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Abstract

This paper presents a general equilibrium model with a dynamic banking sector to
characterize optimal size-dependent bank capital regulation (CR). Bank leverage choices
are subject to the risk-return trade-off: high leverage increases expected return on capital,
but also increases return variance and bank failure risk. Financial frictions imply that
bank leverage choices are socially inefficient, providing scope for a welfare-enhancing CR
that imposes a cap on bank leverage. The optimal CR is tighter relative to the pre-crisis
benchmark. Optimal CR is also bank specific, and tighter for large banks than for small
banks. This is for three reasons. First, allowing small banks to take more leverage enables
them to potentially grow faster, leading to a growth effect. Second, although more leverage
by small banks results in a higher exit rate, these exits are by the less efficient banks,
leading to a cleansing effect. Third, failures are more costly among large banks, because
these are more efficient in equilibrium and intermediate more capital. Therefore, tighter
regulation for large banks renders them less prone to failure, leading to a stabilization
effect. In terms of industry dynamics, tighter CR results in a smaller bank exit rate and
a larger equilibrium mass of better capitalized banks, even though physical capital stock
and wages are lower. The calibrated model rationalizes various steady state moments of
the US banking industry, and provides general support for the Basel III GSIB framework.
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1 Introduction
A bank’s leverage decision,1 where leverage is defined as the ratio of bank assets to bank
net worth (i.e. capital), has implications for growth and solvency. On the one hand,
leverage increases the potential for a higher return on net worth.2 On the other hand,
leverage increases the variance in returns on net worth and the probability of bank failure
(i.e. risk), where failure is defined as the event where a bank’s net-worth drops below zero.
In this sense, bank leverage decisions have implications for banking industry dynamics
that include entry, exit and size distribution (Corbae and D’erasmo [2014]), and for such
macroeconomic aggregates as output, investment, and distribution of consumption. In the
presence of a friction between bank ownership and management, bank leverage decisions
can be socially inefficient, and the heterogeneity of bank size and bank productivity matters
for the size of this inefficiency. For example, high leverage by a large bank can lead to
greater variance in the return on net-worth compared with the same high leverage by two
or more smaller banks obtained by splitting up the large bank – this is because, in the
case of small banks, there is some diversification of shock across banks, whereas the case of
the large bank would correspond to that of perfectly correlated shocks. Therefore, in the
presence of frictions, there are welfare gains from a capital regulation (CR) that imposes
a cap on bank leverage, especially if such regulation depends on bank size.3 To this end,
the objective of this paper is to characterize optimal size-dependent capital regulation.4

Against this backdrop, the question of bank capital regulation has gained considerable
importance since the 2008 financial crisis, as high leverage played a critical role in rendering
the scale of the crisis. In this regard, among other measures, Basel III (BCBS [2011])
envisions not just a more stringent regulation framework relative to Basel II, but also
that global systemically important banks (GSIBs) should face tighter regulation relative to
smaller banks. In implementing these two aspects of the Basel III framework, the regulators
are facing two key trade-offs. The first relates to the overall tightening of capital regulation,
as discussed by, for example Van den Heuvel [2008] and Corbae and D’erasmo [2014], and
is also studied in this paper. The second relates to size differentiation. If regulators impose
relatively tighter capital regulation on smaller banks, this might constrain their growth and
end up benefiting larger banks, which might be undesirable from a competition perspective.
Also, if larger banks are allowed relatively greater leverage, and if they end up assuming
more leverage, larger banks become more prone to failure, which can be socially costly.
Figure 1 documents that, when failing, larger banks incur bigger costs, which are often

1In this paper, “bank” is a financial intermediary, and represents both commercial banks, and savings
and loan associations.

2High leverage, i.e., more debt financing relative to equity financing, also implies the tax advantage of
debt over equity, but this feature is not pursued in this paper.

3In this paper, capital regulation (CR) is defined as a cap on the ratio of bank assets and bank net-
worth (i.e. equity). While not directly comparable to the requirements established under Basel III, this
formulation is closest in spirit to (the inverse of) the leverage ratio requirement, which is defined as
regulatory capital over a risk-insensitive measure of total exposure. Risk-weighted capital requirements
would generate comparable results only to the extent that an average risk weight of 100% is being assumed.

4Both net worth and assets are appropriate measures of bank size, and there is an equivalence mapping
between approaches using either measure. I adopt the former measure for mathematical convenience.
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Figure 1: US savings and commercial banks: Log(net-worth) and log(estimated-loss) dur-
ing 1985 - 2014; (source: FDIC Historical Statistics on Banking, and Call and Thrift
Financial Reports)

borne by the public (i.e. via deposit insurance).5 On the other hand, if regulators impose
relatively tighter capital regulation for large banks, this might reduce the aggregate volume
of financial intermediation by restricting bank lending, where large banks play a key role.
This might also create disincentives for banks to (learn / adopt technology and) grow
large. This can be because banks that better adopt technology, or learn over time, face a
better chance of growing large over time, as discussed in Hughes and Mester [2013] and
several other empirical studies. Therefore, to determine the most effective size-dependent
regulation, it is essential to have a framework in which one can study some of these trade-
offs quantitatively.

Model overview To this end, I develop a real business cycle (RBC) model designed to
examine the relationship between bank leverage, banking industry dynamics, and macroe-
conomic aggregates. The model features a dynamic banking sector that consists of a
continuum of heterogeneous banks. There is no aggregate, but only idiosyncratic uncer-
tainty. The banking industry is modeled in the spirit of Hopenhayn [1992], where banks
are intermediaries that accept deposits from households and purchase shares in firms that
operate a standard production technology. Banks have idiosyncratic efficiency in managing
their equity in firms, and this idiosyncratic efficiency is modeled as a first-order Markov
process. To provide a rationale for banks, a limited commitment setup à la Gertler and
Kiyotaki [2010] is assumed between banks and their depositors. That is, bankers are as-
sumed to be able to divert assets for personal consumption. To ensure that bankers do not
divert assets, they are subject to a borrowing constraint that limits the amount of deposits
they can raise. The borrowing constraint ensures that the value of diverting assets is not
larger than the value of continuing operations. Incumbent banks fail when their net worth

5The net worth reported in the figure is as of the last regulatory filing by the bank before its failure.
The estimated loss is the amount of FDIC funds disbursed to meet the shortfall in liabilities. In this sense,
the estimated loss captures only the idiosyncratic effect of the failure of a bank.
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drops below zero, which can happen because of a large shock, or because of high leverage
ex-ante. Post exit, new banks enter as per a free entry process.

To quantify the distributional welfare consequences of a size-dependent policy, I consider
consumers to consist of workers and bankers.6 The workers supply labor and also manage
banks. The bankers are heterogeneous and are modeled in the spirit of Aiyagari [1994], but
with an income endowment process that is endogenously determined. Bankers are bank
owners, and receive dividend income from the bank whose shares they own. Since banks
are subject to idiosyncratic shocks that govern dividend payments, bankers are subject to
idiosyncratic dividend income shocks. The friction that rationalizes capital regulation in
this model is the distinction between bank ownership and management – managers do not
care about the risk-aversion of bank owners, and choose to maximize bank value by taking
socially inefficient levels of risk.7

Key Results Qualitatively, as regards optimal regulation, the main result of the paper
is that there is scope for a tightening of bank regulation relative to the pre-crisis bench-
mark.8 Moreover, additional welfare gains are possible if capital regulation is designed in
a bank size-specific fashion, providing general support for the Basel III GSIB framework,
in particular the idea of a GSIB surcharge.

Quantitatively, in the calibrated model, a tightening of the capital regulation to a level
of 3.55 (i.e. asset to net-worth ratio capped at 3.55) results in utilitarian welfare gains of
2.2% in consumption-equivalent (CE) terms relative to the pre-crisis benchmark. Moreover,
additional welfare gains of 8.1% in CE terms can be achieved, if capital regulation is bank
size specific.9 In particular, the optimal size dependent regulation is characterized by a
relatively tighter regulation of 3.17 for large banks and a relatively liberal regulation of
4.12 for small banks.

Intuitively, an overall tightening of regulation produces welfare gains primarily from
a lower industry turnover rate and hence lower entry cost, and higher mean and lower
variance of dividend payments by banks. The effect for dividend means is driven primarily
by the fact that, in the optimal regulatory regime, there exists a larger mass of better
capitalized banks that pay higher dividends in the aggregate. The variance effect is driven
by the lower variance of bank dynamics due to a lower leverage. In the optimal regime,
these gains dominate the welfare loss due to a lower capital stock, output, and lower

6A heterogeneous set of consumers setup is not necessary to analyze the banking industry, but is
necessary to understand the welfare implication of change in capital regulation.

7There is a large literature that discusses the agency problem between ownership and management of
firms. The agency problem can be modeled as a situation where the owners cannot observe the effort put
in by managers Holmstrom and Tirole [1997], or the risk taken by managers. In fact, Gabaix and Landier
[2006] show that increasing CEO pay is a natural outcome of attempts to address this agency problem.

8The rationale for considering the pre-crisis period (1995-2005) as benchmark is elaborated later in the
introduction, and also in section 4.

9These are large welfare gains relative to those found in other studies in the literature. I argue that
these gains are not implausible. For example, the cost of the 2008 financial crisis is of a similar order
in permanent consumption terms, and when regulation can avoid the occurrence of such crises, the gains
from regulation will be of this order. At the same time, the model’s predicted welfare gain will probably
be smaller once transition dynamics are taken into consideration.
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wages. The welfare gain from a size-dependent regulation follows from three channels.
First, allowing small banks to take more leverage enables them to potentially grow faster
conditional on survival, leading to a growth effect. Second, although more leverage by
small banks results in a higher exit rate among these institutions, these exits are by the
less efficient banks, leading to a cleansing effect. As a corollary, entrant banks have higher
mean efficiency relative to exited banks. Third, failures by large banks are more costly
because these are more efficient in equilibrium and intermediate more capital. In fact,
to replace failed large banks, entrants incur operating costs during the time they need to
grow large. Therefore, tighter regulation for large banks renders them less prone to failure,
leading to a stabilization effect of size-dependent policy.

Finally, with regards to banking industry dynamics, the model generates a steady
state equilibrium with entry, exit and a non-degenerate size distribution. In the stationary
equilibrium, bigger banks are more highly levered, and there is positive correlation between
bank size and bank efficiency. This follows intuitively from the fact that more efficient
banks have better future prospects, enabling them to adopt more leverage and potentially
grow faster. The paper also documents some results pertaining to how banking industry
dynamics respond to changes in regulation. For example, a tightening of regulation results
in the following effects (a weakening of regulation results in qualitatively opposite effects).
First, the bank failure rate is lower, which increases the mean age of banks. This shifts
the size distribution of banks to the right, and also results in a larger equilibrium mass of
banks. The latter effect is instrumental in driving up aggregate dividend payments, even
though not necessarily for all banks. Second, since the mean leverage of banks is smaller,
banks are better capitalized. In particular, the aggregate net worth of banks is larger.
Third, tightening regulation results in a less concentrated industry as indicated by a lower
Herfindahl Index.

Data and Stylized facts In order to characterize capital regulation quantitatively, I use
data on US commercial and savings banks from Call and Thrift Financial Reports (CTR)
and Historical Statistics on Banking (HSOB), both available with the Federal Deposit
Insurance Corporation (FDIC). I draw household asset ownership and inequality data from
Survey of Consumer Finances (SCF) and Organization for Economic Co-operation and
Development (OECD) statistics, respectively. Aggregate macroeconomic data is obtained
from the Federal Reserve Economic Data (FRED) database. I focus on the stationary
equilibrium of the model, and estimate/calibrate model parameters to match select data
moments.

I begin with some history of capital regulation of banks in the US, which has evolved
considerably over time along with international minimum standards. In broad terms,
regulation has become generally tighter and broader in scope over time.10 In particular, the
cap on leverage has decreased, and the minimum risk-weighted capital ratio requirement
has increased (See the left panel of figure 2). Much of this tightening of regulation is
motivated by the higher realized or estimated cost of a financial crisis.11

10For example, see Acharya [2011].
11For more detail, refer to Fender and Lewrick [2016], who review the costs of financial crises.
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Figure 2: (Left) Historical Basel Total (tier1 + tier2) capital requirements (Right) US
commercial and savings banks: Yearly failure rate (Source: FDIC Historical Statistics on
Banking)

I now present some stylized facts observed in the data that I use to discipline my model.
In the right panel of figure 2, I graph the yearly exit (failure) rate of US savings and
commercial banks, which is one of the targets of my estimation procedure. The shaded
regions approximately represent the two business cycle contractions that also featured
financial sector crises: (i) the savings and loan crisis of the 1990s and (ii) the financial crisis
of 2008. I take note of the following observations. First, the exit rate peaks during the
savings and loans crisis and during the financial crisis, and is stable otherwise, i.e., during
1995-2005. Even structurally, the 1995-2005 period is less affected by regulatory changes in
the banking industry, because most of the bank branching deregulation happened prior to
1995. In particular, although the Riegle-Neal Interstate Banking and Branching Efficiency
Act was implemented in June 1997, US states were most active in removing geographic
limits to banking prior to 1995 (Jayaratne and Strahan [1997]). Therefore, since 1995-
2005 is a relatively stable period for banking industry dynamics, I use this period for
calibration/estimation.

In Figure 3, I document the distribution of inflation-adjusted log net worth at three
points in time during the last three decades. For any point in time during this period, the
size distribution of bank net-worth in the United States can be fairly well approximated,
based on the Kolmogorov-Smirnov Goodness of fit test, by a log-normal distribution. The
fit for bank size distribution in 2000:Q4, for example, is shown in the right panel. Two
remarks on the tail of the bank size distribution are as follows: (a) log-normal is not
adequate to capture the tail, which is better described by a power law distribution, and
(b) the model in this paper does not attempt to explain the existence of a long / heavy tail
of the bank distribution - it rather focuses on specific percentiles of the size distribution of
banks. Over time, the distribution is shifting to the right. However, the inflation-adjusted
distributions at any two points in time during 1995-2005 are not statistically significantly
different based on the two-sample Kolmogorov-Smirnov (KS) test. In this sense, the size
distribution has remained fairly stable during the calibration period.
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Figure 3: (Left) Kernel density estimate of log net-worth distribution; (Right) Log-normal
fit to 2000Q4 data (source: FDIC Call and Thrift Financial Reports)

Related Literature The first strand of literature to which this paper is related, aims to
understand how inefficiencies in the banking sector affect the real economy, and to identify
which tools regulators could use to address these inefficiencies. The key contribution of this
paper helps us understand how, in the presence of frictions, leverage choices affect output,
investment, and the distribution of consumption through the banking industry dynamics
channel. Few other papers have this feature. For example, Corbae and D’erasmo [2014]
develop a quantitative model of an imperfectly competitive banking industry. Bank dy-
namics (entry and exit) are driven by shocks to borrowers’ production technology, and the
authors show how competition between banks affects interest rates and borrowers’ deci-
sions regarding loan amounts and levels of risk. Covas and Driscoll [2014] study capital and
liquidity regulation in a dynamic banking sector, and its effect on loan supply, output, and
interest rates. Nguyen [2014] looks into the welfare implications of capital requirements
in the presence of moral hazard due to government bailouts. Christiano and Ikeda [2013]
study the welfare gains possible due to leverage restrictions in a macroeconomic model
with unobservable banker effort. Begenau [2014] shows that higher capital requirements
might actually increase bank lending when households value safe and liquid assets, provid-
ing another rationale for tighter regulation. Other papers that discuss time-invariant or
counter-cyclical capital regulation that is not dependent on bank sizes include Benes and
Kumhof [2011], Zhu [2007], De Nicolo et al. [2014] and Christensen et al. [2011].

In this paper, I consider a competitive banking industry that is rationalized by a limited
commitment issue between banks and its depositors. By assuming a stylized competitive
banking industry instead of a more general imperfectly competitive industry, I am able
to achieve tractability in studying endogenously determined size distribution. The fact
that banking industry dynamics in general, and size distribution of banks in particular,
respond to regulation in this model is the feature which allows me to study size-dependent
regulation.

This paper is also related to the literature on macroeconomic models with financial sec-
tors. For example, Gertler and Kiyotaki [2010] and Gertler and Karadi [2011] study uncon-
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ventional monetary policy and other policy experiments in a macro model in which financial
frictions arise due to a limited commitment issue. Adrian and Boyarchenko [2012] use a
value-at-risk constraint to generate the endogenously determined borrowing constraints
which play the central role in amplifying shocks. In this paper, the credit constraint arises
because of a limited commitment issue between banks and their depositors. The main
contribution here is to model a heterogeneous financial sector with endogenous entry and
exit. In this sense, the paper offers an alternative channel, namely industry dynamics,
through which to study the effect of the financial sector on macroeconomic aggregates.

This pursuit is related to another strand in the literature that studies the dynamics of
non-financial firms. For example, Cooley and Quadrini [2001], Clementi and Hopenhayn
[2006], Albuquerque and Hopenhayn [2004] study the dynamics of firms that borrow subject
to borrowing constraints, but do not study the relationship between leverage and the risk
of return on net worth or the risk of failure. The implication of borrowing on industry
dynamics has been studied theoretically in Miao [2005], and empirically in, for example,
Lang et al. [1996], but only in the context of non-financial firms. These studies are not
directly applicable to financial firms (equivalently referred to as banks in this paper) as
the capital structure choice of banks is characterized by higher leverage compared with
non-financial firms (Kalemli-Ozcan et al. [2012]). In fact, as DeAngelo and Stulz [2013]
show and Hanson et al. [2010] argue, high leverage is optimal for banks. This is because
of the nature of the business of financial firms, wherein obtaining cheap funding is key to
surviving the competition. Because of the fact that financial firms are more highly levered
in general, the interaction between leverage and financial industry dynamics is also more
pronounced, more so in the presence of financial frictions. In Section 2, I provide some
intuitions for these mechanisms using simple examples. I incorporate these intuitions in
my model to understand how financial leverage shapes financial industry dynamics in the
presence of financial frictions. Some papers that follow a closely related route are Boyd
and De Nicolo [2005], Corbae and D’erasmo [2013], and Corbae and D’erasmo [2014]. The
former discusses endogenous bank failures in a static setting, where competition among
banks reduces loan rates, incentivising borrowers to take on less risky projects and fail less
often - which means fewer losses and failures for banks. The latter use models of imperfect
competition to study a range of bank regulations, including capital requirements.

In studying the effect of industry dynamics on the real economy, in a non-financial
context, Clementi and Palazzo [2015] investigate how firm entry and exit amplify aggregate
fluctuations. The mechanism in their paper is, that after a positive aggregate productivity
shock, the number of entrants increases. Of these entrants, those who survive, generate a
wider and longer expansion. This insight is closely related to the intuition in my paper,
according to which allowing smaller banks to take on more leverage leads to a selection
effect such that surviving entrants are able to grow faster on an average.

The remainder of the paper is organized as follows. I present the model in Section 2,
the equilibrium in Section 3, the data, estimation, and computations in Section 4, and
counterfactual experiments in Section 5. Section 6 concludes.
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2 Model
Physical setup Time is discrete and the horizon is infinite. There is no aggregate
uncertainty. The setting is that of an island economy, with the following elements: a unit
mass of atomistic consumers, a representative capital goods producing firm (henceforth
capital firm), a continuum of islands, each with a non-financial firm (henceforth firms)
and a financial firm (henceforth banks), and a government. The mass of consumers is
divided into a fraction λ of bankers and a fraction (1 − λ) of workers.12 The bankers are
best understood as capitalists who own the banks and the capital firm, while the workers
provide labor to firms and also manage the banks. The capital firm converts consumption
goods into capital. The firm on any given island is owned by the bank on that island.
Firms produce consumption goods using labor and physical capital, where the latter input
is owned by the firm itself, and is not mobile across islands. In order to purchase additional
physical capital from capital firms, a firm must issue more shares to the owner bank on
its island. Physical capital is subject to island-specific capital quality shocks. Since firms

12The division of consumers into workers and bankers is necessary to quantify distributional aspect of
the welfare effect of change in capital regulation. In this sense, the division of consumers into workers
and bankers is not necessary for the analysis of bank leverage and its relationship with banking industry
dynamics.
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are owned by banks, these shocks essentially affect the balance sheet of banks, and I will
refer to these shocks as bank efficiency shocks. The bank is a financial intermediary that
accepts deposits from consumers and uses these funds to purchase shares in the firm on
its island. In what follows, since the bank owns the firm on its island, and since there are
no contracting frictions assumed between the bank and the firm, I will sometimes refer
to the bank-firm on an island as a joint entity that is owned by the bankers, and which
jointly hires workers to produce output. The government runs a deposit insurance scheme
by imposing a tax on bankers. The overview of the economy is presented in Figure 4. I
will now describe each element of the model in detail.

2.1 Consumers
The consumers consist of a fraction λ of bankers and a fraction 1 − λ of workers.13 For
both types of consumers, I assume a constant relative risk aversion (CRRA) period utility
function. d denotes deposits placed in the banking system and R is the gross interest rate
on deposits. The deposit insurance system ensures that deposits are risk-free. T denotes
lump sum transfers from the government to the workers, while τ denotes deposit insurance
tax on bankers. I assume that the only way consumers can save or invest in firms is via the
deposit market. This can be motivated in numerous ways, one being that households do
not have the expertise to monitor borrowers, which banks have. The problems of workers
and bankers are given below, where the subscript b indicates banker and the subscript w
indicates worker.

Workers All the workers are identical, and solve the same decision problem. Each atom-
istic worker enters into a contract with the bank-firm, and supplies one inelastic unit of
labor in return for wage Wt. I assume that as part of the contract, the worker supplies labor
to the firm, and also manages the bank that owns the firm. Although I do not explicitly
model how managerial effort enters the production function of the bank, managerial effort
involves setting bank objective and choosing bank decision variables. This assumption is
one parsimonious way of creating a distinction between bank management and ownership
by still having only two types of consumers.14 The assumption implies that even though
the worker’s wage rate is a function of the marginal product of labor provided, compen-
sation for managerial effort is implicitly contained in the contractual wage payment. In
addition to wage income, the worker receives gross interest income on deposits, and re-
ceives transfers Tt (or is required to pay taxes). The worker chooses levels of consumption
and deposits in order to maximize the present discounted value of lifetime utility, subject
to the budget constraint:

13The total mass of consumers is normalized to one for simplicity, and is without loss of generality.
14In other words, this is a simplifying assumption that spares the need to explicitly model a third type of

consumer called bank manager who is risk-neutral and receives a share in bank profits, and also spares the
need to explicitly model how managerial effort enters the production process of banks. This assumption is
valid precisely because there are no contracting frictions between the bank and the firm, and therefore one
could think about these two entities as one entity that performs the functions of the firm and the bank
together.

10



max
cwt,dwt

Et
∞∑
τ=0

βτ
(
c1−γ
wt+τ

1− γ

)
cwt + dwt = Rt−1dwt−1 +Wt + Tt

Bankers Each atomistic banker holds shares in the banking sector, and receives stochas-
tic dividends et from banks. They save through the deposit market, and are subject to
an ad hoc borrowing constraint d a‘la Aiyagari [1994]. Bankers provide startup funding
ne to new banks , and also incur the entry cost ce associated with new banks entering the
banking industry. Therefore Mt(ne + ce) is the total startup expense incurred by bankers,
where Mt is the mass of entrants. Πt is the dividends paid by capital firms. When a bank
fails, it is replaced by a new bank, and the shareholders of the failed bank become the
shareholders of the new bank. Bankers solve the following problem subject to the budget
constraint:

max
cbt,dbt≥d

Et
∞∑
τ=0

βτ
(
c1−γ
bt+τ

1− γ

)

cbt + dbt = dbt−1 + (1− τ)
(
(Rt−1 − 1)dbt−1 + ebt

)
−Mt(ne + ce) + Πt

Bankers are subject to idiosyncratic income shocks because dividends are stochastic. In
the economy without aggregate uncertainty, the problem of a banker can be cast recursively
with state space (e, d). The first dimension of the state space is current dividend income
that follows a Markov process induced by the dynamics of the bank paying the dividend.
The second dimension of the state space is the amount of savings (deposits) of the banker.
Then the lifetime utility U(e, d) of a banker is given as:

U(e, d) = max
c,d′≥d

u(c) + β
∑
e′
U(e′, d′)π(e, e′)

c+ d′ = d+ (1− τ)
(
(R− 1)d+ e

)
−M(ne + ce) + Π

The consumption and savings policy functions obtained by solving this problem induce
a distribution of bankers over the state space, which will be denoted by µb(e, d).

2.2 Firms
Each island has a firm, and the firms are identical across islands. They operate a Cobb-
Douglas production technology. The firm on island j produces final goods yjt by hiring
labor ljt in the national market at wage rate Wt, and by using the capital stock kjt that it
owns. As assumed above, the labor a firm uses, also provides managerial service to the
bank that owns the firm. The idea behind this assumption is that firm production function
requires managing the bank in order for production to be successful. The firms solves the
following problem, where At is aggregate productivity:

max
ljt

At(kjt )α(ljt )1−α −Wtl
j
t
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Firm shares are held by the bank on the same island, and each share represents claim
to one unit of capital. I assume that there are no financial frictions in the contracting
between firms and banks, and that firms pledge all returns to their shareholding banks.
Consequently, the price of capital goods is equal to the price of shares in the firm. The
firm can issue new shares to the bank on its own island to purchase additional capital.
Dividends per unit of firm capital, which is also equal to dividends per share, is given as:

Zt = yjt −Wtl
j
t

kjt

Note that dividend rate Zt is equalized across the island because labor is hired in the
national market at a national wage rate Wt. Next, capital stock on a given island is
subject to idiosyncratic capital quality shocks, and evolves as follows:

kjt+1 =
(
ijt + (1− δ)kjt

)
ψjt+1

where ijt is investment in period t and ψjt+1 is the capital quality shock. The shock effectively
translates into a shock to return on financial assets (shares) a bank holds. In this sense,
capital quality shock can be re-interpreted as the efficiency of a bank in ascertaining the
quality of the capital whose claim it holds. In other words, ψjt is a bank’s efficiency in
managing its equity in the firm. The two interpretations, that ψ is a capital quality shock
and that ψ is bank efficiency, are equivalent because banks are owners of the firm, and
shares of the firm are one-to-one backed by the physical capital stock of the firm. In
particular, if sjt is the bank shareholding in the firms on island j at the end of period t,
then it is related to the beginning of a period physical capital stock kjt as follows:

sjt =
(
ijt + (1− δ)kjt

)
where ijt is investment and δ is the physical depreciation rate. The above equation implies
that shareholding at the end of a period is equal to the depreciated capital stock (depreci-
ated because current-period production takes place in the middle of the period) plus new
investment undertaken in the current period. The above equation also implies the following
simple relationship between capital stock and bank shareholding in firms (bank assets):

kjt+1 = ψjt+1s
j
t

In this sense, sjt is a determinant of the expected capital stock at the beginning of period
t+ 1, which is Et[ψjt+1|ψ

j
t ]sjt .

So far I have referred to firms by their island indices. However, since (a) firms are
identical in their production technology, (b) they operate a CRS Cobb-Douglas produc-
tion technology, and (c) hire labor in a national market, I can refer to the economy-wide
representative firm. In other words, I can represent aggregate output Yt as a function of
aggregate capital Kt, and not necessarily as a function of the distribution of capital stocks
across islands. This also means that I can refer to the representative firm as one that
issues equity in the national market and pays a national dividend rate Zt. This interpre-
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tation makes computations easier and makes the analysis more tractable, and is therefore
employed in the rest of this paper.

2.3 Capital Firm
The capital firm produces capital goods from consumption goods, but is subject to convex
investment adjustment costs. It maximizes the present discounted value of profits accruing
to the consumers (bankers) that own the capital firm:

max
It

Et
∞∑
τ=t

Λt,τ

(
QtIτ − [1 + f(Iτ/Iτ−1)]Iτ

)

where f(x) is a convex cost function and Λt,τ is the stochastic discount factor between time
t and τ . Qt is the price of capital goods.

2.4 Banks
There is a continuum of banks. The banks are owned by the bankers and managed by
managers (workers). The objective of an atomistic bank j at time t is to maximize the
present discounted value of the dividends ejτ it pays to its shareholders:

Et
∞∑
τ=t

βτejt+τ

As indicated before, the objective of the bank is set by the manager, and we assume the
following friction between bank ownership and bank management. The discount factor
employed by the bank (manager) in its objective function is assumed to be β – which
is independent of the bank owner’s (banker’s) stochastic discount factor. The motivation
behind this assumption is that bank managers care about maximizing profits and dividends,
but do not care about the inter-temporal smoothing of dividends, which matters for bankers
since they are risk-averse. As a result of this assumption, the bank manager does not need
to keep track of the distribution of the stochastic discount factor of bank shareholders, and
takes more risk than what is socially efficient.15

The time-line for bank decisions is as follows. At the beginning of any period t, the
bank has equity sjt−1 in the firm (bank assets), and deposits djt−1 from consumers (bank
liabilities). Since the bank owns the firms, and firm capital is subject to idiosyncratic
shocks, at the beginning of every period, bank assets are subject to idiosyncratic shocks.
As discussed earlier, this shock ψjt is interpreted as a bank’s idiosyncratic efficiency in
managing its ownership in the firm. This shock captures the notion that a bank that
is more efficient today makes better asset investment decisions, and hence has a better
expected future return on its assets. I assume that ψjt follows a first-order Markov process
with transition function F (ψjt , ψjt+1), which is the conditional distribution of bank efficiency

15Another interpretation of this assumption is that the bank manager uses a representative discount
factor β instead of using the distribution of discount factors of its shareholders, which again points to a
friction between bank ownership and bank management.
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S

N

D
S: Assets, (shares in firm)

D: Liabilities (deposits)

N: Net worth, N = S - D

X: Leverage, X = S / N

Figure 5: Stylized Bank Balance Sheet

in the next period given bank efficiency in the current period. Later, I will impose more
structure on F such that it captures the notion of first-order stochastic dominance (FOSD)
in current efficiency: banks with high efficiency today enjoy better distribution of efficiencies
tomorrow.

Bank specific shocks

Entry and Exit

Period decision by:
(1) Consumers

(2) Banks
(3) Firms

Possibility of asset
diversion by banks

Figure 6: Timeline

Bank failures After banks acknowledge efficiency shocks at the beginning of the period,
a bank is considered to have failed if its beginning-of-period liabilities are at least as large
as its beginning-of-period assets: 16

ψjt+1Qts
j
t −Rtd

j
t ≤ 0

The assets of the failed bank are liquidated and used to service as much of the total
16Note that beginning-of-period assets are valued at the asset prices of the previous period. The inter-

pretation assumes that such a capital quality shock is realized during the transition from one period to
another, and that depositors will make a run on the bank if the bank is insolvent as per the valuation
of the bank at the very beginning of the period. Valuation at the beginning of the period is based on
previous-period asset prices because current-period asset prices are determined later in the period, only
after depositors have ensured that insolvent banks have exited. This intra-period liquidity issue can be
motivated by bank creditors calling on the bank (or not willing to roll over the debt) before assets payoff,
an issue that was key during the 2008 financial crisis.
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amount of liabilities (deposits) as possible. The remaining liabilities are paid off by the
deposit insurance system which is funded by a tax on bankers. Once the exiting banks exit,
a mass of new banks pay a fixed entry cost ce and enter the market with start-up capital
ne. Upon entry, the new banks draw random idiosyncratic efficiencies from a stationary
distribution G(.), and begin operations similar to an incumbent.

Bank balance sheet Following bank exit and entry, firms produce output while de-
manding labor from workers. Firms pay dividends Zt per unit of equity to banks. The
banks decide assets sjt and liabilities djt for the current period, given dividends Zt paid by
firms, and taking market prices Qt and Rt−1 as given. Banks also pay an operating cost
c(N j

t ) as a function of their end-of-period net worth N j
t , which for the rest of this paper

is the measure of bank size. Banks are subject to the following balance sheet and flow of
fund constraints:

N j
t + djt = Qts

j
t + ejt + c(N j

t )

N j
t = (Zt + (1− δ)Qt)ψjt sjt−1 −Rt−1d

j
t−1

The first equation is the balance sheet identity, which states that the sum of a bank’s net
worth and liabilities are used in three ways: (a) to purchase assets (b) to pay dividends
and (c) to pay operating costs. The second equation is the law of motion for N j

t . The
first term consists of dividend gain component Zt and capital gain component (1 − δ)Qt,
adjusted by efficiency shock ψjt , per unit of asset holding sjt−1 in the previous period. The
second term consists of the cost of liabilities.

Operating Costs I assume that banks are subject to a size-dependent convex operat-
ing cost. I motivate operating costs as an increasingly higher cost that a bank has to
incur in order to operate at larger scales. Expenses that form part of this cost include
lobbying, advertising and brand-building efforts, in addition to regular infrastructure and
salary expenses. An alternative motivation for convex operating costs comes from the
firm dynamics literature, where the ’span of control’ argument is used to represent the
increasingly limited ability of a manager to manage a firm at larger scales. For banks,
this is intuitive because larger banks operate in more diversified and complicated financial
markets. Operating costs are critical in this model for showing that (a) a solution exists
for the bank’s problem, and that (b) an endogenously determined size distribution exists.

However we interpret convex operating costs, they imply a decreasing returns-to-scale
(DRS) technology for banks, which is key to the existence of a bank size distribution.17

Otherwise, with CRS technology the size distribution of banks is indeterminate. A DRS
technology is also critical for proving the existence of a unique solution to the bank’s
problem.18 I assume the following operating cost function c(n) = cnζ , where c is the level

17Operating costs are one way to introduce DRS to a bank’s technology. I considered dividend ad-
justment costs, exogenous random destruction of banks, or operating costs that are convex in a bank’s
assets as alternatives to introduce the necessary curvature to the bank’s problem. However, because of
analytic convenience, and to keep the trade-off with respect to bank leverage decisions clear, I chose the
size-dependent operating cost approach.

18A DRS technology is not necessary but sufficient to show that the endogenous state variable in the
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and ζ is the exponent parameter of the cost function, which are to be estimated from the
data.

Limited commitment In order to introduce a rationale for the banking sector in this
model, I introduce the following limited commitment issue between banks and their credi-
tors.19 In particular, I assume that the banker (bank owner) can divert a fraction of bank
assets a’la Gertler and Kiyotaki [2010] for personal consumption.20 The possibility of asset
diversion induces a credit constraint on banks:

V j
t ≥ θQts

j
t

which means that the value to a banker of diverting assets must not be greater than the end
of period t charter (continuation) value of the bank. This constraint is a manifestation of
the fact that creditors, depositors in this case, are aware of the asset diversion possibility,
and therefore lend only up to the point at which bankers do not have the incentive to
divert assets for personal consumption.

Leverage I now introduce the notion of leverage, since leverage decisions are a key focus
in this paper.21 First, I define effective net worth njt as net worth minus operating costs:
njt = N j

t − c(N j
t ). Next, I define dividend ratio hjt as the fraction of effective net worth

paid out as dividends: hjt = ejt/n
j
t . Finally, I define leverage xjt as the ratio of assets to

residual net worth, i.e., net worth after paying dividends from effective net worth:

Qts
j
t := (1− hjt)njtxjt

Balance sheet constraint =⇒ djt = (1− hjt)(xjt − 1)njt
The flow-of-funds constraint, written in terms of effective net worth, is as follows, where
g(ω) = ω − c(ω), is the function that gives effective net worth as a function of raw net
worth:

njt+1 = g

((
Zt+1 + (1− δ)Qt+1

)
ψjt+1s

j
t −Rtd

j
t

)

=⇒ njt+1 = g

((Zt+1 + (1− δ)Qt+1

Qt

)
︸ ︷︷ ︸

Rkt+1: Return on
assets

ψjt+1(1− hjt)njtxjt −Rt(1− hjt)(xjt − 1)njt
)

dynamic programming setup of the bank problem is bounded, paving way for existence of a unique solution
to the bank’s problem.

19In absence of frictions, the banking sector would be inconsequential, and the model would be equivalent
to one without banks.

20Other approaches to introducing friction in a macroeconomic model with banks are unobservable effort
a’la Christiano and Ikeda [2013], or the moral hazard issue due to government bailouts a’la Nguyen [2014].

21In subsection 8.1 in the appendix, I present simple examples to provide intuition for how leverage is
related to bank dynamics.
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=⇒ njt+1 = g

((
Rkt+1ψ

j
t+1 −Rt

)
xjt +Rt)(1− hjt)njt

)
Then, the cutoff of ψt that determines whether a bank fails in the next period, is a function
of current-period leverage, and is given as follows:

Rtd
j
t

Qts
j
t

= Rt(xjt − 1)
xjt

=: ψ∗(xjt , Rt)

Also, the borrowing constraint on banks is written in terms of leverage as:

V j
t ≥ θ(1− hjt)njtxjt

Capital Regulation Finally, I introduce capital regulation to address the inefficiency in
the model that arises due to the wedge between bank management and ownership. Capital
regulation is subject to several trade-offs that are discussed later in the context of optimal
capital regulation. Capital regulation is defined as a bank size-dependent constraint on
the maximum leverage a bank might assume, where size-dependence of regulation is a key
feature of this paper:

xjt ≤ χ(njt)

Recursive formulation I cast the bank’s problem recursively. The state vector for
any bank j at the end of period t is (ψjt , sjt−1, d

j
t−1;Ot), where Ot is the aggregate state

vector. In the general model, Ot comprises all market prices, all aggregate shocks, and the
distribution of banks. In the baseline model with no aggregate uncertainty, Ot comprises
of market prices only. In either version, since the bank takes market prices Qt, Rt−1 and
dividends Zt as given, it follows from the flow of funds constraint that njt is a sufficient
statistic for sjt−1 and djt−1. Consequently, a smaller and equivalent state vector for any bank
j is (ψjt , njt ;Ot). The choice variables for any bank j are xjt and hjt . In writing the recursive
problem of an arbitrary bank j, I omit the time subscript and bank specific superscript
except when necessary. I use a -1 subscript to denote the previous period and a prime
superscript to denote the next period. The recursive problem of an incumbent bank is
given as follows:

V (ψ, n;O) = max
x∈[1,χ(n)],h∈[0,1]

(
hn+ EΛ′

∫ ψ

R(x−1)
x

V (ψ′, n′;O′)F (ψ, dψ′)
)

n′ = g

((
(R′kψ′ −R)x+R

)
(1− h)n

)
V (ψ, n;O) ≥ θ(1− h)nx

The problem indicates that current period value of a bank is the sum of its current
period dividend payment and its discounted continuation value. The integral captures
the fact that if next period realization of shock ψ′ is less than R(x − 1)/x, then the
bank’s beginning of period net worth is non-positive and the bank fails, which means zero
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continuation value. Net worth evolves as per a technology g(.) banks posses, which is
concave because g(ω) = ω − c(ω) and c(.) is convex. The incentive constraint is based on
the current period value function, and imposes an endogenously determined constraint on
the choice set. The choice set is bounded in the following sense. [0, 1] is the bounded choice
set for h because limited liability22 =⇒ h ≥ 0 and non-negative net worth =⇒ h ≤ 1.
Leverage, x, is bounded below by 1 since deposits are non-negative, and it is bounded
above by χ(n), which is the capital regulation that restricts banks from taking on too
much leverage. For the benchmark model that follows and its calibration, I consider a
degenerate regulation χ(n) = χ̂, as is the case in the data for the chosen calibration
period. I will now discuss some properties of the bank’s problem.

Proposition 1. Given current bank efficiency ψ, bank failure probability is strictly increas-
ing in leverage x, where the bank solvency probability for a bank characterized by (ψ, n) is
given as

p(ψ, n) =
∫ ψ

R(x−1)/x
F (ψ, ∂ψ′)

Proof. The interval of integration is the bank’s endogenously determined region of sol-
vency. The lower limit of this integral is the failure cutoff ψ∗(x,R) = R(x− 1)/x i.e. the
bank fails if it realizes ψ′ < ψ∗(x). Then the proposition follows directly from the fact
that ∂ψ∗(x)/∂(x) = R/x2 > 0. Note, however, that higher leverage does not necessarily
correspond to a higher probability of failure, which leads me to the next proposition. �

Proposition 2. Assume that F (ψ, ψ′) is first-order stochastically increasing in ψ. Then,
given a bank with current leverage x, the probability of failure is weakly decreasing in current
efficiency ψ.

Proof. This proposition follows directly from the definition of FOSD. If ψ1 > ψ2, then
F (ψ1, ψ

′) ≤ F (ψ2, ψ
′) ∀ ψ′ and hence

p(ψ1, n) =
∫ ψ

R(x−1)/x
F (ψ1, ∂ψ

′) ≤
∫ ψ

R(x−1)/x
F (ψ2, ∂ψ

′) = p(ψ2, n)

Intuitively, when a bank’s efficiency increases ceteris paribus, the distribution of next period
efficiency is shifted to the right, and hence reducing the probability of a bad (where bad
depends on the leverage) shock. In light of these propositions, the trade-off a bank faces
with respect to leverage and dividend decisions can be summarized below. �

1. The trade-off with respect to leverage is as follows. Increasing leverage increases the
variance of total premium (R′kψ′ − R)x a bank earns on its effective post dividend
net worth. Depending on the distribution of ψ′, and as long as expected premium is
positive, increasing leverage raises continuation value. However, increasing leverage
also reduces the probability of solvency (increases the probability of failure).

22No borrowing from equity holders
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2. The trade-off with respect to dividends is as follows. Increasing dividend ratio h
increases the current value for bank equity holders, but reduces n′. As I prove in
the appendix, V is increasing in net worth, which means that increasing h decreases
continuation value by reducing retained earnings.

Entrant bank problem There are infinitely many potential entrants and there is free
entry. Entrants pay a cost ce before they can enter the market. After entry, they draw
their idiosyncratic efficiency from an invariant distribution G. All entrants start operations
with a fixed start-up capital ne provided to them by bankers.23 Since, after entry, an
entrant behaves exactly like an incumbent, the expected value of a potential entrant can
be computed using the value function of incumbents as follows:

EV e =
∫ ψ

ψ
V (ψ, ne)dG(ψ)

Therefore, a potential entrant will enter the market if and only if:

EV e − ce ≥ 0

But then free entry implies that the net value of entry should not be positive, or else
an infinite mass of entrants will enter the market, i.e.:

EV e − ce ≤ 0

The two conditions above imply that if the mass M of entrants is strictly positive, it
must be true that EV e = ce. And, if the mass of entrants is zero, it must be the case that
EV e < ce. Now I establish some analytical properties of the bank’s problem.

2.5 Analytical properties
Proposition 3. If Rk > R, then the Bellman Equation specifying the bank’s problem is a
Contraction Map, and therefore there exists a unique value function corresponding to the
bank’s problem.

I prove that the Blackwell Conditions are verified, and ensure they are sufficient for a
contraction map in the set up of my problem. (Proof in appendix).

Proposition 4. Suppose there are no credit frictions. Suppose (ψ, n) 3 h(ψ, n) > 0. Then:

1. x1(ψ, n) > 0
23The assumption that banks enter with fixed start-up capital provided by bankers is made to keep the

model simple. This assumption essentially abstracts the model away from new equity issuance decisions on
part of the banks and equity purchase decisions on part of the bankers. The motivation behind inducing
bankers to provide additional capital (start-up capital) to entrants and not to incumbents follows from
the concavity of the value function in net worth. It is due to this concavity that marginal value of bank
capital is greater for smaller banks than for larger banks. Although in this paper I do not solve for ne as
an equilibrium outcome of the model where the banker’s return on providing start-up capital is equalized
to banker’s return on deposits, I estimate ne from the data.
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2. h1(ψ, n) < 0

3. x2(ψ, n) = 0

4. h2(ψ, n) > 0

The first proposition states that if a bank is more efficient, it takes on more leverage.
This follows from the assumption that F (ψ, ψ′) is FOSD in ψ, which means that a more
efficient bank enjoys better distribution of ψ′, the next period efficiency. In other words, the
possibility of being more efficient in the next period allows the bank to bump up expected
net worth by taking on more leverage, with relatively less reduction in the probability of
solvency.

The second proposition states that more efficient banks find it optimal to retain earnings
by paying lower dividends, precisely because they face better prospects in the next period.
The third proposition follows directly from the feature of the model in virtue of which the
trade-off with respect to leverage does not depend on size. The fourth proposition states
that larger banks pay more dividends. This follows from the concavity of the value function
in size. For larger banks, the marginal value of retaining their earnings is relatively lower,
rendering it optimal for larger banks to pay more dividends in the current period. (Outline
of proof in appendix).

2.6 Bank distribution
Let X = [0, 1]× [0, n̄] be the state space of the model. Let A = [0, 1]× [1, χ̂] be the action
space of the model. Then, (x, h) : X → Y are the policy functions. With this notation,
we define the distribution of banks over the state space. The distribution of banks in the
middle of period t (i.e., after bank entry and exit has occurred but before period decisions
have been made), is given by a measure µ : B(X)→ <+, where B indicates the set of Borel
subsets of X.24 Abusing notation for µ in the obvious sense, let µt(Ψ, N) denote the time
t distribution of banks with idiosyncratic shock ψ ≤ ψ ≤ Ψ and net worth 0 ≤ n ≤ N .
Then the evolution of bank distribution is given by the following expression:

µt+1(Ψ, N) = Mt+11(ne ≤ N)
∫ Ψ

ψ
dG(ψ)

+
∫ n̄

0

∫ ψ

ψ

∫ Ψ

ψ
1

(
g
((

(R′kψ′ −R)x+R
)
(1− h)n

)
≤ N

)

1

(
R(x(ψ, n)− 1)

x(ψ, n) ≤ ψ′
)
F (ψ, dψ′)

dµt(ψ, n)

The first term indicates mass Mt+1 of entrant banks that enter in period (t + 1), that
have start-up capital less then N and a draw of efficiency less than Ψ. Basically, the first
term represents the mass of entrants who end up in the following subset of the state space:

24Not necessarily a probability measure
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[ψ, ψ] × [0, N ]. The second term represents the flow of incumbent banks into this subset
of the state space, net of those which fail. Basically, we “count” all the banks from period
t that, while following their respective policy functions, did not fail and landed in the
following subset of the state space in period (t+ 1): [ψ, ψ]× [0, N ].

The evolution of bank distribution can be written concisely using the notion of the
transition function W on state space X. The transition function W is a map from X ×
B(X) → R+, where W

(
(ψ, n), (Ψ, N)

)
denotes the probability of transition from point

(ψ, n) in the state space to the following subset of the state space in the next period:
(Ψ, N) = {(ψ, n) : ψ ≤ Ψ, n ≤ N}. The transition function and associated distribution
evolution equation are as follows:

W
(
(ψ, n), (Ψ, N)

)
=
∫ Ψ

ψ
1

(
g
((

(R′kψ′ −R)x+R
)
(1− h)n

)
≤ N

)

1

(
R(x(ψ, n)− 1)

x(ψ, n) ≤ ψ′
)
F (ψ, ∂ψ′)

µt+1(Ψ, N) = Mt+11(ne ≤ N)
∫ Ψ

ψ
∂G(ψ) +

∫
χ
W
(
(ψ, n), (Ψ, N)

)
∂µt(ψ, n)

The latter can be concisely represented using the distribution evolution operator T as
µt+1(Ψ, N) = T (µt,Mt+1, Ot), where Ot is the aggregate state vector comprising equilib-
rium prices and quantities.

Induced Dividend payments Each banker holds shares in the banking industry. Share-
holding is modeled as a continuous bijection from the exogenously specified mass of bankers
to the endogenously determined mass of banks. The dividend income stream of a given
banker is determined by the dividend payment stream of the banks whose shares the banker
holds. In this sense, the bank dividend policy h(ψ, n) and the bank transition function
W
(
(ψ, n), (Ψ, N)

)
induce a dividend distribution transition function Π(e, e′) = Pr(current

dividend = e, future dividend ≤ e′), where e(ψ, n) = nh(ψ, n). This dividend income tran-
sition process is what governs the stream of idiosyncratic dividend income realization for
bankers, and also governs a banker’s expectation regarding future dividend income. The
dividend distribution transition function Π(e, e′) is computed as follows, from which the
dividend transition function π(e, e′) = Pr(current dividend = e, future dividend = e′) can
be computed as the marginal of the former:25

X ′ = {(ψ, n) ∈ X | nh(ψ, n) = e}

X ′′ = {(ψ, n) ∈ X | nh(ψ, n) ≤ e′}

Π(e, e′) =
∫
X′

∫
X′′
W
(
(ψ, n), ∂(Ψ, N)

)
∂(ψ, n)

25For the computations, I discretize the state space for dividend payments, and compute the Markov
Transition matrix following the approach laid out.
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3 Stationary General Equilibrium
I now focus on long-run stationary general equilibrium (SGE) in the model. Essentially, I
consider the case of no aggregate uncertainty, and establish that equilibrium exists where
the aggregate state vector and the bank distribution are time invariant. Although the
long run equilibrium entails invariant aggregates, there are interesting dynamics at the
individual bank and banker levels to be studied. I begin with the definition of SGE,
followed by a discussion of its existence.

Definition A Stationary general equilibrium consists of (i) bank value function V (ψ, n)
and (ii) bank policy functions x(ψ, n), h(ψ, n) (iii) invariant bank distribution µ(ψ, n) of
net worth and efficiency shocks (iv) entrant mass M , (v) banker value function U(e, d) and
banker policy functions db(e, d) and cb(e, d) (vi) banker distribution µb(h, d) (vii) worker
consumption cw and savings dw(viii) aggregate consumption C, aggregate capital K, ag-
gregate deposits D, aggregate labor demand L, Taxes T , Dividends H and (ix) wage rate
W , interest rate R and dividends Z (these prices form the aggregate state vector O) such
that given prices:

1. V (ψ, n), x(ψ, n) and h(ψ, n) solve the bank’s problem given prices

2. Free entry condition is satisfied: EV e ≤ ce

3. Labor market clears at wage rate W : L = 1− λ

4. Deposit market clears at interest rate R:
∫ n̄

0

∫ ψ

ψ
d(ψ, n)∂µ(ψ, n) = (1− λ)dw + λ

∫ d

d

∫ ē

0
db(e, d)∂µb(e, d);

5. Asset market clears at price Q:

K =
∫ n̄

0

∫ ψ

ψ

(∫ ψ

ψ
ψ′F (ψ, dψ′)

)
s(ψ, n)∂µ(ψ, n) = S

6. Consumption goods market clears, where effective output is net of entry and operat-
ing costs:

Y = KαL1−α = C + I +Mtc
e + co;

co =
∫ n̄

0

∫ ψ

ψ
c(n)∂µ(ψ, n);

C = (1− λ)cw + λ
∫ d

d

∫ ē

0
cb(e, d)∂µb(h, d);

where the interpretation of aggregate investment I in SGE is that it includes ‘re-
covery’ of lost capital due to fixed capital depreciation at rate δ and idiosyncratic
stochastic capital quality shocks, such that aggregate capital stock remains constant
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7. The bank distribution is a fixed point of the distribution evolution operator: µ =
T (µ,M)

8. cb(h, d), db(h, d) solve the banker’s problem; cw, dw solve the worker’s problem

9. Government budget constraint is satisfied: Taxes, net of transfers, equal the shortfall
in liabilities of failing banks:

τ

(
λ
∫ d

d

∫ ē

0
(e+ db(e, d)(R− 1))∂µb(e, d)

)
− T =

−
∫ n̄

0

∫ ψ

ψ

(∫ ψ

ψ
min(0, ψ′s(ψ, n)−Rd(ψ, n))F (ψ, dψ′)

)
∂µ(ψ, n)

3.1 Existence and solution
I am interested in the SGE with positive entry (M∗ > 0), the existence of which depends
on the fixed parameters of the model, especially the entry cost. To this end, I first solve
for equilibrium quantities that can be analytically pinned down. The first-order conditions
from the representative banker’s problem imply that Rt = R∗ = 1/β since consumption is
a constant C∗ in SGE. Similarly, since investment is constant from one period to another,
there are no investment adjustment costs, and the capital firm’s problem implies that
Qt = Q∗ = 1 and Πt = Π∗ = 0. Next, deriving the equation from the firm’s problem,
which takes stock of capital and prices as given, aggregate labor demand L∗ is given by:

L∗ =
(
A

(1− α)
W ∗

)1/α

K∗ (3.1.1)

Dividends are then given by the following relationship:

Z∗ = Y ∗ −W ∗L∗

K∗
= αY ∗

K∗
= αA(K∗)α−1(L∗)1−α =⇒ K∗ = (αA/Z)1/1−αL∗ (3.1.2)

Since labor supply equals 1 − λ, I can use aggregate labor demand to pin down wages as
a function of dividends Z∗:

W ∗ = (1− α)A1/1−α
(
α

Z∗

)α/1−α

I now turn to the bank’s problem. First I note that if Z,Q,R are known, then the bank’s
problem can be solved uniquely. Since R,Q are already pinned down, Z is the only equi-
librium quantity to be solved for. Using the free entry condition, I can pin down Z as
shown in the following proposition.

Proposition 5. Given an entry cost ce > ne, equilibrium firm dividend rate Z∗ is uniquely
determined.
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Proof. Suppose Z is known, then Rk is also known, and the bank’s problem can be solved.
From a routine application of the envelope theorem to the Bellman equation for the bank’s
problem, and since the value function is increasing in net worth, I learn that the value
function is strictly increasing in Z. I can then define:

g(Z) =
∫ ψ

ψ
V (ψ, ne;Z)dG(ψ)

which is the expected value of entry as a function of dividend return Z on bank assets,
where g′(z) > 0. Now if Z → 0 =⇒ V (ψ, ne;Z) → ne =⇒ g(Z) → ne, and if
Z →∞ =⇒ g(Z)→∞. Then, by the intermediate value theorem (IVT), I know that:

∃ Z∗ 3 g(Z∗) = ce

�

Once Z∗ is solved for a given set of parameters of the model, I can solve the bank’s
problem uniquely, and also pin down w∗ using Equation 3.1.2. Then, given an M, and
given market prices, I can solve for the fixed point µ∗ of T , eventually pinning down all
other quantities. Essentially, an equilibrium can be uniquely described by (Z∗,M∗, µ∗).
Based on these insights, I propose the following solution algorithm:

1. Find Z∗ using free entry:
∫ ψ

ψ
V (ψ, ne;Z∗)dG(ψ) = ce;

2. Obtain the bank’s value and policy functions, and W ∗

3. Find that L∗ = 1− λ from the labor market clearing condition, and obtain K∗ from
3.1.1; also obtain output Y ∗ from production function

4. Assume M , and obtain the steady state bank distribution µ corresponding to M by
iterating on T

5. Pin down M∗ using the asset market clearing condition; Obtain µ∗

6. Using the bank distribution, obtain aggregates D,T

7. Back out the transition matrix for dividends

8. Solve the banker’s income fluctuation problem, and the worker’s problem

The idea for steps 5 is as follows. Given a mass of entrants M, the bank distribution
implies aggregate assets. If there are too many entrants in the equilibrium, then the
aggregate assets are higher relative to K∗. If there are too few entrants, the opposite is
true. Based on this argument, I conjecture that the asset market can clear for some M > 0.
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Let K∗ − S ′(M) = Ke(M) be the excess asset supply curve as a function of the mass of
entrants M. Then a positive entry SGE exists if:

∃ M∗ > 0 3 Ke(M∗) = 0

The usual strategy for showing this is to use the intermediate value theorem (IVT) on
the excess assets supply function. I will show this computationally.26 Before I proceed
to the data and model estimation section, the following proposition is useful for efficient
computation in steps 4 and 5.
Proposition 6. The distribution evolution operator T is linearly homogeneous in (µ,M)
i.e.:

µ(M) = T (µ(M),M, θ) =⇒ M ′µ(M)/M = T (M ′µ(M)/M,M ′, θ)
Proof. Let µ(M) be the stationary distribution corresponding to M . Then,

µ(M)(Ψ, N) = M1(ne ≤ N)
∫ Ψ

ψ
dG(ψ) +

∫
χ
W
(
(ψ, n), (Ψ, N)

)
dµ(M)(ψ, n)

Multiplying both sides by M ′/M gives the following, where
(
M ′µ(M)/M

)
is the trans-

formed measure. (
M ′µ(M)/M

)
(Ψ, N) = M ′

1(ne ≤ N)
∫ Ψ

ψ
dG(ψ)+

∫
χ
W
(
(ψ, n), (Ψ, N)

)
d
(
M ′µ(M)/M

)
(ψ, n)

�

The key to this linear homogeneity is that since µ(M) is not a probability measure,
multiplication by a scalar simply scales the measure. Intuitively, when more entrants
enter the market in equilibrium, each subset of the state space experiences a proportional
increase in its equilibrium measure. Another way of looking at this is that when entry
mass is higher in stationary equilibrium, the mass of incumbents must rationalize it - the
mass of incumbents must be large enough so that it results in a higher failure mass that
matches the higher entry mass. Note that mass is key here, since failure rate does not
change merely due to a greater mass of entrants.

4 Data and Estimation
To estimate the model, I use data on US commercial and savings banks from (a) FDIC Call
and Thrift Financial (CTR) Reports (b) the FDIC failed banks list and (c) FDIC reports

26In order for a stationary general equilibrium to exist where markets clear for some prices, the bank
distribution must be continuous in the parameters of the model. This is because if the distribution does
not move continuously, there might be ’holes’ in the set of aggregate deposits and aggregate consumption
obtained by integrating over the bank distribution, causing failure of market-clearing conditions. I do not
prove this analytically, but show computationally that equilibrium exists.
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of changes in the institution count. I source balance sheet, cash flow and income statement
variables from CTR. I use the failed bank list to identify failed banks, and changes in
the bank count list to compute failure and entry rates. Consistent time series estimates
for individual banks are ensured by following the notes developed by Kashyap and Stein
[2000].27 Macroeconomic aggregates for the US are sourced from FRED and the World
Bank Indicators database. As motivated in the introduction, since 1995-2005 is a relatively
stable period for banking industry dynamics, is less affected by structural changes, and is
pre-2008 financial crisis, I use this period for calibration/estimation. I now discuss the
functional forms and parameter estimation.

The functional form for operating costs is cnζ . To pin down c, I suppose n̄ > 0 is a
scaling factor that represents maximum effective net worth on the grid used to solve the
model. This factor is simply used to map the scale of the model to scale of the data. Then
the parameters of the cost function are chosen such that effective net worth n− c(n) is not
greater than n̄. This implies that c = n̄(1−ζ)/ζ . The investment adjustment cost is modeled
as a quadratic cost f(x) = (x − 1)2. The process for achieving idiosyncratic efficiency is
modeled as an AR(1) process with mean µ = 1, persistence ρ, and variance σ:

ψit = µ(1− ρ) + ρψit−1 + σεit

Finally, the distribution of efficiency for entrants, g(.) is the ergodic distribution of ψ.
One period in the model corresponds to an year in the data. The values of some standard
parameters are chosen based on the standard in literature. The discount factor β is set
such that the interest rate R = 1/β in the model matches an annual risk free interest
rate close to 4%. The Cobb-Douglas production function parameter α is set such that
capital income share in the model implies a capital income share that is close to 0.33. For
depreciation rate, a value of 0.025 is used, which is again common in the macroeconomic
literature. Total factor productivity A is normalized to 1.

The fraction of bankers λ is set to match the pooled mean percentage of households in
the US during 1995 - 2005 who held stocks, directly or indirectly, through investment funds
or retirement accounts. This estimate is based on data from Survey of Consumer Finances
1995-2005. A break up of asset ownership by households, and stocks in particular, is given
in Table 1. The above calibration is rationalized by the fact that bankers in my model are
essentially the owners of capital stock, as bankers own banks, banks own firms, and firms
own capital.

27Consistency of data is an issue with this data because of changes in variable definitions as well as bank
mergers or disintegrations.
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Type of financial asset 1995 1998 2001 2004 2007
Transaction accounts 87 90.5 91.4 91.3 92.1
Certificates of deposit 14.3 15.3 15.7 12.7 16.1
Savings bonds 22.8 19.3 16.7 17.6 14.9
Bonds 3.1 3 3 1.8 1.6
Stocks 15.2 19.2 21.3 20.7 17.9
Pooled Investment funds 12.3 16.5 17.7 15 11.4
Retirement accounts 45.2 48.8 52.2 49.7 52.6
Cash value life insurance 32 29.6 28 24.2 23
Other managed assets 3.9 5.9 6.6 7.3 5.8
Other 11.1 9.4 9.4 10 9.3
Stocks (Direct plus Indirect) 40.4 48.9 52.2 50.2 51.1
Any Financial Asset 91 92.9 93.4 93.8 93.9

Table 1: Financial asset ownership by families in the US, 1995 - 2007 (Source: Survey of
Consumer Finances)

Description Symbol Value
Standard parameters

Coefficient of risk aversion γ 1.5
Discount factor β 0.96
Capital exponent in production α 0.33
Capital depreciation rate δ 0.025
Benchmark Capital regulation χ̂ 29.58
Fraction of bankers λ 0.475

Joint estimation using SMM
Efficiency Persistence ρ 0.8373
Efficiency Variance σ 0.0072
Cost exponent ζ 1.6853
Fixed cost of entry ce 3.4060
Asset diversion fraction θ 0.1796
Entrant bank start up capital ne 0.2791
Income tax rate τ 0.2416

Table 2: Summary of parameter values.

The pre-crisis benchmark capital regulation χ̂ is calibrated using the statutory risk-
weighted capital requirement under Basel I – the international standard effective during
most of 1995-2005.28. During this period, as per Basel I, banks were required to have an
amount of capital that is at least 8% of risk-weighted assets. I compute an approximate
implied non-risk weighted capital regulation using the fixed statutory risk weights and

28Although Basel II was effective in 2004, and a version of leverage ratio requirement was effective in
the US prior to 1988, Basel I is closest to the effective regulation in US during 1995-2005, the calibration
period chosen for this model (see, for example, Burhouse et al. [2003]).
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actual capital ratios of banks. Specifically, since I do not have data on bank securities
holdings, I first obtain a range of possible values for the implied capital regulation χ̂. To
this end, I estimate the minimum and maximum capital charge for assets of each bank in the
data during 1995-2005. Then the mean ratio of total assets to these capital charges gives
the maximum and minimum implied capital regulation that is equivalent to the statutory
capital regulation during 1995-2005.

χ̂
max = 29.58; χ̂

min = 27.37

These estimates are consistent with the observation that more than 99 percent of banks
have an asset to net-worth ratio of less than 25.30. I choose the more liberal estimate of χ̂
for the benchmark calibration.

The remaining parameters P = (ρ, σ, ζ, ce, θ, ne, τ) are estimated jointly using the
method of moments. As per this method, I begin with a guess of these parameters, and
compute the stationary general equilibrium in the model. From SGE, I compute the tar-
get moments listed in Table 3. The vector of these model moments, say Mmodel(P), is a
function of the parameters. The idea is to find the set of parameters P∗ such that:

P∗ = argmin
P

(Mmodel(P)−Mdata)′W (Mmodel(P)−Mdata)

where Mdata is the vector of target data moments, and W is the weighting matrix. I use
a pre-specified weighting matrix whose diagonal elements are the inverse of squared data
moments. This is essentially equivalent to minimizing the sum of the squared relative
difference between model and data moments. This weighting matrix gives me consistent
parameter estimates,29 which are summarized in Table 2. Target moments and estimation
results are summarized in Table 3. The choice of these moments is such that key features of
banking industry dynamics are captured, namely moments of the size distribution, leverage
and dividend behavior, exit rate, size of entrants and relative failure rate of banks. The
income tax parameter τ , targets the mean income GINI of US households during 1995-2005.

4.1 Computations
In this sub-section, I discuss the computational procedure I use to compute the stationary
equilibrium, including the estimation of parameters using the Method of Moments. I use
value function iteration with Howard policy improvement to solve for the value and policy
functions of the bank.30 The state space for banks is discretized as follows: (a) ψ has 21
equally spaced grid points in [ψ, ψ]; (b) n has 31 log-spaced grid points in [0, n̄]. Spline
interpolation is used to evaluate value function at off-grid points. Linear interpolation is
used to evaluate policy function at off-grid points. A two-times-finer discretization of the

29One could do another step to back out the efficient weighting matrix using the co-variance matrix
of initial parameter estimates. Using the efficient weighting matrix would give me the lowest possible
standard error on my parameter estimates.

30I follow Heer and Maussner [2009] as the key reference for computational methods.
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Moments Data Model
Failure rate .0026 .0022
Ratio of size of entrant and incumbent .2354 .2374
Correlation of Size and Failure rate -.4238 -.3669
Leverage 10.38 12.28
Fraction of banks in quintile 1 .2000 .1962
Fraction of banks in quintile 2 .2000 .2395
Fraction of banks in quintile 3 .2000 .1754
Fraction of banks in quintile 4 .2000 .2146
Dividend Ratio .0939 .0963
Income Gini .3641 .3366

Table 3: 1995 - 2005 Data moments vs Model moments. For data moments (except for
the quintiles and Gini index), standard errors are [0.0004, 0.0414, 0.0915, 0.0247, 0.0009]
respectively. Quintiles are based on size distribution in bottom 95% banks as of 2005:Q4.

state space is used to compute the stationary distribution for banks. On this finer grid,
I construct the state space transition matrix using bank policy functions, and compute
its ergodic distribution, which is the stationary distribution of banks. To handle entry
and exit in this setting, I introduce a dump state which represents failures. Since in the
stationary equilibrium, entry equals exit, transitions to the dump state represents failures,
whereas transitions from the dump state represent entries. The ergodic measure of dump
state is therefore interpreted as the failure rate. To solve the banker’s income fluctuation
problem, policy function iteration is employed. Stationary distribution is computed using
a state transition matrix as before.

The Nelder-Mead simplex optimization algorithm is used to compute the Method of
Moments parameter estimates.31 Table 3 documents the result of this procedure. I target
nine data moments based on pooled data from 1995 - 2005 to estimate six model param-
eters. The model does reasonably well at matching moments, except for mean leverage.
One reason for not doing well in matching this target is that the actual implied capital
regulation is unknown. I obtain an approximation using the statutory capital regulation,
which generates the possibility of a tighter capital regulation than the one I use here.

Figure 7 compares the size distribution in the data with the one generated by the
model. As also reflected in Table 3, the model captures the observed bank distribution
reasonably well, except for the extreme right tail. The figure also shows that larger banks
are more efficient in equilibrium. Intuitively, this follows from the dynamics of the industry:
banks aim to grow larger by taking on more leverage, but only those that receive a better
stream of efficiency shocks actually grow. In this sense, there is a selection effect which is
operational. Bank value and policy functions are presented in Figure 18 in the appendix.

Bank productivity I define bank productivity as the rate at which a bank converts
current period net-worth into next period net-worth, which is mathematically given as

31Routine available in MATLAB in the function ‘fminsearch’.
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Figure 7: (Left) Distribution of banks over net worth in data and in model
(Right) Distribution of banks over net worth and efficiency (Distribution over state-space)

follows:

q(ψ, n) = E[n′]/n = E

[
g

((
(R′kψ′ −R)x(ψ, n) +R

)
(1− h(ψ, n))n

)]
/n

The rationale for this measure is two-fold. First, I would like to combine the notions of
technical and economic efficiency of a bank, i.e. asset management efficiency ψ and resource
allocation efficiency, into a single measure, which I refer to as bank productivity. Second,
I would like to verify if my model is robust to an economies of scale in banking result that
several empirical papers have found, for example, Hughes and Mester [2013]. To this end, I
compute the equilibrium profile of bank productivity in my model, which is given in Figure
8. The shaded band represents one standard deviation. The model prediction that bank
productivity is increasing in size of the bank is therefore consistent with empirical findings.

5 Counterfactual Experiment
In this section, I discuss the counterfactual experiments I conduct using the model. This
exercise has two goals. The first goal is to understand the response of banking industry
and macroeconomic aggregates to changes in bank capital regulation. The second goal is
to understand the trade-offs a social planner would face when choosing capital regulation
to maximize welfare. This allows me to pin down the channels of welfare gains and losses
that occur as the regulatory regime changes.

The benchmark economy equilibrium features a size-independent capital regulation
regime where χ(n) = χ̂ = 29.58 i.e. all banks face the same limit χ̂ on the level of
leverage they can assume. For the counterfactual experiment, I first define a regulation
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Figure 9: (i) (Left) Size independent regulation (ii) (Right) Size dependent regulation

function as any continuous, differentiable and monotonic function of bank size χ(n) that
satisfies the following conditions χ(n) ≥ 1, limn→∞ χ

′(n) = 0. I consider only monotonic
regulation functions to rule out complicated policies. Moreover, optimization over the
class of all continuous and differentiable functions is a more difficult problem to handle
computationally. The other two conditions imposed on a valid regulation function are
intuitive. First, a capital regulation below 1 is absurd as it follows directly from the balance
sheet identity that leverage cannot be less than 1. Second, a condition that regulation
becomes size independent in the limit is required to ensure that regulation does not diverge
to +∞ or −∞. This condition is not restrictive in the sense that size independence of
regulation kicks in for banks of very large size only.

As such, the class of regulation functions proposed above is large. For tractability, I
consider the class of quadratic regulation functions, which are completely described by
three parameters. The choice of quadratic regulation functions is not restrictive. It follows
from the Weierstrass Approximation Theorem, according to which the class of quadratic
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regulation functions is representative of the class of all regulation functions up to an error
that is bounded from above.

I perform the counterfactual exercise in two steps. The size-independent exercise, where
only degenerate regulation functions are considered, allows me to understand the effect
of changes in the overall level of regulation, and characterize optimal size-independent
regulation. The size-dependent exercise allows me to characterize optimal size-dependent
regulation. I consider the following regulation functions, examples of which are given in
Figure 9.

• Size-independent regulation: χ(n) ≡ χ0 3 χ0 ≥ 1

• Size-dependent regulation:

χ(n) = χ2n
2 + χ1n+ χ0; χ(n) ≥ 1, lim

n→∞
χ′(n) = 0

=⇒ χ(n) = (χs − χl)
(
n/n

)2
− 2(χs − χl)

(
n/n

)
+ χ

s

Note that the quadratic regulation function is described by three parameters. The limiting
condition imposes restrictions on these parameters such that two parameters are sufficient
to describe a regulation function. In fact, the quadratic regulation function can be writ-
ten in terms of regulation χ

s for banks of size zero, limiting regulation χ
l, and a choice

parameter n that controls the upper limit of the grid for bank net worth.
A note about the incidence of regulation is due here. The statutory regulation function

is specified in terms of bank size. However, the incidence of regulation on banks depends
on the equilibrium distribution of the banks. For example, consider the second alternate
regulation function in the left panel in Figure 9. The smallest banks face regulation close
to 22, while the largest banks face regulation close to 15. In this regime, if the equilibrium
distribution of banks has a support of, say, [4, 6], the incidence of regulation would only
vary in an interval around 17.

For each alternative specification, I compute the stationary general equilibrium, and
compare banking industry and macroeconomic aggregates. The response of the banking
industry to changes in the level of regulation can be summarized as follows.

• Distribution: The distribution of bank net worth moves to the right as regulation
becomes tighter (weaker capital regulation), which leads to larger mean bank size,
as shown in Figure 10. This result is in line with the observation in the data that
as regulation has become tighter over time, the distribution has moved to the right.
The variance in size distribution first increases, but eventually decreases as regulation
tightens.

• Leverage and exit rate: As shown in Figure 11, mean leverage of banks is lower, and
so is the overall failure rate. Wages paid to workers are lower as capital stock is lower
(see Figure 20, in appendix), but dividend payment received by bankers are higher.

• Concentration: The concentration of the banking industry, as measured by a decrease
in the Herfindahl index (computed assuming 5000 banks) decreases as regulation be-
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Figure 10: Response of bank distribution to changes in regulation (In the figures in top
row, the legend lists alternate regulation regimes)

comes tighter. Also the mass of banks in equilibrium (relative to the mass of house-
holds, which is normalized to unity) increases, pointing towards a less concentrated
industry.

5.1 Optimal regulation
In this section, I characterize optimal capital regulation relative to the chosen pre-crisis
benchmark calibration of χ̂ = 29.58. To this end, optimal regulation χ(n) is the one that
maximizes utilitarian welfare, which in this case is the mass-weighted lifetime utilities of
workers and bankers:

max
χ∈C1(R+)

W(χ) ≡ max
χ∈C1(R+)

(1− λ)
u
(
cw(χ)

)
(1− β) + λ

∫ d

d

∫ h̄

0
U
(
h, d;χ

)
∂µb

(
h, d;χ

)
There are both qualitative and quantitative findings. Qualitatively, the optimal size-

independent regulation is characterized by an overall more stringent regulation relative to
the pre-crisis benchmark. The optimal size-dependent regulation, in turn, is characterized
as being more stringent for large banks relative to small banks.

Quantitatively, the size-independent optimum of 3.55 calls for much lower levels of
leverage than under the pre-crisis benchmark (where CR equals 29.58). While not di-
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Figure 11: Response of industry to changes in regulation

rectly comparable, this result points in the same direction (which is that of tightening) as
that proposed in other studies, including Admati and Hellwig [2014], Begenau [2014], and
Nguyen [2014]. The size-dependent optimum, in turn, varies quadratically between a level
of χ∗s = 4.12 for the smallest banks and χ∗

l = 3.17 for the largest banks (see Table 4). In
terms of policy, this result reinforces the GSIB surcharges introduced under Basel III, while
suggesting that overall capital levels could well be higher (e.g. via pillar 2 requirements)
than required under the new international standards.32

Statutory Incidence

Smallest Largest Smallest 10 percentile Median 90 percentile Largest Mean

4.44 1.10 4.12 3.87 3.67 3.50 3.17 3.63

Table 4: Optimal Capital Regulation: Statutory value, its incidence on banks of different
sizes, and its mean incidence.

Channels of welfare gain The rationale for an optimum that implies an overall tighter
regulation is multi-dimensional. First, loss due to industry turnover is lower as less levered
banks fail less often. This also lowers the start-up costs borne by bankers as a smaller

32While not directly comparable, a CR of 4.12 in this model would imply a leverage ratio requirement
of about 24%.
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mass of entrants enters the market. Second, the mean dividend income is higher, primarily
due to a larger equilibrium mass of banks, which dominates the welfare loss from lower
wages for workers. Third, the variance of dividend income is lower as banks are less levered,
which increases welfare of risk averse bankers. This channel is closely linked with the wedge
assumed between bank management and ownership. Fourth, tighter regulation results in
higher aggregate bank net worth as banks are better capitalized, even though mean bank
size is smaller.
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Figure 12: Welfare measures corresponding to (Left) Size-independent regulation regimes
and (Right) Size-dependent regulation regimes (contour plot)

With regards to the profile of size dependent regulation, the following remarks summa-
rize why tighter regulation of large banks relative to small banks improves welfare. I use
the median bank size to classify banks as small or large.

Proposition 7. Cleansing effect: The mean efficiency of failed banks is lower than the
mean efficiency of entrant banks.

Proof. The mean efficiency of entrants is 1 by calibration of the efficiency process. The
mean efficiency of failed banks is given as:

mψ =
∫ ∫ ( ∫ R(x(ψ,n)−1)/x(ψ,n)

ψ
ψ′f(ψ, ψ′)∂ψ

)
∂µ(ψ, n)

Since the upper limit on leverage for all banks is equal to χ∗
s = 4.12, this implies that

x(ψ, n) ≤ χ∗
s ∀ ψ, n =⇒ R(x(ψ, n) − 1)/x(ψ, n) < 1. It then follows trivially from the

integral that mψ < 1. �

Intuitively, for a given level of current period efficiency, bank failure probability in-
creases with leverage. Therefore, by allowing small banks to be more highly levered, these
banks experience a higher failure rate. However the ones that fail are less efficient relative
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to incumbents. Moreover, the entrants that replace these failed banks draw their efficiency
from the ergodic distribution, and have higher mean efficiency. The higher turnover rate
among small banks entails costs, but optimally, this improves welfare since less efficient
banks are eliminated, and failed small banks are, on average, immediately replaced by
entrants which are also smaller.

Proposition 8. Growth effect: For banks with positive expected premium E[Rkψ
′ − R|ψ]

on intermediation, the expected growth rate for small banks is higher relative to the expected
growth rate of large banks.

Proof. The expected growth rate l(ψ, n) of banks of size n can be defined as:

l(ψ, n) =
[
(RkE[ψ′|ψ]−R)x(ψ, n) +R

]
(1− h(ψ, n))

=⇒ ∂l(ψ, n)/∂n =
[
(RkE[ψ′|ψ]−R)∂x(ψ, n)/∂n

]
(1− h(ψ, n))+[

(RkE[ψ′|ψ]−R)x(ψ, n) +R
]
(−∂h(ψ, n)/∂n)

From the profile of optimal regulation, I know that ∂x(ψ, n)/∂n < 0, and from comparative
statics, I know that larger banks pay higher dividends, i.e., ∂h(ψ, n)/∂n > 0. Then, since
(RkE[ψ′|ψ]−R) > 0, I have ∂l(ψ, n)/∂n < 0. �

Intuitively, by allowing the smaller banks to take on more leverage, the regulator allows
the small banks to take on more risk, and grow faster conditional on survival. Naturally,
more small banks end up failing this way, but the failure of small banks is less costly.

Proposition 9. Stabilization effect: The probability of failure for large banks is lower than
the probability of failure for small banks.

Proof. Bank failure probability is given as:

p̂(ψ, n) =
∫ R(x(ψ,n)−1)/x(ψ,n)

ψ
f(ψ, ψ′)∂ψ′

From the profile of optimal regulation, I know that ∂x(ψ, n)/∂n < 0. Therefore, since the
upper limit of the integral is increasing in x(ψ, n), the proposition follows trivially.33 �

By tightening the regulation for large banks, the regulator prohibits them from taking
on more risk, therefore rendering them more stable. The downside is that large banks
are more efficient in financial intermediation in equilibrium, and limiting the size of their
intermediation can be costly. However, their failures are also costly because they are
difficult to replace immediately. In particular, an entrant bank needs time to grow large
to actually replace a failed large bank, and in each period during this time, additional
operating costs are borne.

33In fact, the proposition is reinforced due to the property that distribution of ψ′ is first order stochasti-
cally increasing in ψ, and the fact that in equilibrium, larger banks have a first order dominant distribution
over ψ relative to smaller banks.
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Figure 13: (Top) Bank size distribution in the benchmark and the optimal regimes (Bot-
tom) Optimal capital regulation, and its incidence on smallest and largest banks

The gain in welfare from imposing regulation can be expressed in terms of consumption
equivalence. Let A denote the benchmark regime and let B denote the optimal regime.
Then welfare gain in consumption equivalent (CE) units is defined as the percentage in-
crease in consumption all agents would receive should they live in the optimal regime
forever. Formally, the gain ωU is defined as one that satisfies the following equation.

(1− λ)
u
(
(1 + ωU)cAw

)
(1− β) + λ

∫ d

d

∫ h̄

0
E0
∑

βtu
(
(1 + ωU)cAbt(h, d)

)
∂µAb

(
h, d

)
=

(1− λ)
u
(
cBw
)

(1− β) + λ
∫ d

d

∫ h̄

0
E0
∑

βtu
(
cBbt(h, d)

)
∂µBb

(
h, d

)
The steady state gain in welfare in CE terms for a size-independent regulation is 2.2%,

while that for a size-dependent regulation is 10.5%. These are large gains relative to, for
example, the costs of business cycles, but comparable to the contemporaneous GDP cost
of the 2008 financial crisis, which is 6.2%, and the conservative lifetime GDP cost estimate
provided by Luttrell et al. [2013], which is in the range of 40 − 90%. In other words,
these welfare gains are not implausible from a steady state comparison perspective. If
the transition of the economy from the benchmark regime to the optimal regime is taken
into account, the gain in welfare might be lower. Intuitively, in the initial periods after a
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Parameter Perturbed Perturbed Statutory Incidence
(Benchmark Value) Value Smallest Largest Smallest Largest Mean

Benchmark Regime 4.44 1.10 4.12 3.17 3.63

γ (1.5) 1 6.66 1.10 6.47 4.40 5.36
2 4.44 1.39 4.15 3.28 3.69

λ (0.475) 0.4 4.74 1.10 4.51 3.35 3.86
0.5 4.14 1.10 3.85 2.98 3.40

τ (0.2416) 0.2 4.92 1.10 4.67 3.46 4.00
0.3 3.97 1.10 3.69 2.87 3.26

Table 5: Sensitivity analysis: A regime is characterized by the value of the parameter
that is perturbed relative to benchmark. The shaded row represents benchmark. In the
first set of alternative regimes, ceteris paribus, γ is increased and decreased relative to
its benchmark value of 1.5. The tightest allowed capital regulation is 1.10, ensuring a
non-trivial problem for the banks.

sudden imposition of the optimal regime, the regulatory constraint binds most, as banks
need time to re-optimize. Given that re-optimization requires several periods to achieve,
the private decisions of economic agents are sub-optimal during transition, resulting in
aggregate inefficiency and welfare loss. This phenomenon provides one of the explanations
why a myopic regulator might choose not to adopt such a policy change, even though
welfare is eventually higher.

5.2 Sensitivity Analysis
In this section, I examine the sensitivity of optimal capital regulation to alternative calibra-
tions. Optimal regulation is especially sensitive to the relative risk aversion of consumers
γ, the fraction of bankers and workers λ, and the tax rate on bankers τ . I vary these pa-
rameters on a discrete set containing the baseline calibration.34 The result of this exercise
is documented in Table 5.

A decrease in relative risk aversion implies a relatively liberal capital regulation. In-
tuitively, as consumers become less risk averse, the welfare loss from dividend income
volatility is smaller. Since dividend payment volatility increases with bank leverage, the
optimal regulation is relatively liberal in an economy with lower risk aversion. An increase
in risk aversion relative to benchmark does not result in a significant change in either the
statutory regulation or its incidence. If the fraction of bankers, who are the consumers
directly affected by banking industry dynamics, is smaller, the weight-age of bankers in
the welfare function is smaller. Since tighter regulation improves welfare for bankers and
liberal regulation improves welfare for workers, a smaller fraction of bankers shifts optimal

34Since the computation of optimal regulation for each calibration requires close to 40 hours on a server
with 28 parallel processors, only a limited number of such experiments were possible.
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regulation in the liberal direction. Similarly, a larger fraction of bankers shifts optimal
regulation in the tighter direction.

Finally, as taxes on bankers shift consumption from bankers to workers, lowering tax
makes bankers better off. This means that a more liberal regulation would make workers
better off, while not making bankers much worse off. Consequently, optimal regulation
is relatively liberal. Similarly, higher taxes on bankers make them worse off, shifting the
optimal regulation in their favor.

Overall, this exercise shows that the quantitative value of optimal capital regulation is
sensitive to the exact calibration in an intuitive manner. However, for small changes in
the calibration in the neighborhood of the benchmark calibration, the change in optimal
regulation is small, and in this sense, the optimal regulation estimated in this paper is
robust. The same applies to the estimated qualitative relationships.

6 Conclusion
In this paper, I characterize optimal size-dependent capital regulation for banks. To this
end, I develop a stochastic general equilibrium macroeconomic model with a heterogeneous
financial sector and financial frictions. A key feature of the model is that bank leverage
decisions play a critical role in determining banking sector dynamics and macroeconomic
aggregates. Due to the assumed frictions, bank leverage choices are socially inefficient,
which rationalizes capital regulation in the model. I show that an overall tighter regulation
generates welfare gains relative to the pre-crisis benchmark. In particular, I show that
the optimal regulation is characterized by tighter requirements for large banks relative
to small banks. In this sense, the paper qualitatively reinforces the Basel III logic that
global systemically important banks, which are generally also the larger banks, should
face tighter regulation relative to smaller banks. Quantitatively, the results suggest that,
from a welfare perspective, there may be room for much higher capital requirements than
envisioned under the Basel III minimum standard (e.g. via pillar 2 requirements). This
is in line with recent research by Fender and Lewrick [2016], who find that ample room is
available for national authorities to further raise regulatory capital.

The paper contributes to the existing literature in two ways. Firstly, this is one of the
few papers that take up the question of size-dependent bank regulation in a macroeconomic
setting. Secondly, the model developed here captures leverage as the mechanism behind
banking industry dynamics, something existing models of firm dynamics do not typically
focus on. One reason that this element is missing from the literature is that, for non-
financial firms, leverage is not the most critical element in the nature of their business,
whereas is it central for banks.

The analysis in this paper can be extended in at least two ways. First, it would be
interesting to study the welfare implications of the size dependent regulation when there
are other policies present in the model, for example, liquidity regulation. Since the model
features an endogenously determined size distribution of banks, independent analysis of
size-dependent policies (for example, explicit constraints on bank size), and anti-trust poli-
cies is also feasible in this framework. Second, time-invariant capital regulation can have
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pro-cyclical effects, and can exacerbate recessions. It could thus be insightful to intro-
duce aggregate uncertainty into the model and study countercyclical capital regulation,
something that Agarwal and Goel [2016] pursue. Introducing aggregate uncertainty in the
current setup would necessitate solution techniques such as those developed in Krusell and
Smith [1998] or Reiter [2009], as the distribution of banks would become part of the state
space.
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7 Appendix

7.1 Leverage and Bank Dynamics
In this section, in order to develop intuition for how leverage affects bank dynamics, I
provide a few examples. Failure is defined as the event where bank net worth drops
below zero for the first time. In the examples below, a bank’s stylized balance sheet is
characterized by net worth and leverage tuple (n, l). As per this notation, assets equal ln
and liabilities equal (l − 1)n. I will assume the initial asset price to be Q = 1, so that the
number of units of an asset is same as the value of the asset. I focus on bank balance sheet
response to asset price shocks.

Leverage and bank failures To illustrate the direct effect of leverage on failure, con-
sider two banks of the same size as measured by net worth, holding the same asset. Bank A
has balance sheet position (n, lA) and bank B has balance sheet position (n, lB). Assume,
without loss of generality, lB > lA. Also assume that the liabilities of a bank do not change
due to asset price shocks. Then the percentage drops εA, εB in asset prices required for
bank A and bank B to fail independently are given as:

εA = 1/lA, εB = 1/lB =⇒ εB < εA
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Remark 1: Given any probability distribution of asset price shocks, the probability of failure
for a relatively highly levered bank is higher.

Leverage and de-leveraging Consider the same two banks A and B such that nA = nB
and lB > lA. Assume that due to some exogenous heterogeneity, lA and lB are the optimal
levels of leverage for banks A and B, respectively. Now consider a negative shock ε to asset
prices, one that is not large enough for any of the banks to fail. Then, the post-shock
leverage of the banks is:

l′A = (1− ε)lA
1− εlA

, l′B = (1− ε)lB
1− εlB

=⇒ l′B > l′A

=⇒ l′B/lB > l′A/lA

Remark 2: A bank that is more highly levered compared with another bank will remain so
after a negative asset price shock. The percentage increase in leverage is greater for a bank
that is more highly levered in the first place.

The first implication is intuitive. The second implication is more interesting for the
following reason. Assume that, after a negative price shock, both banks re-optimize their
balance sheets in order to get back to their respective pre-shock leverage levels. This re-
optimization entails de-leveraging, i.e., reducing leverage. De-leveraging can be achieved
either by raising fresh equity, or by selling assets to pay off liabilities. Since raising fresh
equity is more difficult than selling assets in a business cycle downturn, I will assume that
de-leveraging takes place through the sale of assets. Suppose bank i sells xi units of assets
at price (1 − ε) to bring its leverage back to the (optimal) pre-shock level. For bank i,
post-shock assets are (1− ε)nli, and post-shock net worth is (1− εli)n. Then we have the
following implication:

(1− ε)nli − (1− ε)xi
(1− εli)n

= li, i ∈ {A,B}

=⇒ xi = εnli(li − 1)
1− ε

=⇒ xB > xA

This means that a more highly levered bank would sell more assets for a given shock.
However, the more insightful implication follows from the comparison of percentage asset
sale, defined as the ratio of units of assets sold to a bank’s pre-shock assets. This implication
follows trivially from the fact that lB > lA.

x̃i = xi
nli

= ε(li − 1)
1− ε

=⇒ x̃B > x̃A

Remark 3: Given a negative asset price shock, a relatively highly levered bank would sell a
larger fraction of its assets while re-optimizing its balance sheet.
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Bank size matters In the above examples, I considered banks of the same size. In this
example, to illustrate that bank size matters, I consider two banks that are equally levered
but are of different sizes, (nA, l) and (nB, l) with nB > nA and lA = lB. As before, I will
assume that l is the optimal operating leverage ratio for these banks. Suppose there is an
asset price shock that depresses asset prices by a fraction ε. The updated balance sheets
are as follows:

A :
(

(1− εl)nA,
(1− ε)l
1− εl

)
; B :

(
(1− εl)nB,

(1− ε)l
1− εl

)

The leverage of both banks goes up by the same amount. As above, in order to re-optimize
their respective balance sheets, bank i would need to sell assets, say xi units:

xi = εnil(l − 1)
1− ε ∀i ∈ {A,B} =⇒ xB > xA

Remark 4: Given a negative asset price shock, among equally levered banks, the larger
banks will sell more assets while re-optimizing their balance sheets.

7.2 Proofs
Proposition 3: Existence of a unique value function I reproduce the problem of a
bank in an economy without aggregate uncertainty. The aggregate state is degenerate, so
we will not write it specifically.

V (ψ, n) = max
x∈[1,x],h∈[0,1]

(
hn+ EΛ′

∫ ψ

R(x−1)
x

V (ψ′, n′)F (ψ, dψ′)
)

n′ = g

((
(R′kψ′ −R)x+R

)
(1− h)n

)
V (ψ, n) ≥ θ(1− h)nx

I will follow Stokey [1989] to establish the proof. I will prove that Blackwell conditions
are satisfied by the bank’s problem, following which, by the Contraction Mapping Theorem
(CMT), a unique value function will exist. Some notation is as follows. Let Y = [1, φ]×[0, 1]
be the action space. Let the exogenous state space of efficiency shocks ψ be [ψ, ψ] = Ψ,
and let the endogenous state space of net worth be N = [0, n]. Then the state space for
the dynamic problem can be written as χ = Ψ × N ⊂ <2. By imposing some structure
on the operating cost function c(.), we will ensure that the state space is bounded so that
the reward function hn is bounded. This is for mathematical convenience in ensuring that
Blackwell Conditions are sufficient for the Bellman mapping to be a contraction. Some
more notation is useful. Let Γ : χ→ Y be the policy correspondence (i.e. at each point of
the state space, what actions a bank can take). Let g : χ×Y ×Ψ→ N be the law of motion
for n (given a point in the state space, and given some action, and given a realization of
shock tomorrow, where the bank would transit to). Now I verify the assumptions required
for Blackwell conditions to be sufficient for CMT.
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Firstly, to ensure a bounded state space, no bank must grow larger than n for any
starting net worth, leverage, or shock. Since g(.) is increasing and concave, the condition
for a bounded state space can be written as follows:

lim
ω→∞

g(ω) ≤ n =⇒ lim
ω→∞

ω − c(ω) = ω − cωζ ≤ n

This condition imposes a constraint on the set of parameters c, ζ of the cost function and
n. The idea of this condition is that there is an upper limit to how large a bank can grow
as for very large sized banks, operating costs grow one to one with net worth. This can be
imposed on the parameters as follows:

cζω(ζ−1) = 1; ω − cωζ = n

The lower bound on net worth is zero because a bank exits the market as soon as its net
worth is less than or equal to zero. This implies a bounded state space for the bank’s
problem. Secondly, the action space is also bounded as already discussed in the exposition
of bank’s problem.

The above ensures the following two conditions. (SLP A9.4) N is a closed, bounded,
convex subset of R. (SLP A9.5) Ψ is closed, bounded (hence compact) subset of R.
Moreover, F , the transition function for exogenous state ψ should satisfy the Feller property
(i.e. maps C(Ψ)→ C(Ψ)), which I ensure by assuming a simple AR(1) process for ψ with
Gaussian noise. (SLP A9.6) The policy correspondence Γ is non-empty, compact valued
and continuous, which is satisfied in this case because Y is compact. (SLP A9.7) The
reward function H : χ × Y → R;H(ψ, n, x, h) = hn is bounded because state space is
bounded, and is continuous. Also, the discount factor β < 1. (SLP A9.16) Y is convex
and compact subset of R2. (SLP A9.17) g is continuous in all arguments.

Hence I have verified all assumptions required for Blackwell conditions to be sufficient.
I begin with the Bellman equation corresponding to the bank’s problem35 . Let C(χ) be
the space of continuous bounded functions on χ with sup norm. Then, for any q ∈ C(χ),
the Bellman operator from bank’s problem is given as:

T (q)(ψ, n) = max
x∈[1,φ],h∈[0,1]

θ(1−h)nx≤q(ψ,n)

(
hn+ β

∫ ψ

ψ
q(ψ′, n′)1

(
ψ′ ≥ R(x− 1)

x

)
F (ψ, dψ′)

)

where : n′ = g

((
R′kψ

′ −R
)
x+R

)
(1− h)n

)
Since q is continuous, the maximand is continuous. The action set is closed and

bounded, hence compact. For every continuous function on a compact set, a maximum
exists, and is attained. Also, since q is bounded, since F satisfies Feller property, and since
the reward function H is bounded, T (q) is bounded. Finally, continuity of H and g imply
continuity of T (q) by Theorem of the Maximum (SLP Theorem 3.6). Thus I showed that

35Which is different from the kind of Bellman equation employed in SLP, and which makes this proof
necessary.
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T is a map from space of continuous bounded functions to itself. Now I verify the following
Blackwell sufficient conditions (BSC) to conclude that T is a contraction mapping.

• Monotonicity: ∀f, q ∈ C(χ) such that f(x) ≤ q(x) ∀x ∈ χ =⇒

T (f)(x) ≤ T (q)(x) ∀x ∈ χ

• Discounting: ∃β ∈ (0, 1) such that ∀f ∈ C(χ), ∀a ≥ 0, ∀x ∈ χ =⇒

T (f + a)(x) ≤ T (f)(x) + βa

Monotonicity Suppose f(x) ≤ q(x) ∀x ∈ χ. Let (xf , hf ) and (xq, hq) be the maximands
of T (f) and T (q) respectively at the point y = (ψ, n). This means the following conditions
are satisfied:

θ(1− hq)nxq ≤ q(ψ, n); θ(1− hf )nxf ≤ f(ψ, n) ≤ q(ψ.n)

This means that (xf , hf ) is a feasible point for the Bellman operator at q. Let y′(x, h) =
(ψ′, n′). Note here that n′ is a function of y, x, h, ψ′, and this is implicit here. Then,

T (q)(y) =
(
hqn+ β

∫ ψ

ψ
q(y′(xq, hq))1

(
ψ′ ≥ R(xq − 1)

xq

)
F (ψ, dψ′)

)

Using definition of the maximum, and the fact that (xf , hf ) is a feasible point for the
Bellman operator at q, we get:

=⇒ T (q)(y) ≥
(
hfn+ β

∫ ψ

ψ
q(y′(xf , hf ))1

(
ψ′ ≥ R(xf − 1)

xf

)
F (ψ, dψ′)

)

=⇒ T (q)(y) ≥
(
hfn+ β

∫ ψ

ψ
f(y′(xf , hf ))1

(
ψ′ ≥ R(xf − 1)

xf

)
F (ψ, dψ′)

)

=⇒ T (q)(y) ≥ T (f)(y)

Discounting

T (f + a)(y) = max
x∈[1,φ],h∈[0,1]

θ(1−h)nx≤(f+a)(y)

(
hn+ β

∫ ψ

ψ
[f(y′(x, h)) + a]1

(
ψ′ ≥ R(x− 1)

x

)
F (ψ, dψ′)

)

=⇒ T (f + a)(y) ≤ T (f)(y)+

max
x∈[1,φ],h∈[0,1]

θ(1−h)nx≤(f+a)(y)

∫ ψ

ψ
βa1

(
ψ′ ≥ R(x− 1)

x

)
F (ψ, dψ′)

)

which follows because maximization of a sum of functions is at least as small as maximiza-
tion of individual functions. Using x = 1, h = 1, which is a feasible point, in the second
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maximization, gives us
=⇒ T (f + a)(y) ≤ T (f)(y) + βa

Hence the Bellman operator is a contraction map, implying that there exists a unique
fixed point of the Bellman operator. This fixed point is the value function for bank’s prob-
lem. Consequently, I can use value function iteration to obtain arbitrarily close estimate
of the value function.

Proposition 4: Comparative statics. The steady state formulation of bank’s problem
without the borrowing constraint is given below. The proposition holds for the case with
borrowing constraint, but the proof is omitted here as it is more involved.

V (ψ, n) = max
x∈[1,x],h∈[0,1]

(
hn+ β

∫ ψ

R(x−1)
x

V (ψ′, n′)F (ψ, dψ′)
)

n′ = g

((
(Rkψ

′ −R)x+R
)
(1− h)n

)
The optimization problem has four boundary conditions on the choice variables, namely

x ≥ 1, x ≤ x, h ≥ 0, h ≤ 1. The comparative statics of the policy functions is trivial if
any of the boundary conditions bind36. I will therefore derive comparative statics for the
general case where none of these conditions bind. For convenience in writing the FOCs,
I define the following terms. A numerical subscript denotes derivative with respect to
corresponding argument.

A(ψ′) = Rkψ
′ −R

B(x) = R(x− 1)/x; B1(x) = R/x2;

G(x, h, n) = g

((
A(ψ′)x+R

)
(1− h)n

)
; G1(x, h, n) = g′(.)A(ψ′)(1− h)n

G2(x, h, n) = −g′(.)(A(ψ′)x+R)n; G3(x, h, n) = g′(.)(A(ψ′)x+R)(1− h);

N(x, h, n) = g

((
A(B(x))x+R

)
(1− h)n

)
= g

(
R(Rk − 1)(x− 1)(1− h)n

)
;

36In fact, from the structure of the problem, I know that only the second or third constraints might bind
in an equilibrium.
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The first order conditions and the envelope conditions are as follows:

[x] : β
∫ ψ

B(x)
V2(ψ′, n′)G1(x, h, n)f(ψ, ψ′)dψ′ − βV

(
B(x), N(x, h, n)

)
f(ψ,B(x))B1(x) = 0

[h] : n+ β
∫ ψ

B(x)
V2(ψ′, n′)G2(x, h, n)f(ψ, ψ′)dψ′ = 0

[ψ] : V1(ψ, n) = β
∫ ψ

B(x)
V (ψ′, n′)f1(ψ, ψ′)dψ′

[n] : V2(ψ, n) = h+ β
∫ ψ

B(x)
V2(ψ′, n′)G3(x, h, n)f(ψ, ψ′)dψ′

Since −(1− h)G2(x, h, n) = nG3(x, h, n), [Env2] and [h] imply:

V2(ψ, n) = 1 =⇒ V (ψ, n) = n+ C(ψ) (∗)

where C(ψ) is some unknown function of ψ. I can use this expression to simplify the FOCs
[x] and [h]:

[x] : β
∫ ψ

B(x)
G1(x, h, n)f(ψ, ψ′)dψ′ − β

(
N(x, h, n) + C(B(x))

)
f(ψ,B(x))B1(x) = 0

[h] : n+ β
∫ ψ

B(x)
G2(x, h, n)f(ψ, ψ′)dψ′ = 0

This gives me a system of two equations [x] and [h] in policies x, h and state space variables
ψ, n, with respect to which I would like to obtain comparative statics results. Note that
the only unknown is C(.), which I will address later. I rename equations as follows:
[x] → q1(x, h;ψ, n) and [h] → q2(x, h;ψ, n). Then, assuming that the policy functions
x(ψ, n), h(ψ, n) are differentiable, I can apply the Implicit Function Theorem to obtain
xψ(ψ, n), hψ(ψ, n), xn(ψ, n), hn(ψ, n). I begin with the following system of equations:

−
[
g1
x(x, h;ψ, n) g1

h(x, h;ψ, n)
g2
x(x, h;ψ, n) g2

h(x, h;ψ, n)

] [
xi(ψ, n)
hi(ψ, n)

]
=
[
g1
i (x, h;ψ, n)
g2
i (x, h;ψ, n)

]
i ∈ {ψ, n}

Let ∆ be the determinant of the Jacobian matrix. Then the system can be solved as follows
for i ∈ {ψ, n}:[

xi(ψ, n)
hi(ψ, n)

]
= −

[
g1
x(x, h;ψ, n) g1

h(x, h;ψ, n)
g2
x(x, h;ψ, n) g2

h(x, h;ψ, n)

]−1 [
g1
i (x, h;ψ, n)
g2
i (x, h;ψ, n)

]

= − 1
∆

[
g2
h(x, h;ψ, n) −g1

h(x, h;ψ, n)
−g2

x(x, h;ψ, n) g1
x(x, h;ψ, n)

] [
g1
i (x, h;ψ, n)
g2
i (x, h;ψ, n)

]
Now, since x(ψ, n) and h(ψ, n) are the policy functions, they represent optimal decisions
at the given point of the state space, and therefore the Jacobian matrix associated with
the first order conditions must have a non-positive determinant, ∆ ≤ 0. The individual
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Call report Variable Call report Variable
variable name label variable name label

RCFD2170 Total Assets RCFD0010 Cash
RCFD2948 Total Liabilities RIAD4460 Dividend component A
RCFD3210 Total Equity Capital RIAD4470 Dividend component B
RIAD4000 Total operating Income RCFD3230 Common Stock
RIAD4107 Interest Income RIAD4073 Total Interest expense
RIAD4079 Non Interest Income RIAD4074 Net Interest Income
RIAD4340 Net income RIAD4093 Total Non Interest Income
RIAD4130 Total operating expense RSSD9950 Date of Incorporation

Table 6: Call report data

terms of the RHS can be simplified using the FOCs. I also assume that C ′(.) > 0, which
essentially implies that the value function is some increasing function of ψ. Then, using
the conditional distribution of ψ′ given ψ, and by plugging in the calibrated value of the
known parameters R, β,Rk I can sign the partial derivatives of the policy functions.

7.3 Data analysis
I source aggregate time series data from the Federal Reserve Bank of St. Louis Economic
Research Database (FRED). I obtain Individual bank data from the Federal Reserve Bank
of Chicago Commercial Bank datasets. Financial asset ownership data is obtained from
Survey of Consumer Finances. Finally, bank entry and exit data is sourced from the
Historical Statistics on Banking database at the Federal Deposit Insurance Corporation.
In constructing target moments of banking industry dynamics, I focus on the variables
from Call Reports given in Table 6.

Leverage is computed as the ratio of Total Assets and Total Equity Capital (net worth).
Mean dividend payout ratio is computed as the ratio of sum of two dividend components
and net worth. To compute size ratio of entrants and incumbents, the date of incorporation
of a bank is used to identify entrants, and net worth is used as the measure of size, as is
the case through out this paper. For exit rate, total number of failures in a given year is
divided by the total number of banks at the start of the year. Assisted / unassisted mergers
or bailouts are not counted as exits to be consistent with the interpretation of failures in
the model. The distribution of bank net worth is based on inflation adjusted total equity
capital. I use the total operating expense profile in data to motivate the assumption that
banks are subject to convex operating costs in the model.
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Figure 14: Operating cost and net worth scatter for 1995Q4, 2000Q4, 2005Q4

The result from Kolmogorov-Smirnov (KS) two sample test is given in Table 7. The
null hypothesis is that the empirical distribution functions are drawn from the same dis-
tribution. I consider various time intervals in the calibration period, and run the test on
the distribution of inflation adjusted log net worth of banks as of the beginning (Year 1)
and end (Year 2) of the interval. I cannot reject the null, even if the distributions are 11
years apart.:

Year 1 Year 2 Distance P-value
1995 2005 10 0.3863
1997 2005 8 0.1550
1995 2003 8 0.8727
2000 2005 5 0.0623
1997 2002 5 0.4812
1995 2000 5 0.4526
2003 2005 2 0.6052
1995 1997 2 0.9568

Table 7: KS two sample test

7.4 Aggregate shocks
Although there is no aggregate uncertainty in my model, in this subsection, I consider a
simple exercise wherein banks receive an unexpected aggregate shock to their efficiency ψ
at date 1. Assuming that the economy is in the steady state at date 0, I compute the
mass of bank failures that occur at the beginning of date 1 as a result of this shock. I
then compare the incremental bank failures that occur due to the aggregate shock across
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Bank: (ψ, n)

ψ′ ≥ R(x(ψ,n)−1)
x(ψ,n)

ψ′ < R(x(ψ,n)−1)
x(ψ,n)

Solvent: n′(ψ, ψ′, n) =

g

((
(R′kψ′ −R)x(ψ, n) +R

)
(1− h(ψ, n))n

)

Fail

Figure 15: Dynamics of an individual bank

the benchmark and optimal regimes. The objective of this exercise is to show that the
optimal regulation reduces the incidence of an aggregate shock by reducing the failure rate
of banks, and also by reducing the distress rate of (surviving) banks as measured by the
expected percentage decrease in net worth as a result of the aggregate shock. In other
words, this exercise shows that a less levered banking industry responds less aggressively
to an aggregate shock.

In the benchmark economy, the steady state failure rate of banks is 0.0022. An un-
expected aggregate shock of ε = 5% at the beginning of date 1 would result in a higher
failure rate as more number of banks will find their leverage too high to sustain the shock
and remain solvent i.e. maintain a positive net-worth. I must clarify here that using this
approach I can only compute the instantaneous mass of failures that occur at the beginning
of date 1. To compute the response of the economy thereafter, I would need to compute
the full transition dynamics of the economy back to the steady state, taking into consider-
ation the persistence of the shock. However, such computation is outside the scope of this
paper. In order to compute the effective failure rate at date 1, I begin with the steady state
equilibrium, and compute the next period solvency and net-worth positions of individual
banks as follows: Without an aggregate shock, ψ follows a standard AR(1) process with
mean µ = 1. With an aggregate shock that affects the mean of the conditional distribution
of bank efficiency, the resulting distribution looks as follows: I now compute the failure
and distress rates in the economies with the benchmark regulation (left panel) and the
optimal regulation (right panel).
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Bank: (ψ, n)

No aggregate
shock

With aggregate
shock ε

ψ′ ∼ N
(
(1− ρ)µ+ ρψ, σ2

)

ψ′ ∼ N
(
(1− ε)((1− ρ)µ+ ρψ), σ2

)

Figure 16: Distribution of realized shocks
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Figure 17: (Top) Exit rate; (Bottom) Distress rate (percentage decrease in net worth)
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7.5 Additional Figures
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Figure 18: Solution to the problem of the banks
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Figure 19: Solution to the problem of the bankers
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Figure 21: Response of macroeconomic aggregates to change in regulation regime. χ
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the limiting bank regulation, while χs is the smallest bank regulation.
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