmetrically, swing

pricing allows the fund to raise the price per share above the NAV per share when the fund experiences

large net in�ows. It can thus help to ensure that the costs associated with purchasing additional assets

are borne by incoming investors. If investors anticipate that the fund will settle share transactions above

the NAV when net demand for its shares is high, and below the NAV when net demand is negative,

swing pricing can help reduce the volatility of �ows into and out of the fund.

Our model builds on Diamond and Dybvig (1983) and Jacklin (1997). We derive an optimal rule

for adjusting the single price at which a fund settles both share redemptions and subscriptions (the

"settlement price"). The settlement price in our model summarises a range of contract features that in

practice the fund can o¤er to its investors: for example, a higher settlement price could also correspond

to faster settlement of redemption requests or more generous maximum daily redemption amounts.

In our model, we assume that investors can either purchase assets or invest indirectly in those assets

by purchasing fund shares. There is a large number of small funds whose managers maximise their

investors�utility. At the time the fund is set up, fund managers commit to a rule whereby they set

the settlement price. (In practice, the fund discloses the general terms of its swing pricing policy in its

prospectus.) Fund managers take into account that investors might become cash constrained, prompting

them to redeem their shares earlier than they expected and independently of the settlement price. The

higher the settlement price, the more investors obtain if they turn out to be cash constrained, at the

expense of those who stay with the fund.

In this context, three parameters determine the optimal settlement price: the cost of trading in the

asset market; the likelihood with which investors become cash constrained; and the degree of investor risk

aversion. Their impact is best understood against the background of the optimal investment contract.

This contract entails investors receiving less when they need to redeem their shares early than if they

hold onto their shares until the fund�s assets mature. Thus, even if the return of the fund�s assets was

certain, the return of an investment in fund shares is risky because the investor is uncertain whether

he will have to redeem his shares early. Risk-averse investors dislike this uncertainty. The bene�t of

raising the settlement price for early redemptions is that investors�payo¤s become less volatile. The fund

manager balances these bene�ts with the larger costs he incurs when selling assets to serve redemption

requests.

1See Financial Stability Board (2017) for policy recommendations to address liquidity risk in asset management activites.
2Securities and Exchange Commission (2016).
3The net asset value is the market value of the fund�s assets net of the fund�s liabilities.
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Against this background, consider �rst the impact of trading frictions on the optimal settlement

price.4 The settlement price is lower when trading frictions rise because the fund manager aims to

reduce the costs associated with asset sales. Higher trading costs raise the marginal cost of raising the

settlement price for early redemptions without altering the bene�ts. However, the fund does not pass

on the entire marginal costs of selling assets, thereby raising the return of cash-constrained investors

and reducing the variability of investors�returns. Second, the optimal settlement price falls the more

likely investors are to become cash constrained: ceteris paribus, more cash-constrained investors imply

greater redemptions, so the marginal cost of raising the settlement price increases. Finally, the settlement

price increases if investors become more risk averse. This follows because the more risk-averse investors,

the more they dislike variations in the return of their investment. The marginal bene�t of raising the

settlement price increases, without altering the costs.

We also show that the optimal settlement price lies within a bound that is determined by the trading

frictions. If investors can anticipate the fund�s settlement price, they may move to arbitrage any di¤erence

between the settlement price and the market value of the fund�s shares: for example, by redeeming fund

shares and purchasing directly the assets the fund holds. If a fund manager settled net redemption

requests too far below the market value of the shares, investors would start rushing into the fund,

diluting the value of the fund�s assets per share. Correspondingly, if the settlement price was too far

above the market value of the fund�s shares, its existing investors would redeem their shares and cause

the fund to be liquidated early. A fund manager wants to avoid both situations because they would

reduce the payo¤ for the fund�s existing shareholders. He therefore only varies the settlement price to

the extent that it does not generate arbitrage-driven �ows in and out of the fund and holds su¢ cient

liquid assets to pay out cash-constrained investors.

Finally, we discuss whether swing pricing might help mitigate the risk of self-ful�lling runs on the

fund. Within our theoretical framework, we show that swing pricing can prevent self-ful�lling runs:

the fund manager can commit to setting a su¢ ciently low settlement price to discourage redemptions

by investors that are not cash constrained. In practice, however, swing pricing might be less e¤ective,

primarily because of uncertainty about how low the settlement price would need to be set without unduly

penalising cash-constrained investors that need to redeem shares.

The remainder of the paper is structured as follows. Section 2 discusses how the paper relates to the

literature. Section 3 describes the modeling framework. To provide a benchmark for the fund�s choice

of settlement prices, Section 4 derives the welfare-optimal solution from the view of a planner who is

able to directly allocate consumption goods to households. Section 5 compares the planner�s solution

with the decentralised one and derives the rule for setting the settlement price and the fund�s optimal

liquidity bu¤er. Section 6 discusses comparative static properties of optimal settlement prices and asks

whether swing pricing might help mitigate the risks of self-ful�lling runs on funds. Section 7 discusses

the assumptions made and their in�uence on the results. Section 8 concludes.

2 Related literature

The paper is related to the literature that studies liquidity insurance provided by �nancial intermediaries

and markets.5 A key question is whether the existence of �nancial intermediaries can be explained by

their ability to insure risk-averse households against idiosyncratic liquidity shocks. Diamond and Dybvig

(1983) show that a well-designed deposit contract can provide households with the welfare-optimal degree

4 In practice, a multitude of market frictions create costs for trading in asset markets. See Madhavan (2000) for a
discussion.

5More broadly, insights from the literature on optimal taxation can also be relevant for swing pricing in that the trading
costs caused by share redemptions or subscriptions impose a negative externality on existing shareholders. For a discussion
of how taxation can be used to internalise externalities, see eg Sandmo (1975).
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of insurance: an outcome that households would be unable to achieve if they invested directly in �nancial

markets. The deposit payout corresponds to the settlement price of fund shares in our model. The

optimal deposit payout itself depends on parameters such as households�risk aversion and the likelihood

of them requiring immediate access to their deposits. The same factors in�uence the optimal settlement

price in our model. The key di¤erence between the two contracts is that the settlement price is allowed

to depend on net redemption requests. The fund manager can commit to setting the settlement price

su¢ ciently low to discourage redemptions even if each fund investor believes that a large share of other

fund investors will redeem their shares. In contrast, promised deposit payouts are independent of the

amount of deposits withdrawn, making a bank vulnerable to self-ful�lling runs.

Jacklin (1987) showed that equity contracts can achieve the same liquidity risk sharing as deposit

contracts while being immune to runs. Sales of equity shares correspond to redemptions in our model,

and the dividend payout plays a similar role to the settlement price. Similar to deposit contracts, equity

contracts promise a dividend payout that is independent of aggregate liquidity needs. However, the

price at which shareholders can sell their shares, and hence their level of consumption, depends on the

aggregate amount of dividend payouts relative to the aggregate amount of shares sold. The more shares

that are sold (the larger redemptions, in our model), the lower the price, and the lower the incentive to sell

equity shares (to redeem fund shares, in our model). These welfare-optimal deposit and equity contracts

are only feasible if households cannot invest directly in the assets the intermediary holds. Otherwise, as

eg Jacklin (1987) shows, �nancial intermediaries cannot o¤er contracts that provide their investors with

a higher level of utility than if households invested directly in �nancial markets. The reason is that any

di¤erence in payo¤s would be exploited by arbitrage trades. Correspondingly, we show that if there are

no trading frictions in the asset market, the fund optimally sets the settlement price equal to the market

value of its assets per share (the fund�s NAV per share).

Von Thadden (1998, 1999) derives an optimal deposit contract in the presence of investment frictions.

The in�uence of such frictions is also the main interest of this paper. Von Thadden�s context is di¤erent:

in his model, households cannot trade assets but can liquidate them, against a loss, and then start a new

investment project. Despite this di¤erence, we �nd that the same factors that matter for the optimal

deposit contract also determine optimal settlement prices and the optimal size of the fund�s liquidity

bu¤er in our model: the size of the frictions, the likelihood with which investors become cash constrained,

and the degree of investor risk aversion.

Lewrick and Schanz (2017) empirically investigate the impact of swing pricing on the �ows, the

liquidity bu¤er, and the pro�tability of open-end mutual funds. In that paper, we also provide a stylised

partial-equilibrium model to motivate our estimation hypotheses. Other than that, we are not aware

of any other papers that model swing pricing. However, the risk of runs on mutual funds, which swing

pricing might mitigate, has been investigated in the recent theoretical and empirical literature. Chen et al

(2010), Goldstein et al (forthcoming) and Zheng (2016) show how an incomplete allocation of liquidation

costs to those investors redeeming their shares can give rise to a run on an open-end investment fund.

Malik and Lindner (2017) discuss whether swing pricing might reduce systemic risk. They suggest

measuring the e¤ect of swing pricing by its ability to dampen the impact of large out�ows on the fund�s

NAV. Speci�cally, they compare changes in the NAV with out�ows during normal and stressed periods

of funds that implemented swing pricing with those that did not. They �nd some suggestive evidence

for swing pricing to be e¤ective in a small sample of funds. In Lewrick and Schanz (2017), we employ a

related method to compare the performance of funds that were allowed to use swing pricing with that

of funds not permitted to swing settlement prices. We show that swing pricing dampens out�ows in

response to weak fund performance, but has a limited e¤ect during stress episodes. Furthermore, swing

pricing supports fund returns while raising the volatility of fund share prices, and may incentivise funds

to hold less cash. We compare some of these �ndings with our predictions in section 6.
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3 Framework

Our modeling framework is based on Diamond and Dybvig (1983), extended by an asset market, in which

households can directly trade the assets the fund invests in. Our economy has three periods, t = 0; 1; 2

and two types of agents: households and open-end investment funds.

At date 0, each household is endowed with one unit of a physical good. There are no other goods or

endowments. The good, which serves as the numeraire, can be stored for one period in both periods 0

and 1, yielding a gross return of 1 after one period. In this sense, it can be thought of as cash. But it is a

real good that also serves as an input to a long-term investment opportunity at date 0. This investment

has constant returns to scale, is arbitrarily divisible and yields a certain gross return of R at date 2. It

cannot be liquidated early, but agents can issue and trade claims (equity contracts) on their investment�s

payo¤ at date 1 in a competitive "asset" market at price p. These claims are risk-free and pay R per

unit of investment at date 2.

There are initially two types of households: a fraction � of households is risk neutral; the remainder

is risk averse. We will focus on an equilibrium in which at date 0 only risk-averse households invest in

funds: these households value the fund�s smoothing of investment returns. Risk-neutral households are

potential trading partners for the funds and may decide to subscribe to fund shares at date 1. They have

identical preferences over future consumption of the good given by uN = c2. Risk-averse households�

preferences, uA, are given by

uA (c1; c2) =

(
u (c1) with probability �

u (c2) with probability 1� �
(1)

where the utility function u is twice continuously di¤erentiable in consumption, increasing, strictly

concave, and satis�es Inada conditions. � represents the probability of being subject to a liquidity

shock. This shock determines whether the household is �impatient�and needs to consume at date 1, or

�patient�and consumes at date 2. The households�individual shocks materialise at date 1, are identically

distributed, and satisfy the Law of Large Numbers. Hence, there is no uncertainty about aggregate

consumption needs nor about prices. As standard in this literature (eg von Thadden (1999)), the

utility function represents the simplifying case where agents consume only once in their lives. Individual

consumption needs are private information. Therefore, if agents interact, type-dependent consumption

allocations must be incentive compatible. Households decide in period zero how to invest their endowment

(storage or the long-term technology) and, at date 1, whether to issue claims on the long-term technology

or subscribe to or redeem investment fund shares. For simplicity, we allow households to only hold either

fund shares or invest in the long-term technology but not both.

Investment funds do not have own endowments but issue shares to households. They are small and

take the market price as given when considering whether to trade in the asset market. For simplicity,

we do not allow them also to issue debt. Each fund manager aims to maximise the aggregate utility of

those households that invest in fund shares at date 0: that is, we abstract from agency con�icts between

the fund manager and the fund�s shareholders. This simpli�es the comparison of our results with those

of Diamond and Dybvig (1983) and Jacklin (1987); their justi�cation - that competing fund managers

can attract investors only if they best serve investors�interests - also applies here.

Each fund manager chooses an investment contract (the fund�s "investment prospectus"). This

contract speci�es the fraction !0 of the proceeds from share issuance, S0, that the fund invests at date 0

in storage rather than in the long-term technology (the fund�s "liquidity bu¤er"). It also describes how

s1, the price at which the fund settles requests for share issuance and redemptions at date 1, and s2 the

payout per share to investors at date 2, depend on the number of fund shares that households wish to
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redeem or acquire at date 1. Because the entire wealth of the fund is distributed to its investors at the

end of period 2, s2 is equal to the fund�s assets per share at that time and determined by the fund�s

choice of s1. Our focus is therefore on the fund�s choice of s1, which we refer to as the fund�s settlement

price. In practice, a fund�s prospectus would express s1 as a "swing factor" in relation to the mid-market

price of the fund�s assets, p:

� =
!0 + (1� !0) p

s1
� 1 (2)

Accordingly, a positive swing factor corresponds to a settlement price below the unswung net asset value.

Both expressions are equivalent in our model because there is no aggregate uncertainty, so the market

price is known.

We normalise the number of shares the fund issues at date 0 to one per share. Thus, s1 is equal to

the consumption of a household that purchases a fund share at date 0 and redeems it at date 1, while

s2 is its consumption if it redeems its share at date 2. At date 1, the fund purchases (or sells) claims on

the long-term technology to invest proceeds from net share issuance (or to obtain su¢ cient amounts of

the good to settle redemption requests).

Trading claims is costly. These costs are represented by a bid-ask spread [(1� ) p; p= (1� )] around
the mid-market price p. That is, a seller of one claim receives (1� ) p, whereas a buyer of a claim pays

p= (1� ).
Figure 1 summarises the timeline of the model.

Figure 1: Timeline

4 First best

As a benchmark for the decentralised solution, we present the solution of a social planner�s problem in

this section. We assume that the planner can distinguish patient from impatient households and is able

to allocate the consumption good directly to households without having to trade.

The planner�s objective is to maximise the weighted welfare of the two types of households,

W = �cN + (1� �)E [u (cA)] (3)

= �cN + (1� �)
�
�u
�
cIA
�
+ (1� �)u

�
cPA
��

where � is the share of risk-neutral households, cN their (period-2) consumption, 1 � � the share of
risk-averse households, cIA the (period-1) consumption of risk-averse impatient households, and c

P
A the

(period-2) consumption of risk-averse patient households.
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Lemma 1 (First best) If patient and impatient households are identi�able, and if consumption can be
allocated directly to households, the welfare optimal solution is

u0
�
cIA
�
= R (4)

u0
�
cPA
�
= 1 (5)

cN =

�
1� � (1� �) cIA

�
R� (1� �) (1� �) cPA
�

(6)

Proof. To fund consumption of impatient households, the planner needs to store

!0 = � (1� �) cIA (7)

units of the endowment good and invests the remainder in the long-term technology. This leaves

(1� !0)R to be consumed by risk-neutral and patient risk-averse households, that is,

�cN + (1� �) (1� �) cPA =
�
1� � (1� �) cIA

�
R (8)

Using the resource constraint (8) to replace the consumption levels of risk-averse households in the

welfare function (3) yields

W = �cN + (1� �)
 
�u
�
cIA
�
+ (1� �)u

 �
1� � (1� �) cIA

�
R� �cN

(1� �) (1� �)

!!
(9)

The planner�s problem can now be written as maxcN ;cIAW . The �rst-order constraints are

@W

@cN
= �+ (1� �) (1� �) ��

(1� �) (1� �)u
0

 �
1� � (1� �) cIA

�
R� �cN

(1� �) (1� �)

!
(10)

= �

 
1� u0

 �
1� �cIA

�
R� �cN

(1� �) (1� �)

!!
= 0

@W

@cIA
= (1� �)

 
�u0

�
cIA
�
+ (1� �) �� (1� �)R

(1� �) (1� �)u
0

 �
1� � (1� �) cIA

�
R� �cN

(1� �) (1� �)

!!
(11)

= (1� �)�
 
u0
�
cIA
�
�Ru0

 �
1� �cIA

�
R� �cN

(1� �) (1� �)

!!
= 0

Entering the �rst into the second yields the equilibrium allocation (4) - (6).

In the �rst best, households consume less when impatient than when patient. This is a variant of the

standard result that in the �rst best, liquidity insurance is incomplete (see eg Freixas and Rochet (2008),

chapter 2.2). The presence of risk-neutral households means that the marginal utility of risk-averse

households when patient, u0
�
cPA
�
, is equal to that of (patient) risk-neutral households (= 1).

5 Decentralised solution

We start by presenting the decentralised solution in Section 5.1 and compare it with the �rst best

described in the previous section. Section 5.2 then derives the optimal settlement price in this equilibrium

and characterises the proofs for the optimal liquidity bu¤er and investment decisions at date 0.
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5.1 Overview and comparison with the planner�s solution

There are two frictions that cause the decentralised solution to di¤er from the welfare optimum: �rst,

markets are incomplete, because individual liquidity shocks are not publicly observable and securities

contingent on these shocks cannot be traded; and second, because consumption needs to be allocated

via trading in asset markets and trading is costly.

De�nition 1 A decentralised (Nash) equilibrium consists of the following:

� for each household j, investment choices that maximise households�utility (uN and uA, respectively)

� for each investment fund k, investment and contract choices
�
!�0;k; s

�
1;k; s

�
2;k

�
that maximise the

expected aggregate utility of the households that purchased the fund�s shares

� A market clearing condition for traded claims on the long-term technology.

We show existence of an equilibrium in which, at date 0, risk-neutral households invest in the long-

term technology whereas risk-averse households invest in fund shares; in which all agents of the same

type make the same choices; in which all funds have the same size; and in which there is no trade in the

asset market at date 1.

Proposition 1 (Decentralised equilibrium) There is a decentralised equilibrium with the following prop-

erties:

1. Risk-neutral households invest their endowment in the long-term technology. Risk-averse households

invest their endowment in a fund�s shares. If impatient, they redeem their shares at date 1 and

consume. If patient, they hold onto their shares.

2. Each fund sets the settlement price at date 1 equal to

s�1 =

8><>:
sH if ŝ � sH
ŝ if ŝ 2 (sL; sH)
sL if ŝ � sL

(12)

where

ŝ = s1 : u
0 (s1) =

R

(1� ) pu
0
�
1� �s1
1� � R

�
(13)

and the bounds sL, sH are given by

sH =
p

(1� ) (1� �) + �p (14)

sL =
p

(1� �) = (1� ) + �p (15)

3. Each fund share pays out, at date 2,

s�2 =
1� �s�1
1� � R (16)

4. Each fund�s liquidity bu¤er is equal to the payouts to impatient investors at date 1 (!�0 = �s
�
1).

Notice that there is no trade in the asset market in this equilibrium. Nevertheless, the market price

at which investors, and the fund, believe they would be able to trade needs to meet a certain condition

for this equilibrium to exist. This is stated in Lemma 2. If the market price was lower than 1 � ,
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all households would prefer to store their endowment at date 0 to purchase claims on the long-term

technology at date 1 in the asset market (a contradiction, because there would not be any investment in

the long-term technology), despite the trading cost of . Correspondingly, if the market price exceeded

1= (1� ), all households would prefer to invest at date 0 in the long-term technology; if impatient,

they would sell claims at date 1 to obtain more than 1 (a contradiction, because none would have any

endowment to purchase those claims).

Lemma 2 In equilibrium, the mid-market price ful�ls

p 2 (1� ; 1= (1� )) (17)

To ease the comparison with the �rst best described in Lemma 1, the following corollary to proposition

1 translates the equilibrium investment contract terms (s�1; s
�
2) into consumption levels for the various

types of households.

Corollary 1 In equilibrium, households consume

cN = R (18)

cIA = s�1 (19)

cPA = s�2 =
1� �s�1
1� � R (20)

Proposition 1 illustrates how trading frictions a¤ect the fund manager�s choice for the settlement price.

If the optimal settlement price is su¢ ciently close to the fund�s NAV, trading costs deter investors from

exploiting the di¤erence between returns on the fund�s share and on a direct investment in the claims on

the long-term technology. The fund manager then settles net redemption requests at the unconstrained

optimal solution, ŝ. It di¤ers from the �rst best only because the fund manager would incur trading costs

if he sold or purchased claims on the long-term technology in the asset market. To see this, notice that

(13) can be written as u0
�
cIA
�
= R= ((1� ) p)u0

�
cPA
�
. Lemma 2 implies that (1� ) p 2

h
(1� )2 ; 1

i
.

Di¤erences between �rst best consumption, determined by u0
�
cIA
�
= Ru0

�
cPA
�
, and consumption in the

decentralised economy when ŝ is optimal would disappear if the trading cost was zero.

If the fund settled redemptions above sH , the fund�s shares would be so expensive that patient

households with fund shares would prefer to sell those shares and to invest the proceeds in claims on the

long-term technology. Similarly, if the fund settled net redemptions below sL, the fund�s shares would be

so cheap that households that invested in the long-term technology would sell claims on their investment

in order to subscribe to the fund�s shares. The fund manager dislikes both situations: the former, because

patient households redeeming fund shares unnecessarily incur trading costs; and the latter, because of

the dilution of the fund�s value induced by additional shares that are issued too cheaply. Lemma 6,

below, shows that these �ows reduce the payo¤s of the fund�s investors both if patient and if impatient.

On balance, the fund settles shares at the unconstrained optimal settlement price if this is su¢ ciently

close to the fund�s NAV such that trading costs deter arbitrage �ows. Otherwise, it chooses the settlement

price closest to the unconstrained optimal price that just keeps those arbitrage-driven �ows at bay.

Trading frictions have both good and bad e¤ects on the welfare of risk-averse households. They open

an interval, [sL; sH ], in which the fund manager can set the settlement price with the aim of maximising

his investors� utility without triggering arbitrage trades. At the same time, trading costs raise the

marginal cost of raising the settlement price. Larger trading frictions therefore lower the unconstrained

optimal settlement price, ŝ. The gap widens between risk-averse households�consumption when patient

and impatient. The smaller the trading costs , the narrower the interval [sL; sH ]. It shrinks to zero in

the absence of trading costs. In this case, the fund manager settles shares at a price that ensures that his
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fund, and claims on the long-term technology, o¤er the same return (sL = sH = p = 1). Then cIA = 1,

cPA = R. This is not generally equal to the �rst best allocation, which, as shown in Lemma 1, depends

on households�utility function.

5.2 Derivation of the optimal settlement price for a given level of a fund�s
cash bu¤er

Swing pricing enables the fund manager to set the settlement price as a function of net redemptions. We

therefore de�ne net redemptions before deriving the optimal settlement price.

A fund�s aggregate redemption requests are the sum of requests of impatient and patient investors.

Given that the likelihood of becoming impatient is �, and the size of the fund (the number of shares it

issued at date 0, each against one unit of the endowment) is S0;k, its impatient investors withdraw �S0;k
shares in equilibrium. We denote patient investors�net redemptions of fund k�s shares by �k. If �k < 0,

the fund experiences net subscriptions by patient investors; if ��k > �S0;k, these net subscriptions more
than o¤set redemptions by its impatient investors. We further denote the number of shares redeemed at

which the fund�s liquidity bu¤er (!0;k) just su¢ ces to pay out redeeming shareholders by �̂k, ie

�̂k = !0;kS0;k=s1;k � �S0;k (21)

In Section 5.2.1, we derive the "unconstrained" solution, ŝk, which is optimal if only impatient

households adjust their portfolios at date 1: that is, the optimal settlement price conditional on �k = 0.

In Section 5.2.2, we derive the "no-arbitrage bounds", sL;k and sH;k. These incentive constraints ensure

that patient investors prefer not to alter their portfolio at date 1; hence by construction, �k = 0 for

any s1;k 2 (sL;k; sH;k). Lemma 6 argues that the fund manager would not choose a settlement price
outside [sL;k; sH;k]. This lies behind the result (12) in proposition 1. As mentioned above, we focus on a

situation in which only risk-averse households invest in the fund. We derive conditions for the existence

of the equilibrium in the annex (these are the date-0 participation constraints for households that make

their equilibrium investment decisions optimal) and provide an example of the equilibrium for a CRRA

utility function. We omit fund subscripts (k) in the following for ease of exposition.

5.2.1 Unconstrained solution (ŝ)

ŝ is the solution to maxs1 U s.t. � = 0, where U is the fund�s objective function. In an equilibrium in

which only risk-averse investors invest in the fund at date 0, U = E [~uA (c1; c2)]. The fund manager takes

the size S0 of his fund as given when maximising U . Given that each risk-averse household purchased

one share at date 0, payouts to investors at date 2, s2, are equal to the value of the fund�s assets per

share at date 2. These depend on net redemptions at date 1.

� If � > �̂, then net redemption requests, �S0 + �, exceed the fund�s cash bu¤er, !0S0, leaving it

short s1 (�S0 + �) � !0S0 < 0 units of the endowment good. Because of trading costs, the fund

receives not p units of the endowment good per asset sold but only (1� ) p units. Assets per share
are, at date 2,

s2j�>�̂ =
(1� !0)S0 � (s1 (�S0 + �)� !0S0) = ((1� ) p)

(1� �)S0 � �
R (22)

The numerator is the fund�s remaining assets after having met net redemption requests: (1� !0)S0
from its initial investment into the long-term technology, minus date-1 sales. The denominator is

the remaining number of shares in issuance after redemption requests have been settled: the number

issued at date 0, S0, minus shares held by its �rst-period investors who turn out to be impatient,

�S0, minus net redemptions by patient investors, �.
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� If, in contrast, � < �̂, net redemptions are less than the fund�s cash bu¤er. The fund invests spare
cash (a total of s1 (�S0 + �) � !0S0 > 0), receiving 1 �  claims on the long-term technology for

each p units of the endowment good spent. Assets per share are, at date 2,

s2j�<�̂ =
(1� !0)S0 + (1� ) (!0S0 � s1 (�S0 + �)) =p

(1� �)S0 � �
R (23)

Notice that assets per share, and hence date-2 payouts to investors, are strictly decreasing in the

settlement price if net redemptions are positive (ie if �+ �S0 > 0): the more paid out per share at date

1, the fewer assets are left to back shares that are redeemed only at date 2. Correspondingly, assets per

share are is strictly increasing in the settlement price if net redemptions are negative (�+ �S0 < 0): the

more new subscribers have to pay per share, the larger the fund�s resulting assets per share.

Lemma 3 derives an expression for the "unconstrained" optimal settlement price, ŝ, ie the settlement

price that is optimal conditionally on � = 0.

Lemma 3 Conditionally on � = 0, the optimal settlement price, ŝ, ful�ls

ŝ = s1 :
u0 (s1)

u0 (s2)
= R �

(
1= ((1� ) p) if !0 � �s1
(1� ) =p if !0 > �s1

(24)

Proof. If � = 0, the fund manager�s objective function can be written as

U = �u (c1) + (1� �)u (c2) (25)

= �u (s1) + (1� �)u (s2) (26)

The solution to the fund manager�s problem is given by the �rst-order condition

@U

@s1
= �u0 (s1) + (1� �)

@s2
@s1

u0 (s2) = 0 (27)

where the response of the fund�s date-2 payout (its assets per share at date 2) to a marginal increase in

its date-1 payout (the settlement price) is

@s2
@s1

= � �

1� �R �
(
1= ((1� ) p) if !0 � �s1
(1� ) =p if !0 > �s1

(28)

Substituting (28) into (27) yields (24).

5.2.2 No-arbitrage bounds (sL, sH)

Lemma 4 describes an interval for the return of an investment in fund k�s shares at date 1 within which

patient investors would not alter their portfolio at date 1. Deriving the interval in terms of gross returns

of such an investment, s2=s1, is be simpler than deriving the interval directly for the settlement price,

s1. The two expressions are equivalent because s2 is a function of s1.

Lemma 4 If all funds set the same settlement price, then � = 0 if

s2
s1
2
�
(1� ) R

p
;
1

1� 
R

p

�
(29)

Proof. If all funds set the same settlement price, households that at date 0 subscribed to fund shares
have no incentive to switch funds. The payo¤ of a patient household that at date 0 subscribed to fund
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k�s share and does not change its portfolio is s2. If it redeemed its share and invested the proceeds in

the asset market, it would earn s1 (1� )R=p. Thus, for the investor to remain with the fund,

s2
s1
� (1� ) R

p
(30)

The payo¤ of a patient household that at date 0 invested in the long-term technology and does not

change its portfolio is R. If the household instead issued claims on the investment and used the proceeds,

(1� ) p, to subscribe to the shares of a fund, it would earn (1� ) ps2=s1. Thus, for the investor to
remain invested in the long-term technology,

s2
s1
� 1

1� 
R

p
(31)

Lemma 5 translates this return interval into an interval for the settlement price for the fund�s shares.

Lemma 5 If the fund sells assets at date 1 (if � � �̂), (29) holds if and only if

s1j�>�̂ 2

24!0 + (1� !0) (1� ) p; !0 + (1� !0) (1� ) p
�+ (1� �) (1� )2 +

�
1� (1� )2

�
�=S0

35 (32)

If the fund purchases assets at date 1 (if � < �̂), (29) holds if and only if

s1j�<�̂ 2

24 !0 + (1� !0) p= (1� )
�+ (1� �) = (1� )2 +

�
1� 1= (1� )2

�
�=S0

; !0 + (1� !0)
p

1� 

35 (33)

The proof is in the annex; it uses the fact that the fund�s assets per share, s2, are a strictly monotone

function of its settlement price, and solves for the settlement prices that apply at the bounds of (29). Just

as for assets per share (see (22) and (23)), a positive bid-ask spread implies a discontinuity at �̂, such that

the interval is de�ned separately for the case in which the fund sells or purchases assets in equilibrium.

Notice that s1j�>�̂ exceeds the market value of a share net of transaction costs, !0 + (1� !0) (1� ) p.
When the fund is not constrained in its choice of the optimal settlement price by arbitrage trades (ie if

s�1 = ŝ), then it does not charge the entire cost of liquidation to investors redeeming their shares at date

1.

Lemma 6 states that the optimal settlement price falls within that interval.

Lemma 6 In an equilibrium in which funds are symmetric, the settlement price, s�1, ful�ls

s�2
s�1
2
�
(1� ) R

p
;

1

(1� )
R

p

�
(34)

Proof. The proof is by contradiction.
Suppose that s2=s1 < (1� )R=p (implying s1 is above the upper bound of (32)). Then the fund�s

patient investors would strictly prefer to redeem their shares because the return on fund k�s shares would

be less than the return on investments in the market. The fund would liquidate its assets, retrieving

(1� ) p per unit sold. Each investor would obtain a payout of !0 + (1� !0) (1� ) p per share. As a
result, each household with fund shares would consume, if impatient,

cIA = !0 + (1� !0) (1� ) p (35)
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and

cPA = c
I
A (1� )R=p (36)

if patient, having reinvested its payout in the market. Because s1 reaches a minimum at !0+(1� !0) (1� ) p
when the fund sells assets (see (32)), these consumption levels are lower than what patient and impatient

households, respectively, would obtain if s2=s1 � (1� )R=p.
Suppose instead that s2=s1 > 1

1�R=p (implying s1 is below the lower bound of (33)). Then house-

holds that invested at date 0 in the long-term technology would strictly prefer to sell claims on their

investment and use the proceeds to subscribe to fund shares. As a result, � ! �1 (the fund is small

relative to the share of households that would �ow in). Because s1 is below the lower bound of (33),

cIA < c
I�
A . In addition, patient households would also obtain less (ie c

P
A < c

P�
A ) because of dilution: the

fund�s assets per share would fall in response to the in�ows to a lower level than that implied had the

settlement price been set to the lower bound of (33). To see this, notice that for all s1j�<�̂ in the interval

(33),

lim
�!�1

s2j�<�̂ = lim
�!�1

(1� !0)S0 + (1� ) (!0S0 � s1 (�S0 + �)) =p
(1� �)S0 � �

R (37)

< lim
�!�1

(1� !0)S0 + (1� )
�
!0S0 � s1j�<�̂ (�S0 + �)

�
=p

(1� �)S0 � �
R (38)

= s1j�<�̂ (1� )R=p (39)

That is, lim�!�1 s2j�<�̂=s1j�<�̂ is less than the lower bound of the range of returns set in equilibrium;

see (34).

By construction, � = 0 if s1 is in the interior of the no-arbitrage interval, [sL; sH ]. In contrast, if s1 is

equal to one of the bounds of [sL; sH ], � is undetermined because patient investors are, by construction,

indi¤erent. We focus on an equilibrium in which � = 0 for all s1 2 [sL; sH ]. The rule for the optimal
settlement price in (12) then follows because the fund manager�s objective function is concave in s1:

@2U

(@s1)
2 = �u00 (s1) + (1� �)

 
@2s2

(@s1)
2u

0 (s2) +

�
@s2
@s1

�2
u00 (s2)

!

= �u00 (s1) + (1� �)
�
@s2
@s1

�2
u00 (s2) < 0

5.3 Equilibrium cash bu¤er and �rst-period choices

In this section, we provide the intuition for our results for the equilibrium cash bu¤er and households�

�rst-period choices. The proofs are in the annex.

Consider �rst the optimal liquidity bu¤er. In order to settle net redemptions at date 1, the fund

can either keep a cash bu¤er at date 0 or sell assets at date 1. Because the date-1 market price ful�ls

p 2 (1� ; 1= (1� )) (see Lemma 2), the opportunity costs of investing in the cash bu¤er are lower
than the trading costs the fund would incur if it had to sell assets at date 1 (= 1= (1� )). The fund
chooses the cash bu¤er with a view to avoiding transaction costs and holds just enough cash in order to

settle date-1 net redemption requests.

Now consider households��rst-period choices. We are interested in an equilibrium in which risk-

neutral households invest in the long-term technology at date 0 and risk-averse households invest in fund

shares. Two conditions need to be met for this equilibrium to exist. The �rst is that the expected return

of investing in the long-term technology from date 0 to date 2 is larger than that of holding fund shares

over the same horizon. This ensures that risk-neutral households, all of which are patient, invest in the

long-term technology. The condition holds if the fund o¤ers investors that redeem early a return on its
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shares larger than that of storage, ie if s�1 > 1. This correspondingly reduces the payout of investors

staying with the fund until date 2, discouraging risk-neutral households from investing in the fund.6 The

second condition is that the return on investments in fund shares has su¢ ciently lower volatility than

that of investing in the long-term technology. If so, risk-averse households prefer investing in fund shares,

despite their lower expected returns. In the annex, we show that these conditions are met for plausible

parameterisations of the model.

6 Properties of the optimal settlement price

In this section, we show how the equilibrium described in proposition 1 is a¤ected if the share of liquidity-

constrained investors, �, and the trading costs, , rise. In Section 6.1, we assume that the new values

of � and  are known at date 0, when the investment contract is written and the fund chooses the

optimal liquidity bu¤er: ie we derive the comparative static properties of the equilibrium. In Section 6.2,

we assume instead that the share of liquidity-constrained investors or of trading costs unanticipatedly

increases at date 1, when it is too late for the fund to build its cash bu¤er to meet redemptions. This

scenario might help understand funds�responses to sudden stress in �nancial markets. Finally, we ask

whether swing pricing can mitigate the risk of self-ful�lling runs.

6.1 Comparative static properties

We express the properties of the optimal settlement price also in terms of the swing factor, which is

given by the relative di¤erence between the fund�s net asset value and the settlement price. Entering

the equilibrium values for the liquidity bu¤er and the settlement price into (2) yields the optimal swing

factor. It is strictly declining in the optimal settlement price:

�� =
!�0 + (1� !�0) p

s�1
� 1 = �s�1 + (1� �s�1) p

s�1
� 1

= �+

�
1

s�1
� �
�
p� 1 (40)

We de�ne �̂ as the value of (40) when the no-arbitrage bounds do not constrain the fund manager,

ie if s�1 = ŝ (see (13)). Lemma 7 summarises key properties of the optimal swing factor. The proofs are

in the annex (Section 10.5).

Lemma 7 (Properties of the optimal swing factor and the optimal settlement price).

1. The optimal swing factor ful�ls

�� 2
�
� (1� �) ; 

1�  (1� �)
�

(41)

2. Larger trading costs, , widen the interval (41) and raise �̂ (reduce ŝ), and lower the liquidity

bu¤er, !0.

3. A greater likelihood of becoming impatient, �, shrinks the interval (41) and raises �̂ (reduces ŝ).

The �rst result in Lemma 7 is the no-arbitrage interval which contains the optimal swing factor,

(41). It re�ects the frictions induced by trading costs. But the interval is also shaped by the share of

6A similar condition applies in Diamond and Dybvig (1983): deposits need to o¤er households that withdraw early a
higher return than storage. This condition ensures that households�utility in a world in which banks o¤er deposit contracts
is higher than in a situation in which banks do not exist, forcing households to invest directly in the asset market.
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impatient investors. The larger that share, the smaller the interval. This is because, in equilibrium,

only impatient investors redeem their shares. The larger their share, �, the more responsive the fund�s

return to the settlement price. To see this, notice from (16) that that the fund�s payout at date 2, s�2, is

strictly declining in �. This means that when � is large, a small change in the settlement price leads to

a substantial change in the return of fund shares from date 1 to date 2. The no-arbitrage interval (41)

shrinks, re�ecting that the fund manager has less scope to vary the settlement price without triggering

�ows of patient investors. In practice, funds often commit to a maximum swing factor.7

The second result is that trading frictions widen the no-arbitrage interval. If they were zero, the

interval would collapse to zero. Trading frictions also raise the marginal cost to raising the settlement

price. To see this, notice that a larger  makes the �rst derivative of the fund�s assets per share at date 2,

given by (22), more negative. This translates into a stronger decline of payouts at date 2, s2, in response

to an increase in s1. As a result, larger trading frictions induce the fund manager to lower the settlement

price. He thereby reduces the degree of liquidity insurance the fund provides to its investors.

Finally, notice that the optimal liquidity bu¤er inherits the properties of the optimal settlement price

because the fund manager chooses to hold a su¢ ciently large bu¤er to avoid trading in the market,

instead funding redemptions from the bu¤er.

6.2 Optimal settlement price following unanticipated shocks

Some events in �nancial markets can best be characterised as unanticipated, in the sense that market

participants have assigned only a very small, or indeed no, probability to their occurrence. For example,

few investors would have thought possible the rapid increase in long-term bond yields during the 2013

"taper tantrum", and the associated large out�ows from bond funds.8 We therefore brie�y consider

the fund�s response to unancitipated increases in the share of cash-constrained investors, �, and an

unanticipated increase in the trading cost, , at date 1, for a given value of the fund�s cash bu¤er.

Lemma 8 The optimal settlement price is declining following an unanticipated increase in the share of
cash-constrained investors, �, and an unanticipated increase in the trading cost, , at date 1.

An unanticipated increase in � leads to an increase in redemption requests. At the equilibrium

settlement price, the fund would not have enough cash to accommodate the redemption requests. It

cannot sell assets to raise cash because the increase in � a¤ects all funds in the same way, and impatient

investors consume the endowment good received rather than reinvest it in the asset market. The fund

therefore distributes the available cash among redeeming investors. The settlement price falls, raising

the date-2 fund�s assets per share. As a result, only impatient investors redeem their shares.

The response to an unanticipated increase in  follows because the fund manager trades o¤ the

marginal costs and bene�ts of raising the settlement price. The marginal costs have increased following

the increase in , while the marginal bene�ts (an increase in the consumption of investors that stay with

the fund) has remained unchanged. This induces the fund manager to lower the settlement price. The

proof is in the annex (Section 10.6).

In Lewrick and Schanz (2017), we �nd evidence that is consistent with these results. We compare the

performance of funds that are permitted to use swing pricing with that of funds that are not, immediately

following the taper tantrum. Arguably, the taper tantrum led to both an unanticipated increase in cash-

constrained investors and an increase in the costs of trading. We �nd that the return of funds that are

permitted to swing their settlement price on average falls less in response to net redemptions than that

of funds constrained to set their settlement price equal to their net asset value.
7See ALFI (2015).
8 In Lewrick and Schanz (forthcoming), we assess the e¤ect of swing pricing on fund pro�tability and the extent of their

out�ows during this episode from an empirical perspective.
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6.3 Can swing pricing mitigate the risk of self-ful�lling runs?

The model for which Diamond and Dybvig (1983) derived the optimal deposit contract has two equilibria:

the e¢ cient one, in which only impatient investors withdraw their funds at date 1, and an ine¢ cient

one, in which all investors withdraw and the bank�s assets are liquidated at a loss in an attempt to

fund those withdrawals. As mentioned in Section 2, a key di¤erence between a deposit contract and the

contract o¤ered by an open-end investment fund that uses swing pricing is that the fund manager can

�x the settlement price after he has collected redemption and subscription requests. In particular, the

fund manager can commit to setting a su¢ ciently low settlement price following large net redemptions,

aiming to induce patient investors not to redeem their shares early. Within the context of our model,

this can make a fund that uses swing pricing immune to the risk of self-ful�lling runs.

Lemma 9 There are (su¢ ciently low) settlement prices such that no patient fund investor redeems its
shares at date 1, even if it believes that other patient fund investors will redeem their shares at date 1.

Proof. Suppose each patient fund investor believes that a share of �=S0 other patient fund investors
will redeem their shares, and that the fund manager sets a settlement price of _s1 should net redemptions

be equal to �S0 + �. Then each patient investor anticipates that

� if he redeems his share, he obtains a payo¤ of _s1 (1� )R=p after reinvesting the redemption
proceeds in the market

� if he stays with the fund, he obtains a payo¤ given by (22),

s2 ( _s1) =
(1� !0)S0 � ( _s1 (�S0 + �)� !0S0) = ((1� ) p)

(1� �)S0 � �
R

If _s1 < s2, each patient fund investor strictly prefers to remain invested with the fund. Positive values

that satisfy _s1 < s2 exist because s2 (0) > 0, and @s2=@s1 < 0.

In practice, the scope for swing pricing to prevent self-ful�lling runs is more limited than Lemma 9

suggests. For one, the fund manager would need to be able to correctly assess the share of investors that

are liquidity constrained (�). In our framework, the fund manager knows �, so he can commit to lowering

the settlement price whenever net redemptions exceed � without any negative impact on investors�utility.

In practice, however, � is stochastic. In this case, any commitment to lower the settlement price when

net redemptions are unusually large comes at a cost: cash-constrained fund investors would su¤er from

receiving only a low settlement price if � is higher than what the fund manager believes it to be.

7 Discussion

In this section, we assess how relaxing some of the main assumptions of the model might a¤ect our

results. First, we assume that there is no aggregate uncertainty in the model. All prices, and the

share of cash-constrained investors, are known. This implies that fund managers can perfectly insure

against redemptions by holding a liquidity bu¤er that is equal to the amount paid out to redeeming

investors. Nevertheless, we can provide an interesting characterisation of optimal swing pricing policies.

The reason is that the marginal cost and bene�ts of varying the settlement price are in�uenced by the

size of redemptions and trading frictions, even if, in equilibrium, there is no need to trade. That said, our

framework may underestimate the leeway that funds have in swinging the settlement price (ie the width

of the no-arbitrage interval, (34)). If the fund manager had private information about the realisation

of a shock to the (aggregate) redemption requests his fund experiences, he would only ensure that no

arbitrage opportunities arise in expectation over those redemption requests other agents believe possible.
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This is evidently a less binding constraint than the one which holds in our case, where the fund manager

ensures that no arbitrage opportunities arise for a known value of redemption requests. Whether the

fund manager would exploit that additional leeway is a di¤erent question; for example, he might opt for

settlement prices to be less sensitive to redemptions in order to reduce the volatility of consumption of

impatient investors.

Second, by assuming that funds are small, we abstract from the in�uence a fund�s trading may have

on the market price itself. A fund that internalises its own impact on the market price would swing the

settlement price more aggressively than in our solution in order to further reduce the amount it needs

to trade and keep its price impact minimal. Allowing the fund to be large enough to impact the market

price would therefore work in the same direction as an increase in trading costs: that is, it would likely

reduce the unconstrained optimal settlement price, ŝ, and widen the no-arbitrage interval, (34).

Finally, we assume that trades and share orders are submitted simultaneously and also settle instantly.

Depending on the assets the fund invests in, cut-o¤ times for orders and settlement times may di¤er, and

it may take time to �nd a counterparty in the asset market. These timing di¤erences introduce additional

frictions that, in practice, further increase the ability of fund managers to swing the settlement price.

8 Conclusion

Investors rely on �nancial intermediaries as a source of liquidity. Just like banks, open-end mutual funds

o¤er this liquidity insurance. Even though they invest in comparatively illiquid securities, they typically

grant their investors the right to redeem their shares on a daily basis. We assess the scope of swing

pricing to manage the associated liquidity risk. Swing pricing, to be introduced in the US from late 2018

onwards, allows funds to settle investor orders at a price di¤erent from the fund�s net asset value (NAV).

Yet in contrast to other redemption charges, the swing pricing adjustment depends on the amount of net

redemption requests.

We study swing pricing in a Diamond/Dybvig-style model with costly trading. We show that the

fund manager sets a settlement price that passes on some but not all trading costs to its redeeming

investors. Trading costs open a window within which a fund manager adjusts (swings) the settlement

price to o¤er better insurance of liquidity risks than the market. The price adjustment remains in a

bound which increases with trading costs and in the share of investors that seek liquidity. This result

is in line with the observation that in practice, fund managers swing the settlement price only by a few

percentage points around the NAV. At the same time, trading costs also justify why the fund manager

would consider swinging the settlement price. Trading costs lower the marginal revenue from selling

assets and raise the marginal costs of investing funds. As a result, a fund manager lowers the settlement

price when redemptions or trading costs are higher, and vice versa when they are lower.

We also derive optimal settlement prices in response to unanticipated shocks. Unanticipated increases

in the share of liquidity-constrained investors and in the cost of trading in the asset market both lower

the optimal settlement price. The fund�s NAV per share falls by less relative to a fund that does not

swing its settlement price. In our companion paper, where we compare the performance of funds that

are permitted to use swing pricing with that of funds that are not, we �nd evidence that is consistent

with these results.

Finally, we show that, within our theoretical framework, swing pricing can prevent self-ful�lling runs

on the fund. However, in practice, the scope for swing pricing to prevent self-ful�lling runs is more

limited, primarily because the share of liquidity-constrained investors is di¢ cult to assess.

An interesting avenue for future research is to add a richer set of shocks to the model. This would

allow, for example, investigating external e¤ects of a fund�s swing pricing policy on the market.
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10 Annex

10.1 Notation

�k net redemptions by liquidity-unconstrained households invested in fund k. A negative value means

that the fund experiences net subscriptions.

s1;k price at which fund k settles share subscriptions at date 1.

s2;k fund k�s payouts per share in the �nal period

�k fund k�s swing factor

!0;k share of fund k�s assets invested at date 0 in storage (the fund�s liquid asset bu¤er)

p market price of claims on the long-term technology at date 1

 trading cost. Sellers receive (1� ) p per unit sold; buyers receive 1 �  units of the asset per p
units of the endowment good.

S0;k number of shares fund k issued at date 0 (equal to the units of the endowment good k collects

at date 0)

cIA consumption of impatient risk-averse households (which, in equilibrium, invest in the fund)

cPA consumption of patient risk-averse households (which, in equilibrium, invest in the fund)

cN consumption of risk-neutral households (which, in equilibrium, invest in the long-term technology)
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� share of risk-neutral households among all households

� likelihood of becoming impatient (of having to consume at date 1)

uA utility function of risk-averse households

uN utility of risk-neutral households

�k fund k�s redemption requests from patient households at date 1

10.2 The no-arbitrage interval in terms of the settlement price (proof of
Lemma 5)

Proof. The proof proceeds by equating the returns of date-1 investments in fund shares with those of
date-1 investments in claims on the long-term technology. Because the fund�s return is a function of its

assets per share, whose expression depends on whether the fund purchases or sells assets, the derivations

generate two no-arbitrage intervals, one for the case in which the fund sells assets,
�
sLj�>�̂; sHj�>�̂

�
, and

one for the case in which it purchases assets at date 1,
�
sLj�<�̂; sHj�<�̂

�
.

1. Settlement prices at the lower bound for the fund�s return (an upper bound to s1;k). At this bound,

the returns of both date-1 investments are equal if s2;k=s1;k = (1� )R=p (see Lemma 4). We
omit in the following the subscipt k that indicates the fund.

� If � > �̂, then the returns of the two date-1 investments are equal if s1 = sHj�>�̂, where sHj�>�̂
is given by

sHj�>�̂ =
(1� !0)S0 �

�
sHj�>�̂ (�S0 + �)� !0S0

�
= ((1� ) p)

(1� �)S0 � �
R

p

(1� )R (42)

=
!0 + (1� !0) (1� ) p

�+ (1� �) (1� )2 +
�
1� (1� )2

�
�=S0

(43)

where the second line follows after solving (42) for sHj�>�̂.

� If � < �̂, then the returns of the two date-1 investments are equal if s1 = sHj�<�̂, where sHj�<�̂
is given by

sHj�<�̂ =
(1� !0)S0 � (1� )

�
sHj�<�̂ (�S0 + �)� !0S0

�
=p

(1� �)S0 � �
R

p

(1� )R (44)

= !0 + (1� !0)
p

1�  (45)

sHj�>�̂ is strictly decreasing in patient investors�net redemptions, �, and reaches a maximum for

the lowest � at which the fund would sell assets in response to a marginal increase in sHj�>�̂ (� = �̂).

Entering this value of � into (42) yields the maximum of sHj�>�̂,

max
�
sHj�>�̂ = !0 + (1� !0)

p

1�  (46)

Correspondingly, sHj�>�̂ reaches its minimum when net redemptions are maximal (� = (1� �)S0)
of

min
�
sHj�>�̂ = !0 + (1� !0) (1� ) p (47)

2. Settlement prices at the upper bound for the fund�s return (a lower bound to s1). At this bound,

the returns of both date-1 investments are equal if s2;k=s1;k = R= ((1� ) p) (see Lemma 4). We
omit in the following the subscipt k.
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� If � > �̂, then the returns of both date-1 investments are equal if s1 = sLj�>�̂, where sLj�>�̂ is
given by

sLj�>�̂ =
(1� !0)S0 �

�
sLj�>�̂ (�S0 + �)� !0S0

�
= ((1� ) p)

(1� �)S0 � �
R
(1� ) p
R

(48)

= !0 + (1� !0) (1� ) p (49)

where the second line follows after solving (42) for sLj�>�̂.

� If � < �̂, then the returns of both date-1 investments are equal if s1 = sLj�<�̂, where sLj�<�̂ is
given by

sLj�<�̂ =
(1� !0)S0 � (1� )

�
sLj�<�̂ (�S0 + �)� !0S0

�
=p

(1� �)S0 � �
R
(1� ) p
R

(50)

=
!0 + (1� !0) p= (1� )

�+ (1� �) = (1� )2 +
�
1� 1= (1� )2

�
�=S0

(51)

sLj�<�̂ is strictly decreasing in patient investors�net redemptions (strictly increasing in asset pur-

chases), �, and reaches a minimum for the smallest �at which the fund would just purchase assets

(� = �̂) of

min
�
sLj�<�̂ = !0 + (1� !0) (1� ) p (52)

The interval (32) is then constructed using the bounds (49) and (43), while the interval (33) is the

result of combining (51) and (45).

10.3 Optimal liquidity bu¤er

Lemma 10 The fund manager chooses a liquidity bu¤er equal to equilibrium redemptions:

!�0 = �s
�
1 (53)

Proof. Fund manager k solves max!0;k U where, using the fact that impatient households invested in

the fund in equilibrium consume cIA;k = s
�
1;k and patient households c

P
A;k = s

�
2;k,

U = �u
�
s�1;k

�
+ (1� �)u

�
s�2;k

�
(54)

The proof proceeds by evaluating the �rst derivatives to the fund�s problem. (We omit in the following

the subscipt k.) The optimal settlement price s�1 is de�ned by intervals (see 12), so we need to compute

the �rst-order conditions separately for each interval, depending on whether s�1 is at the upper bound of

the no-arbitrage interval, at the lower bound, or in the interior. For each interval, we need to consider

the case in which the fund sells assets separately from that in which the fund purchases assets. The

reason is that the fund�s assets per share at date 2 (equal to s�2) are de�ned separately for each case,

re�ecting the discontinuity of s�2 introduced by the bid-ask spread.

1. Suppose ŝ < sH , where ŝ is the "unconstrained" optimal solution for the settlement price given

by (24). Then s�1 = sH . If s
�
1 = sH , then s

�
2 = s

�
1 (1� )R=p and the fund manager�s �rst-order

condition is

� if � > �̂, such that the fund would sell assets to meet redemption requests, the �rst derivative
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is, using the de�nition of sHj�>�̂ in (43),

@U

@!0
=

�
�u0

�
sHj�>�̂

�
+ (1� �) (1� )R

p
u0
�
sHj�>�̂

(1� )R
p

��
@sHj�>�̂

@!0
> 0 (55)

The sign of @sHj�>�̂=@!0 follows from p < 1= (1� ). That is, if, for a given !0, the fund
would sell assets, the fund manager strictly prefers to raise the liquid asset bu¤er.

� if � < �̂, the �rst derivative is, using the de�nition of sHj�<�̂ in (45),

@U

@!0
=

�
�u0

�
sHj�<�̂

�
+ (1� �) (1� )R

p
u0
�
sHj�<�̂

(1� )R
p

��
@sHj�<�̂

@!0
< 0 (56)

The sign of @sHj�<�̂=@!0 follows from p > 1�. That is if, for a given !0, the fund has spare
liquidity after servicing net redemptions, the fund manager strictly prefers to lower the liquid

asset bu¤er.

As a result, if s�1 = sH , then !
�
0 = �sH .

2. If s�1 = sL, then s
�
2 = s

�
1 (1� ) R

(1�)p and the fund manager�s �rst-order condition is

� if � > �̂, such that the fund would sell assets to meet redemption requests, the �rst derivative
is, using the de�nition of sLj�>�̂ in (49),

@U

@!0
=

�
�u0

�
sLj�>�̂

�
+ (1� �) R

(1� ) pu
0
�
sLj�>�̂

R

(1� ) p

��
@sLj�>�̂

@!0
> 0 (57)

The sign of @sLj�>�̂=@!0 follows from p < 1= (1� ). That is, if, for a given !0, the fund
would sell assets, the fund manager strictly prefers to raise the liquid asset bu¤er.

� if � < �̂, the �rst derivative is, using the de�nition of sLj�<�̂ in (49),

@U

@!0
=

�
�u0

�
sLj�<�̂

�
+ (1� �) (1� )R

p
u0
�
sLj�<�̂

(1� )R
p

��
@sLj�<�̂

@!0
< 0 (58)

The sign of @sHj�<�̂=@!0 follows from p > 1�. That is if, for a given !0, the fund has spare
liquidity after servicing net redemptions, the fund manager strictly prefers to lower the liquid

asset bu¤er.

As a result, if s�1 = sL, then !
�
0 = sL�.

3. Suppose that s�1 2 (sL; sH).

� if � > �̂, equivalently !0 < s1�, the fund needs to sell assets in response to a marginal increase
in the settlement price, and s2 = s2j�>�̂. The response of s2j�>�̂, de�ned in (22), to an increase

in the liquidity bu¤er is

ds2j�>�̂

d!0
=

@

@!0

 
(1� !0)S0 � (1� )

�
s1j�>�̂�S0 � !0S0

�
=p

(1� �)S0
R

!
(59)

=
1

(1� �)S0

�
�S0 �

�
�S0

ds1j�>�̂

d!0
� S0

�
(1� ) =p

�
R

= � 1� 
(1� �) p

�
(p= (1� )� 1) + �

ds1j�>�̂

d!0

�
R
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Entering this into the �rst derivative of the fund�s objective function yields

�u0
�
s1j�>�̂

� ds1j�>�̂
d!0

+ (1� �)
ds2j�>�̂

d!0
u0
�
s2j�>�̂

�
(60)

= �u0
�
s1j�>�̂

� ds1j�>�̂
d!0

+ (1� �) 1� 
(1� �) p

�
(1� p= (1� ))� �

ds1j�>�̂

d!0

�
Ru0

�
s2j�>�̂

�
= �

�
u0
�
s1j�>�̂

�
� 1� 

p
Ru0

�
s2j�>�̂

�� ds1j�>�̂
d!0

� (p� (1� ))Ru0
�
s2j�>�̂

�
= � (p� (1� ))Ru0

�
s2j�>�̂

�
< 0

The last equality follows because the fund manager optimally chooses the settlement price,

hence u0
�
s1j�>�̂

�
� 1�

p Ru0
�
s2j�>�̂

�
= 0 (see (13) in proposition 1). The sign follows from

p > 1� .

� if � < �̂, equivalently !0 > s1�, then s2j�<�̂, de�ned in (23). Its response to an increase in the
liquidity bu¤er is

ds2j�<�̂

d!0
=

@

@!0

 
(1� !0)S0 �

�
s1j�<�̂�S0 � !0S0

�
= ((1� ) p)

(1� �)S0
R

!
(61)

=
1

(1� �)S0

�
�S0 �

�
�S0

ds1j�<�̂

d!0
� S0

�
= ((1� ) p)

�
R

=
1

1� �

�
�1�

�
�
ds1j�<�̂

d!0
� 1
�
= ((1� ) p)

�
R

= � 1

(1� �) ((1� ) p)

�
� (1� (1� ) p) + �

ds1j�<�̂

d!0

�
R

Entering this into the �rst derivative of the fund�s objective function yields

�u0
�
s1j�<�̂

� ds1j�<�̂
d!0

+ (1� �)
ds2j�<�̂

d!0
u0
�
s2j�<�̂

�
(62)

= �u0
�
s1j�<�̂

� ds1j�<�̂
d!0

� (1� �) 1

(1� �) ((1� ) p)

�
� (1� (1� ) p) + �

ds1j�<�̂

d!0

�
Ru0

�
s2j�<�̂

�
= �

�
u0
�
s1j�<�̂

�
� 1

(1� ) pRu
0 �s2j�<�̂�� ds1j�<�̂

d!0
+ (1� (1� ) p)Ru0

�
s2j�<�̂

�
= (1� (1� ) p)Ru0

�
s2j�<�̂

�
> 0

The last equality follows because the fund manager optimally chooses the settlement price,

hence u0
�
s1j�<�̂

�
� 1

(1�)pRu
0 �s2j�<�̂� = 0. The sign follows from p < 1= (1� ).

10.4 First-period choices and existence of equilibrium

Lemma 11 A necessary condition for the existence of the equilibrium is s�1 � 1

Proof. Suppose s�1 < 1. A risk-averse household�s equilibrium utility is

�u (s�1) + (1� �)u (s�2)

If it deviated to storage at date 0 and invested in fund shares at date 1, its utility would be strictly

higher at �u (1) + (1� �)u (s�2=s�1): a contradiction to s�1 < 1 in an equilibrium in which all risk-averse

households subscribe to fund shares at date 0.
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Lemma 12 shows that p�S � 1 is also a su¢ cient condition for risk-neutral households to prefer

investing in the long-term technology.

Lemma 12 At date 0, a risk-neutral household prefers to invest in the long-term technology if s�1 > 1.

Proof. s�1 � 1 implies that the risk-neutral household prefers investing in the fund over storage. By

construction of s�1, if invested in the fund at date 0, it prefers to remain with the fund at date 1 to earn

s�2. Because s
�
1 � 1, this would be less than its equilibrium payo¤, R (see (16)).

In contrast, s�1 � 1 is not su¢ cient for risk-averse households to prefer investing in fund shares.

A risk-averse household that deviates to investing in the long-term technology earns (1� ) p < s�1 if

impatient and R > s�2 if patient. If s
�
1 � 1, the variance of its equilibrium payo¤ is therefore smaller than

the variance of this deviation payo¤. At the same time, the expected equilibrium payo¤ from investing

in fund shares is smaller than the payo¤ earned from deviating to investing in the long-term technology.

To see this, notice that his expected payo¤ is

�s�1 + (1� �) s�2 = �s�1 + (1� �)
1� �s�1
1� � R

= �s�1 + (1� �s�1)R

where the �rst equality follows from inserting the equilibrium expression for s�2, given by (16). The

expected payo¤ of investing in the long-term technology is

� (1� ) p+ (1� �)R

The expected payo¤ from investing in shares is smaller if

� (s�1 � (1� ) p) + ((1� �s�1)� (1� �))R � 0

equivalently,

s�1 �
R� (1� ) p

R� 1
ie whenever s�1 � 1. This suggests that for a su¢ ciently large degree of risk aversion, a risk-averse

household will not deviate to investing into the long-term technology at date 0. Lemma 13 shows how

the no-deviation condition

�u (s�1) + (1� �)u
�
1� �s�1
1� � R

�
� �u ((1� ) p) + (1� �)u (R) (63)

translates into a condition on households�risk aversion in the context of a CRRA utility function and

shows existence for a few plausible parameter calibrations.

Lemma 13 Suppose u (c) = c1�a= (1� a).

1. The optimal settlement price is

s�1 =

8>>><>>>:
p

(1�)(1��)+�p if a � ln R
p(1�)= lnR

(1�)
p

R=

�
�R+ (1� �)

�
R

p(1�)

� 1
a

�
if a 2

�
1; ln R

p(1�)= lnR
(1�)
p

�
p

(1��)=(1�)+�p if a � 1

(64)

2. s�1 > 1 if and only if a > ln
�

R
p(1�)

�
= lnR, ie if households are su¢ ciently risk averse.

22



Proof. We �rst derive expression (64) for the optimal settlement price and then consider the case that
it lies in the interior region.

1. Using CRRA utility, the optimality condition (13) specialises to

ŝ = s1 : (s1)
�a
=

R

(1� ) p

�
1� �s1
1� � R

��a
Re-arranging terms yields

1� �s1
s1 (1� �)

R =

�
R

(1� ) p

�1=a
Solving for s1 then yields ŝ, which is equal to the optimal settlement price in the middle interval

of (64). Notice that, in equilibrium,

s2
s1
=

1� �s1
s1 (1� �)

R > 1

because �
R

(1� ) p

�1=a
> 1

equivalently,

R > (1� ) p

2. Solving s1 = sH and s1 = sL yields the bounds to a for the di¤erent intervals of (64). ŝ � sH is

equivalent to

R=

 
�R+ (1� �)

�
R

p (1� )

� 1
a

!
� p

(1� ) (1� �) + �p

Taking inverses and re-arranging terms yields

�R+ �R (1� �)
�

R

p (1� )

� 1
a

� R ((1� ) (1� �) + �p)
p�

R

p (1� )

� 1
a

� R
(1� )
p

Taking logs then yields the optimal settlement price in the top interval of (64). The proof for the

optimal settlement price in the bottom interval of (64) is analogous.

3. Existence: we only show here that there are plausible parameter values such that p�S > 1 and that

risk-averse households prefer subscribing to fund shares at date 0 instead of investing in the long-

term technology, ie that the no-deviation condition (63) holds. For example, for a return of the

long-term technology of R = 1:1, a mid-market price of p = 1, a coe¢ cient of relative risk aversion

of a = 2, trading costs of  = 0:05, and a share of liquidity-constrained fund investors of � = 0:1,

ŝ = R=

 
�R+ (1� �)

�
R

p (1� )

� 1
a

!
= 1:02 > 1

sH =
p

(1� ) (1� �) + �p = 1: 047 > ŝ

such that the optimal settlement price is given by the unconstrained solution, s�1 = ŝ. Risk-averse
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households�expected utilities are, if they subscribe at date 0 to fund shares,

1

1� a

 
� (s�1)

1�a
+ (1� �)

�
1� �s�1
1� � R

�1�a!
= �0:918 04

greater than what they would earn if they invest at date 0 in the long-term technology,

1

1� a

�
� ((1� ) p)1�a + (1� �)R1�a

�
= �0:923 44

Another parameter combination for which the same type of equilibrium exists is: R = 1:05, p = 1,

a = 2,  = 0:03, and � = 0:05. For larger degrees of risk aversion, an equilibrium exists in which

the settlement price is at the upper bound of the no-arbitrage interval, s�1 = sH .

10.5 Properties of the equilibrium settlement price and the swing factor

10.5.1 Payouts to impatient vs payouts to patient investors

If s�1 = ŝ, (13) states that
u0 (s1)

u0 (s2)
=

R

(1� ) p (65)

Then u00 < 0 implies s1 < s2 because R > (1� ) p.

10.5.2 Bounds for the optimal swing factor

Inserting the corresponding bounds for the settlement price, sL and sH , into the expression for the swing

factor, (2), yields

�L = �� (sH) = �+

 
1
p

(1�)(1��)+�p
� �
!
p� 1 = � (1� �)

�H = �� (�L) = �+

 
1
p

(1��)=(1�)+�p
� �
!
p� 1 = 

1�  (1� �)

For illustration, using the same calibration as in the proof of Lemma 13,  = 0:05 and � = 0:1, we have

�� 2 [�:045;+0:047].

10.5.3 Larger trading costs

The response of the bounds of the no-arbitrage intervals to larger trading costs (@sH=@ > 0, @sL=@ <

0) can be seen directly by inspecting (14) and (15). If  = 0, both collapse to a single value, the fund�s

net asset value per share, !0 + (1� !0) (1� ) p.
The response of ŝ can be derived by totally di¤erentiating the fund manager�s �rst-order condition,

(13). Denote (13) by G. Using the equilibrium value of s�2, given by (16)

G = (1� ) pu0 (s�1)�Ru0
�
1� �s�1
1� � R

�
= 0 (66)

Then
dŝ

d
= �@G

@
=
@G

@s1
< 0 (67)
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because
@G

@s�1
= (1� ) pu00 (s�1) +R

�

1� �u
00 (s�2) < 0 (68)

and
@G

@
= �pu0 (s�1) < 0 (69)

10.5.4 A greater likelihood of becoming impatient

The response of the bounds of the no-arbitrage intervals to a greater likelihood of becoming impatient,

�, is

@sH
@�

=
@
�

p
(1�)(1��)+�p

�
@�

= �p p� (1� )
((1� ) (1� �) + �p)2

< 0 (70)

and

@sL
@�

=
@
�

p
(1��)=(1�)+�p

�
@�

=
p

(1� )
1� (1� ) p

((1� �) = (1� ) + �p)2
> 0 (71)

The response of ŝ can be derived by totally di¤erentiating the fund manager�s �rst order condition,

(66), as above, using
@G

@�
= �R

 
�R p�S � 1

(1� �)2

!
u00
�
cPA
�
< 0 (72)

10.6 Response to an unanticipated increase in trading frictions

The unanticipated increase in trading frictions is public information at the start of date 1. The fund

manager maximises

U = E [uA (c1; c2)] (73)

= �u (c1) + (1� �)u (c2) (74)

= �u (s1) + (1� �)u (s2) (75)

where the last line follows under the assumption that patient investors remain with the fund (we show

below that this is the case). The optimal settlement price following the unanticipated change in  is

given by the �rst-order constraint

@U

@s1
= �u0 (s1) + (1� �)

@s2
@s1

u0 (s2) = 0

Assets per share at date 2 are

� if �s1 � !�0, the fund sells assets in response to a marginally increasing settlement price, and s2 is
given by (22) evaluated at � = 0. Then

s2j�s1�!�0 =
(1� !�0)S0 � (s1�S0 � !�0S0) = ((1� ) p)

(1� �)S0
R

@s2j�s1�!�0
@s1

=
��S0= ((1� ) p)

(1� �)S0
R = � R�

p (1� �) (1� )

� if �s1 < !�0, the fund purchases fewer assets in response to a marginally increasing settlement price,
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and s2 is given by (23) evaluated at � = 0. Then

s2j�s1<!�0 =
(1� !�0)S0 � (1� ) (s1�S0 � !�0S0) =p

(1� �)S0
R

@s2j�s1<!�0
@s1

= �R� (1� )
p (1� �)

1. Suppose �s1 � !�0. Then the solution to the fund manager�s �rst-order condition is �s1, where

�s1 = s1 : �u
0 (s1) + (1� �)

�
� R�

p (1� �) (1� )

�
u0 (s2) = 0

Let

G = u0 (s1)�
R

p (1� )u
0 (s2) = 0

Then
d�s1
d

= �@G
@
=
@G

@s1

The partial derivates are:

@G

@s1
= u00 (s1)�

R

p (1� )
@s2
@s1

u00 (s2)

= u00 (s1)�
R

p (1� )

�
� R�

p (1� �) (1� )

�
u00 (s2) < 0

and
@G

@
= �

 
R

p (1� )2
u0 (s2) +

R

(1� ) p
@s2
@
u00 (s2)

!
where

@s2
@

=
@
�
(1�!�0)S0�(s1�S0�!

�
0S0)=((1�)p)

(1��)S0 R
�

@
= R

!�0 � �s1
p (1� �) (1� )2

� 0

where the sign follows because �s1 � !�0. Then @G=@ < 0 and d�s1=d < 0: a contradiction to

�s1 � !�0.

2. Suppose instead that �s1 < !�0 and that �s1 � sL, where sL is given by (15). Then the solution to
the fund manager�s �rst-order condition is �s1, where

�s1 = s1 : �u
0 (s1) + (1� �)

�
�R� (1� )
p (1� �)

�
u0 (s2) = 0

Let

G = u0 (s1)�
(1� )R

p
u0 (s2) = 0

Then
d�s1
d

= �@G
@
=
@G

@s1

The partial derivates are:

@G

@s1
= u00 (s1)�

(1� )R
p

@s2
@s1

u00 (s2)

= u00 (s1)�
(1� )R

p

�
�R� (1� )
p (1� �)

�
u00 (s2) < 0
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and
@G

@
= �

 
R

p (1� )2
u0 (s2) +

R

(1� ) p
@s2
@
u00 (s2)

!
where

@s2
@

=
@
�
(1�!�0)S0�(1�)(s1�S0�!

�
0S0)=p

(1��)S0 R
�

@
= �R!

�
0 � �s1
p (1� �) � 0

where the sign follows because �s1 < !�0. Then @G=@ < 0 and ds1=d < 0. As a result, following

an unanticipated increase in , s1 < s�1. This implies that the fund retains !
�
0 � �s1 in cash. This

raises patient investors�payo¤ above what they would obtain in equilibrium, in which they do not

trade. Patient fund investors therefore prefer to stay with the fund. Correspondingly, investors

outside the fund have no incentive to purchase if s1 � sL.

3. Suppose instead that �s1 < !�0 and that �s1 < sL, where sL is given by (15). Then, for the same

reason as argued in the proof of proposition 1, the optimal settlement price is equal to sL. Given

that @sL=@ < 0, we again have ds1=d < 0.
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