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Bank Networks: Contagion, Systemic Risk and Prudential PolicyI

Iñaki Aldasoro1, Domenico Delli Gatti2, Ester Faia3

Abstract

We present a network model of the interbank market in which optimizing risk averse banks lend
to each other and invest in non-liquid assets. Market clearing takes place through a tâtonnement
process which yields the equilibrium price, while traded quantities are determined by means
of an assortative matching process. Contagion occurs through liquidity hoarding, interbank
interlinkages and fire sale externalities. The resulting network configuration exhibits a core-
periphery structure, dis-assortative behavior and low density. Within this framework we analyze
the effects of a stylized set of prudential policies on the stability/efficiency trade-off. Liquidity
requirements unequivocally decrease systemic risk, but at the cost of lower efficiency (measured
by aggregate investment in non-liquid assets). Equity requirements also tend to reduce risk
(hence increase stability), though without reducing significantly overall investment. On this
basis, our results provide general support for the Basel III approach based on complementary
regulatory metrics.
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1. Introduction

The propagation of bank losses which turned a shock to a small segment of the US financial
system (the sub-prime mortgage market) into a large global banking crisis in 2007-2008 was
due to multiple channels of contagion: liquidity hoarding due to banks’ precautionary behavior,
direct cross-exposures in interbank markets and fire sale externalities. In the face of shocks to
one segment of the financial markets and increasing uncertainty, banks start to hoard liquidity.
As a result of the market freeze,4 many banks found themselves unable to honor their debt
obligations in interbank markets. To cope with liquidity shocks and to fulfill equity requirements,
most banks were forced to sell non-liquid assets: the ensuing fall in asset prices5 produced, under
mark-to-market accounting, indirect losses to the balance sheet of banks exposed to those assets.
Liquidity spirals turned then into insolvency.

Several papers have shown that credit interlinkages and fire sale externalities are not able
to produce large contagion effects if taken in isolation (see for instance Caccioli et al. (2014)
or Glasserman & Young (2014)). Our model embeds both channels and envisages a third
crucial channel, namely liquidity hoarding (see also Afonso & Shin (2011)). To the best of our
knowledge, so far no theoretical model has jointly examined these channels of contagion to assess
their impact on systemic risk. After dissecting the qualitative and quantitative aspects of risk
transmission, we use the model to determine which prudential policy requirements can strike
the best balance between reducing systemic risk and fostering investment in long term assets.

To examine the above channels of contagion and to assess the efficacy of various types of
prudential constraints, we build a banking network model. The model consists of N risk averse
heterogeneous banks which perform optimizing portfolio decisions constrained by equity and
liquidity requirements. Our framework integrates the micro-foundations of optimizing banks’
decisions within a network structure with interacting agents. Indeed, we do not adopt the
convention often used in network models according to which links among nodes are exogenous
(and probabilistic) and nodes’ behavior is best described by heuristic rules. On the contrary,
we adopt the well established economic methodology according to which agents are optimizing,
decisions are micro-founded and the price mechanism is endogenous. Once prices are determined
in our model, trading partners in the interbank market are obtained through an assortative
matching process (a complementary alternative to our approach is pursued in Anand et al.
(2015)).

The convexity in the optimization problem has two implications. First, a bank can be both a
borrower and a lender at the same time: this is a realistic feature of interbank markets. Second,
coupled with convex marginal objectives in profits, it generates precautionary liquidity hoard-
ing in the face of large shocks. The emerging liquidity freeze contributes to exacerbate loss
propagation. Banks invest in non-liquid assets, which trade at common prices, hence fire sale
externalities emerge. Our banks also trade debt contracts with each other in the interbank mar-
ket, hence defaults and debt interlinkages contribute to loss propagation. Markets are defined
by a price vector and a procedure to match trading partners. The equilibrium price vector (in
both the interbank and non-liquid asset markets) is reached through a tâtonnement process,6 in
which prices are endogenously determined by sequential convergence of excess demand and sup-

4The increase in the LIBOR rate was a clear sign of liquidity hoarding. After the sub-prime financial shock
the spread between the LIBOR and the U.S. Treasury went up 2% points and remained so for about nine months.
As a mean of comparison during the Saving and Loans crisis the spread went up 1% point and remained so for
nearly a month.

5Fire sales are akin to pecuniary externalities as they work through changes in market prices and operate in
the presence of equity constraints. See Greenwood et al. (2015) and Mas-Colell et al. (1995), chapter 11.

6See also Cifuentes et al. (2005), Bluhm et al. (2014), Duffie & Zhu (2011).
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ply. Once prices are determined, actual trading among heterogeneous banks takes place through
an assortative matching process.7 Before examining the contagion channels in our model we
assess its empirical performance and find that it can replicate important structural/topological
features of real world interbank networks (core-periphery structure, low density, dis-assortative
behavior).

In order to evaluate policy alternatives and the interplay of contagion channels, we expose
the model to shocks to the non-liquid asset portion of banks’ balance sheets. This generates a
reduction in the price of such assets, which can be self-reinforcing, and which also triggers the
contagion channels outlined above.

In assessing the contagion channels we find a strong connection between the contribution of
banks to systemic risk and their total assets.8 When considering specific balance sheet items,
we find that both high interbank borrowing as well as high investment in non-liquid assets are
important in explaining the contribution of banks to systemic risk generation. High interbank
borrowing increases the scope of risk transmission through direct debt linkages. Investment
in non-liquid assets enlarges the scope of fire sale externalities. Both channels are amplified
if we take into account risk averse banks. When we analyze the impact of regulatory policy
interestingly we find that an increase in the liquidity requirement reduces systemic risk more
sharply and more rapidly than an increase in equity requirements. As banks are required to hold
more liquidity, they reduce their exposure in the interbank market as well as their investment
in non-liquid assets in absolute terms. The fall in interbank supply produces an increase in
the interbank interest rate, which, due to asset substitution, induces a fall in non-liquid asset
investment relative to interbank lending. Banks become less interconnected in the interbank
market and less exposed to swings in the price of non-liquid assets. Both channels of contagion
(cross-exposures and fire sale externalities) become less active. With an increase in the equity
requirement instead the demand of interbank borrowing falls and so does the interbank rate.
Banks substitute interbank lending, which has become less profitable, with investment in non-
liquid assets. While the scope of network externalities and cascades in debt defaults falls, the
scope of pecuniary externalities increases. On balance, systemic risk, and the contribution of
each bank to it, declines, but less than with an increase in liquidity requirements.

The rest of the paper is structured as follows. Section 2 relates our paper to the literature.
Section 3 describes the model. Section 4 presents the baseline network topology and discusses
the empirical matching. Section 5 analyzes the response of the network model to shocks to
non-liquid assets and the contribution of each bank to systemic risk. Section 6 focuses on the
policy analysis. Section 7 concludes. Appendices with figures and tables follow.

2. Related Literature

There has been a recent surge in interest in the analysis of contagion, particularly using
network models. Three main channels have been explored in the analysis of contagion. The
first is the direct interconnection channel. The transmission mechanism which generates cas-

7This is inspired by Becker (1973). The numerical algorithm designed to implement the equilibrium obtained
through assortative matching is an iterative minimum distance algorithm along the lines indicated by Gale &
Shapley (1962) and Shapley & Shubik (1972).

8Systemic risk is measured by the share of assets of defaulting banks to total assets in the system and
banks’ contribution to it by means of the Shapley value. The latter has been borrowed from the literature on
both cooperative and non-cooperative games. See Shapley (1953) and Gul (1989) respectively for the seminal
contributions, and Drehmann & Tarashev (2013) and Bluhm et al. (2014) for applications to banking. In
particular, we follow closely the latter. Other centrality measures for systemic importance are considered in one
of the appendices.
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cading defaults via direct interconnections is typically modeled using lattice-theoretic models
and solving for the unique fixed-point of the equilibrium mapping (see among others Eisenberg
& Noe (2001), Afonso & Shin (2011) or Elliott et al. (2014)). A second contagion channel
is due to fire-sale externalities (often referred to as pecuniary externality, see also Greenwood
et al. (2015)) which emerge in presence of asset commonality and mark-to-market accounting
(see among others Cifuentes et al. (2005)): as one bank is hit by a shock, it tries to sell assets
to meet VaR or capital constraints. Under mark-to-market accounting, the endogenous fall in
market prices negatively affects other banks’ balance sheets. Cifuentes et al. (2005) formalized
this mechanism, which was subsequently used by Bluhm et al. (2014) among others. In par-
ticular, our paper builds on the latter contribution. There are also recent works that embed
both channels within micro-founded models of banks (see Bluhm et al. (2014) and Halaj & Kok
(2015)).

Our model encompasses both channels and shows that both are important to account for risk
propagation. Moreover, we bring to the fore a third mechanism based on liquidity hoarding: once
financial distress has emerged banks become more cautious and hoard liquidity. The ensuing
liquidity freeze amplifies risk propagation. A similar channel is present also in Afonso & Shin
(2011) and Acharya & Merrouche (2013).

Our paper also speaks about the tension between risk-sharing and risk-contagion in networks.
While on the one side increasing connectivity might foster risk-sharing and liquidity, on the other
side it increases the exposure of each bank to shocks, particularly so if clusters are not evenly
spread. An early contribution emphasizing the risk-sharing role of networks is Allen & Gale
(2000) which shows the existence of a monotonically decreasing relation between systemic risk
and the degree of connectivity. In their model each bank is linked only to one neighbor along
a ring. They show that the probability of a bankruptcy avalanche is equal to 1 in the credit
chain, but that, as the number of partners of each bank increases (namely when the credit
network becomes complete), the risk of individual default goes asymptotically to zero due to the
improved risk-sharing possibilities. More recent views instead emphasize the role of contagion
and show that a trade-off emerges between decreasing individual risk due to risk sharing and
increasing systemic risk due to the amplification of financial distress. Battiston et al. (2012)
show for instance that the relation between connectivity and systemic risk is hump shaped: at
relatively low levels of connectivity, the risk of individual default goes down with density thanks
to risk-sharing while at high levels of connectivity, a positive feedback loop makes a bank under
distress more prone to default as the number of partners under distress increases. Gai et al.
(2011) also derive a non-monotonic relationship between connectivity and systemic risk. The
paper by Elliott et al. (2014) also studies how the network structure affects the balance between
risk-sharing and contagion risk. Finally, the trade-off is examined in ?, who explore how market
segmentation can improve it.

Our paper is related to the literature analyzing metrics of systemic risk and measuring the
contribution of each bank to it (namely metrics of systemic importance). A connection can
also be established with the literature analyzing matching mechanisms in markets along the
lines indicated by Becker and Shapley and Shubik (see for instance Becker (1973) and Shapley
& Shubik (1972)). Finally, our paper is related to an emerging literature studying prudential
regulation in financial networks (see for instance Gai et al. (2011) among many others).

3. The Banking Network

At a general level, a network can be represented by a list of nodes and the links connecting
them. When applied to banking, it is straightforward to identify the nodes with banks and
the links with the borrowing and lending relationships between the banks. In this spirit, the
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interbank system can be succinctly summarized by a matrix X with element xij representing
the exposure (through lending) of bank i to bank j. We consider a financial system consisting of
N banks, hence the matrix X will be of dimension n×n. Two important features of our network
are worth noting: (i) it is a weighted network, i.e. a link between banks i and j is indicated by
the element xij ∈ R≥0 and represents the amount (in money) lent by bank i to bank j; (ii) it
is a directed network, i.e. the existence of a link in one direction does not imply the existence
of a link going in the opposite direction and therefore the matrix is not necessarily symmetric
(xij 6= xji, i 6= j). Notice that each bank can be both a borrower and a lender vis-à-vis different
counterparties. An important aspect is that cross-lending positions (hence the network links)
result endogenously from the banks’ optimizing decisions (see next section) and the markets’
tâtonnement processes. Banks in our model are characterized also by external (non interbank)
assets (cash and non-liquid assets) and liabilities (deposits). As usual, equity or net worth is
defined as the difference between total assets and total liabilities. By assumption, banks are
heterogeneous due to different returns on non-liquid assets and the levels of calibrated equity
and deposits.

Prices in the interbank market and the market for non-liquid assets are determined by
tâtonnement processes. In setting up the benchmark banking system the interbank tâtonnement
process is instrumental in delivering interbank market equilibrium, whereas after setting the sys-
tem and in the aftermath of a shock the tâtonnement process in the market for non-liquid assets
captures the unfolding of fire sales and is instrumental in the amplification of the shock trans-
mission process. The logic of the tâtonnement processes implies the introduction of fictitious
Walrasian auctioneers (see also Cifuentes et al. (2005) or Duffie & Zhu (2011)) which collect
individual notional quantities, aggregate them and adjust the relevant price in order to bring
the notional aggregate demand and supply in line with each other.9 Once a clearing price has
been achieved, actual trade takes place. Traded quantities in the interbank market are deter-
mined according to a closest matching algorithm which operationalizes an assortative matching
mechanism along the lines of Becker (1973) (see Section 3.2 for details). A general overview of
the model and the channels which operate in it are described visually in Figure 1.

3.1. The banking problem

Our network consists of optimizing banks which solve portfolio optimization problems sub-
ject to regulatory and balance sheet constraints. Banks are risk averse and have convex marginal
utilities.10 The convex optimization problem allows us to account for interior solutions for both
borrowing and lending. Banks are therefore on both sides of the interbank market vis-à-vis dif-
ferent counterparties: this is a realistic feature of interbank markets and is a necessary condition
for a core-periphery configuration to emerge (see Craig & von Peter (2014)). Furthermore we as-
sume that banks have convex marginal utilities with respect to profits.11 Empirical observation
shows that banks tend to adopt precautionary behavior in an uncertain environment.12 Convex
marginal utilities allow us to account for this fact, since in this case banks’ expected marginal
utility, hence banks’ precautionary savings, tends to increase with the degree of uncertainty.

9Banks in our model are risk averse, hence have concave objective functions and linear constraints. The
convexity of the optimization problem and the assumption of an exponential aggregate supply function guaran-
tees that individual and aggregate excess demand and supply behave in both markets according to Liapunov
convergence.

10See Halaj & Kok (2015) for a similar approach with risk averse banks and for a discussion between risk
averse versus risk neutral modeling of banks’ optimization problem.

11This amounts to assuming a positive third derivative.
12See also Afonso & Shin (2011).
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Figure 1: A bird’s eye view of the model.

Banks’ portfolios are made up of cash, non-liquid assets and interbank lending. Moreover,
banks are funded by means of deposits and interbank loans. Hence, the balance sheet of bank i
is given by:

ci + pni + li1 + li2 + ...+ lik︸ ︷︷ ︸
≡li

= di + bi1 + bi2 + ...+ bik′︸ ︷︷ ︸
≡bi

+ ei (1)

where ci represents cash holdings, ni denotes the volume and p the price of non liquid assets
(so that pni is the market value of the non liquid portion of the bank’s portfolio), di stands
for deposits and ei for equity. lij is the amount lent to bank j where j = 1, 2, ..., k and k is
the cardinality of the set of borrowers from the bank in question; bij is the amount borrowed
from bank j where j = 1, 2, ..., k′ and k′ is the cardinality of the set of lenders to the bank in

question. Hence li =
∑k
j=1 lij stands for total interbank lending and bi =

∑k′

j=1 bij stands for

total interbank borrowing.13

The bank’s optimization decisions are subject to two stylized regulatory requirements:

ci ≥ αdi (2)

ci + pni + li − di − bi
ωnpni + ωlli

≥ η (3)

Equation 2 is a liquidity requirement according to which banks must hold at least a fraction α
of their deposits in cash.14 Equation 3 is an equity requirement (which could also be rationalized
as resulting from a VaR internal model). It states that the ratio of equity at market prices (at the

13Note that since banks cannot lend to nor borrow from themselves, we set lii = bii = 0 ∀ i = 1, ..., N .
14Basel III proposes the liquidity coverage ratio (LCR), which is somewhat more involved than Equation 2.

Given the stylized nature of our model the LCR is not easy to capture, yet we consider that the liquidity
requirement in Equation 2 provides a good approximation to the constraints faced by the bank in terms of
liquidity management.
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numerator) over risk weighted assets (at the denominator) must not fall below a certain threshold
η.15 Cash enters the constraint with zero risk weight since it is risk-less in our model, while ωn
and ωl represent the risk weights on non-liquid assets and interbank lending respectively.

The bank’s preferences are represented by a CRRA utility function:

U(πi) =
(πi)

1−σ

1− σ
(4)

where πi stands for bank i’s profits and σ stands for the bank’s risk aversion. As ex-
plained above the convex maximization problem serves a dual purpose. First, it allows us to
obtain interior solutions for borrowing and lending. Second, since the CRRA utility function is
characterized by convex marginal utilities (positive third derivatives), this gives rise to banks’
precautionary behavior in the model. As the variance of shocks increases, banks become more
cautious and hoard liquidity in anticipation of higher profit uncertainty.16

Another important aspect of concave optimization is that in non-linear set-ups, the variance
in assets’ returns affects the bank’s decision. Higher variance in assets’ returns reduces expected
banks’ utility, thereby reducing the extent of their involvement both in lending as well non-liquid
assets investment. This is also the sense in which higher uncertainty in assets’ returns (interbank
lending as well as non-liquid assets) produces liquidity hoarding and credit crunches. In this
set up it is convenient to take a second order Taylor approximation of the expected utility of
profits.

The second order approximation of Equation 4 in the neighborhood of the expected value of
profits E[π] reads as follows:17

U(πi) ≈ U(E[πi]) + Uπ(πi − E[πi]) +
1

2
Uππ(πi − E[πi])

2 (5)

Taking expectations on both sides of equation 5 and yields:

E [U(πi)] ≈ E [U(E[πi])]︸ ︷︷ ︸
=U(E[πi]) by LIE

+ UπE [(πi − E[πi])]︸ ︷︷ ︸
=0 by LIE

+
1

2
UππE

[
(πi − E[πi])

2
]︸ ︷︷ ︸

=Var(πi)=σ2
π

≈ U(E[πi]) +
1

2
Uππσ

2
π (6)

where we have used the law of iterated expectations and where σ2
π stands for the variance of

profits.

Given the CRRA function U(πi) = (πi)
1−σ

1−σ , where σ is the coefficient of risk aversion, we can

compute the second derivative as Uππ = −σE[πi]
−(1+σ)

. Notice that under certainty equivalence
(namely when E[U ′′′(π)] = 0) the equality E [U(πi)] = U(E[πi]) holds at all states. With CRRA
utility, the third derivative with respect to profits is positive, which in turn implies that the
expected marginal utility grows with the variability of profits. Furthermore since, U ′′ < 0,
expected utility is equal to the utility of expected profits minus a term that depends on the
volatility of bank profits and the risk aversion parameter. This is a direct consequence of

15This threshold is composed of two parts: η = γ + τ . The first component (γ) is the policy-chosen capital
requirement, whereas the second (τ) is an exogenous buffer introduced for technical reasons and which can also
be seen as a buffer that markets require on top of supervisory capital requirements. Note that Equation 3 will
typically not be binding, given banks’ risk aversion. For more details see Table 1 below.

16 Technically, when the third derivative is positive this means that the utility becomes more concave on the
tails.

17Note that all partial derivatives are also evaluated at E[π].
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Jensen’s inequality and provides the standard rationale for precautionary saving. Using the
expression derived above for Uππ, the expected utility of profits can be written as:

E [U(πi)] ≈
E[πi]

1−σ

1− σ
− σ

2
E[πi]

−(1+σ)σ2
π (7)

Equation 7 represents the objective function that bank i maximizes subject to the constraints
introduced above. With these elements in mind the problem of bank i can be summarized as
follows:18

Max
{ci,ni,li,bi}

E[U(πi)]

s.t. Equation 2, Equation 3, Equation 1

ci, ni, li, bi ≥ 0

(P)

Before moving forward and for the sake of completeness we derive next the precise form of
profits, as well as their variance.

The bank’s profits are given by the returns on lending in the interbank market (at the
interest rate rl) plus returns from investments in non-liquid assets (whose rate of return is rni )
minus the expected costs from interbank borrowing.19 The rate of return on non-liquid assets
is exogenous and heterogeneous across banks: we assume that banks have access to investment
opportunities with different degrees of profitability. The interest rates on borrowed funds are
also heterogeneous across banks due to a risk premium.20 In lending to j, bank i charges a
premium rpj over the risk-free interest rate (i.e. the interest rate on interbank loans rl), which
depends on the probability of default of j, δj . The premium can be derived through an arbitrage
condition. By lending lij to j, bank i expects to earn an amount given by the following equation:

(1− δj)
(
rl + rpj

)
lij︸ ︷︷ ︸

with no default

+ δj
(
rl + rpj

)
(1− ξ) lij︸ ︷︷ ︸

with default

(8)

where ξ is the loss given default parameter. If bank j cannot default, bank i gets:

lijr
l (9)

By equating 8 and 9 we can solve for the fair risk premium charged to counterparty j:

rpj =
ξδj

1− ξδj
rl (10)

18The demand for equity in our model arises as residual from banks’ asset and liability optimal choice, while
we assume that the supply of equity is exogenous and elastic. It should be noted though that raising equity
might entail adjustment costs as investors’ supply might not be fully elastic. This would be an interesting future
extension of our model, which we believe could further amplify the fire sale externalities. As in the face of shocks
banks rebalance their portfolio to meet the equity requirement, the asset adjustment might be larger when raising
equity is made stickier.

19For simplicity it is assumed that deposits and cash/reserves are not remunerated. Note that since these
would be a fixed number if calibrated they would only shift up or down the responses that we see from the
model. Furthermore, such shifts would be indeed hard to even perceive.

20In what follows for the derivation of the premium we draw on Bluhm et al. (2014).
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It is immediate to verify that the premium is calculated so that, by lending to j, bank i
expects to get rllij (to obtain this, substitute the premium back into equation 8). We can
interpret condition 8 also as a participation constraint: bank i will lend to bank j only if it gets
an expected return from lending equal to the risk free rate, i.e. the opportunity cost of lending.
By summing up over all possible counterparties of bank i, and recalling that li =

∑k
j=1 lij , we

retrieve the overall gain that bank i expects to achieve by lending to all the borrowers: rlli.
On the other hand, as a borrower, bank i must also pay the premium associated to its own
default probability. Since banks charge a fair risk premium, the returns that banks obtain from
non-defaulting borrowers offset the losses resulting from contracts with defaulting borrowers.
Borrowing banks, on the other hand, must always pay the premium. Therefore the cost of
borrowing is given by: rbi bi = (rl + rpi )bi = 1

1−ξδi r
lbi.

Finally, the gains from investment in non-liquid assets are given by: rni
ni
p . Given these

assumptions, the profits of bank i read as follows:

πi = rni
ni
p

+ rlli − (rl + rpi )bi = rni
ni
p

+ rlli −
1

1− ξδi
rlbi (11)

Having obtained an expression for profits, we now compute their variance. Notice that
volatility only derives from uncertainty in non-liquid asset returns and from default premia on
borrowing. These are cross-sectional variances and they are the only which can be considered
in our setting, which is static and hence does not allow for the consideration of time series vari-
ances. The return on interbank lending as well as the price of non-liquid assets are endogenous
and therefore will ultimately depend on exogenous elements of the model and of the shocks
assumed.21 Finally, it should be noted that in setting up the system the price of non-liquid
assets is set to 1, which is a status-quo scenario in which aggregate sales of non-liquid assets
are zero and therefore no fire sales are present. Given the sources of uncertainty we obtain the
following volatility of profits:

σ2
π = Var

(
rni
ni
p

+ rlli −
1

1− ξδi
rlbi

)
(12)

=

(
ni
p

)2

σ2
rni
− (bir

l)2Var

(
1

1− ξδi

)
+ 2

ni
p
rlbicov

(
rni ,

1

1− ξδi

)
(13)

We know that δi ∈ [0, 1]. Furthermore, even when f(δi) = 1
1−ξδi is a a convex function, over

a realistic range of δi it is essentially linear and it is therefore sensible to obtain the variance of
f(δi) through a first order Taylor approximation around the expected value of δi, which yields:

Var

(
1

1− ξδi

)
= ξ2(1− ξE[δi])

−4σ2
δi (14)

We assume that the ex ante correlation between return on non-liquid assets and costs of
borrowing is zero, hence we can set the covariance term in Equation 12 to zero. This leaves us
with the following expression for the variance of profits:

σ2
π =

(
ni
p

)2

σ2
rni
− (bir

l)2ξ2(1− ξE[δi])
−4σ2

δi (15)

21Furthermore, given the nature of the fire sales externalities, it is virtually impossible for banks to form an
expectation about them, as they would need to know the entire balance sheet of the banking system in every
state of the world. For a similar argument see Caballero & Simsek (2013).
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3.2. Interbank Market Clearing

The interbank market clears in two stages. In the first stage a standard tâtonnement process
is applied and the interbank interest rate is obtained by clearing excess demand/supply. Indi-
vidual demands and supplies (as obtained from banks’ optimization) are summed up to obtain
market demand and supply. If excess demand or supply occurs at the market level, the inter-
bank rate is adjusted sequentially to eliminate the discrepancy. In the second stage, after the
equilibrium interbank rate has been determined, a matching algorithm determines the actual
pairs of banks involved into bilateral trading (at market prices). We aim to capture here the
behavior of centralized interbank markets as opposed to markets in which bilateral bargaining
is the main mechanism driving the matching of banks. Additionally, as noted by Glasserman
& Young (2014), to assess the potential damage that can come from interbank connections the
precise shape of the network is not as important as some balance sheet ratios that better cap-
ture this potential damage, like for instance total interbank borrowing or total assets/liabilities.
These are precisely the quantities on which banks focus in our model, as we aim to assess how
banks navigate the trade-offs between the different types of externalities and their investment
in long term assets.

Price Tâtonnement in the Interbank Market. For a given calibration of the model, which includes
an initial level of the interbank interest rate, the bank chooses the optimal demand (bi) and
supply (li) of interbank debt trading. These are submitted to a Walrasian auctioneer who sums

them up and obtains the market demand B =
∑N
i=1 bi and supply L =

∑N
i=1 li. If B > L there is

excess notional demand in the market and therefore rl is increased, whereas the opposite happens
if B < L.22. Changes in the interbank rates are bounded within intervals which guarantee the
existence of an equilibrium see Mas-Colell et al. (1995)).

The clearing price process delivers an equilibrium interest rate as well as two vectors, l =
[l1 l2 ... lN ] and b = [b1 b2 ... bN ] , which correspond to optimal lending and borrowing of all
banks for given equilibrium prices.

Matching Trading Partners. Once the equilibrium interest rate has been obtained, actual bilat-
eral trading relations among banks need to be determined. In other words, given the vectors l
and b obtained during the price clearing process we need to match pairs of banks for the actual
trading to take place. We match partners by relying on the concept of assortative matching (see
Becker (1973)) described below. Practically, we need to determine how bank i distributes its

lending (li =
∑k
i=1 lij) and/or borrowing (bi =

∑k′

i=1 bij) among its potential counterparties to
deliver the matrix of interbank positions X .

Let us start by defining the surplus generated by the trading as S(li, bj). Notice that li
and bj , namely the lending and borrowing positions of each bank, are scalars that identify a
characteristic of each bank. Following Becker (1973) we can order the banks according to the
size of the trading position, namely the defining characteristic through which we wish to match
them. It is possible to assume that the surplus from trading will increase with respect to the
characteristics of banks on both sides of the market:

∂2S(li, bj)

∂li∂bj
≥ 0 (16)

22This iteration takes place in fictitious time as in standard tâtonnement processes. After the interest rate is
adjusted, banks re-optimize their balance sheet. Banks, however, are only matched with other banks (i.e. trade
with each other) once the equilibrium interest rate has been determined.
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The condition in equation 16 corresponds to the assumption of positive complementarity in
Becker (1973). Intuitively, the trading value for each pair is larger when partners are matched
whose combined absolute excess demand is minimal. This allows banks to satisfy their excess
demand within one single trading round and avoid further search costs.23

When positive complementarities are in place it is possible to show that perfect positive
assortative matching is the efficient allocation. Indeed imagine that banks are matched so that
the one with the highest borrowing, b̄, pairs with the one with the lowest lending, l, and let’s
assume that the total surplus in this case is larger than total surplus under perfect positive
assortative matching. This situation corresponds to the following condition:

S(l, b̄) + S(l̄,b) > S(l̄, b̄) + S(l,b) (17)

The above condition can also be written as follows:

S(l, b̄)− S(l̄, b̄)− S(l,b) + S(l̄,b) > 0 (18)

We can then sum up over all borrowing banks the change in surplus due to a change in the
lending partner: ∑

bj

∂S(l, bj)

∂bj
−
∑
bj

∂S(l̄, bj)

∂bj
> 0 (19)

The last condition is equivalent to:

−
∑
li

∂2S(li, bj)

∂li∂bj
> 0 (20)

The condition in 20 contradicts the positive complementarity assumption in 16 proving that
matching pairs differently would not deliver a higher surplus.

Numerically we will implement the positive assortative matching condition detailed above
through an algorithm based on closest matching, or minimum distance. The vectors of lending
and borrowing are ordered in descending order and transactions are assigned. For the sake of
argument, say banks i and j are the largest lender and borrower respectively, then the element
(i, j) of the interbank matrix will be given by xij = min{li, bj}. This process goes over all pairs
of banks and whatever residual desired amount that remains after every transaction is stored
for the next round of the algorithm. Since in our setting, as in the real world, banks are on both
sides of the market, some complications may arise. In particular, an issue which can emerge
is that, because of the order in which the transactions are ordered, a bank will eventually
be “matched against itself” at the last stage of the algorithm. Of course this cannot be the
case since, as mentioned earlier, we assume that banks do not trade with themselves. When we
encounter such issue, the algorithm starts again from scratch but introduces a random swapping
in the ordering of banks. The achievement of a solution is in this way guaranteed. In this case
matching takes place sequentially following the notion of deferred-acceptance established in
Gale & Shapley (1962). The interbank trading matrix obtained by this method delivers a low
level of connectivity, providing in fact a minimum density matrix. This low level of density
or connectivity is in line with the one observed in the data. The CMA is also based on a
stability rationale, as it is generally compatible with pair-wise efficiency and has been proposed

23One could also assume that banks have a convex cost from trading with each additional partner. Hence for
a given value of the surplus this cost is reflected in the fact that the total value from trading can be written
as follows: S(li, bj) = f(li, bj) − c

∑k
i=1 lij for a lending bank and as S(li, bj) = f(li, bj) − c

∑k
i=1 bij for a

borrowing bank.
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in the seminal treaty of Shubik (1999) as most apt to capture clearing in borrowing and lending
relations.24

3.3. Price Tâtonnement in the Market for Non-Liquid Assets

In this section we briefly describe the clearing process used for the non-liquid asset market,
which is modeled along the lines of Cifuentes et al. (2005) and operates once a shock has hit the
system. As mentioned earlier, the price of non-liquid assets is set to 1 when the financial system
is set up. This is the price corresponding to zero aggregate sales and banks fulfilling regulatory
requirements (i.e. the “status quo” price). The occurrence of shocks to banks’ non-liquid asset
holdings may force them to put some of their stock of assets on the market in order to fulfill
regulatory requirements. This increases the supply of assets above demand. As a result the
price adjusts to clear the market.

The logic of the mechanism can be described as follows. Consider the situation in which bank
i is forced to sell non-liquid assets for an amount si in order to fulfill the equity requirement. An
expression for si can be obtained by replacing ni with ni− si in the denominator of Equation 3
and solving for si. From that it is straightforward to see that si will be decreasing in prices
p, implying in turn that the aggregate sales function S(p) =

∑
i si(p) is also decreasing in p.

Defining the aggregate demand function as Θ(p) : [p, 1]→ [p, 1], an equilibrium price solves the
following fixed point problem: Θ(p) = d−1(S(p)).

The price at which total aggregate sales are zero, namely p = 1, can certainly be considered
one equilibrium price. But a key insight from Cifuentes et al. (2005) is that a second (stable)
equilibrium price exists, to the extent that the supply curve S(p) lies above the demand curve
D(p) for some range of values. The convergence to the second equilibrium price is guaranteed
by using the following inverse demand function25:

p = exp(−β
∑
i

si), (21)

where β is a positive constant to scale the price responsiveness with respect to non-liquid
assets sold, and si is the amount of bank i’s non-liquid assets sold on the market.

For an initial decline in prices to, say, p0, banks will respond by putting an amount S(p0) on
the market. But given Equation 21, this will in turn push the price down to p1 = d−1(S(p0)).
This generates further sales to the tune of S(p1). This process goes on until a new equilibrium
price p∗ is reached. For further details on the mechanism we refer the reader to the seminal
contribution by Cifuentes et al. (2005).

3.4. Equilibrium Definition

Definition. A competitive equilibrium in our model is defined as follows:
(i) A quadruple (li, bi, ni, ci) for each bank i that solves the optimization problem P.

(ii) A clearing price in the interbank market, rl, which satisfies B = L, with B =
∑N
i=1 bi

and L =
∑N
i=1 li.

(iii) A trading-matching algorithm for the interbank market.
(iv) A clearing price for the market of non-liquid assets, p, that solves the fixed point:

Θ(p) = d−1(s(p)).

24In a previous version of this paper we also considered two alternative matching mechanisms, namely the
maximum entropy algorithm and a random matching algorithm with a loading factor calibrated to obtain a
density in between the extremes of CMA and maximum entropy. These two alternatives deliver networks with
a significantly different topology. Results are available upon request.

25This function can be rationalized by assuming the existence of some noise traders in the market.
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3.5. Risk Transmission Channels in the Model

Before proceeding with the simulation results, it is useful to highlight the main channels of
risk transmission in this model. There are three channels which operate simultaneously; to fix
ideas we start by describing the effects of real interlinkages.26

First, a direct channel goes through the lending exposure in the interbank market. When
bank i is hit by a shock which makes it unable to repay interbank debt, default losses are
transmitted to all the banks exposed to i through interbank loans. Depending on the size
of losses, these banks, in turn, might find themselves unable to fulfill their obligations in the
interbank market.

The increase of default losses and in the uncertainty of debt repayment makes risk averse
banks more cautious. They therefore hoard liquidity. The ensuing fall in the supply of liquidity
increases the likelihood that banks will not honor their debts, reduces banks’ resiliency to shocks
and amplifies the cascading effects of losses. Notice that convex marginal objectives with respect
to returns are also crucial in determining an increase in precautionary savings in the face of
increasing uncertainty.

Liquidity shortage quickly turns into insolvency. Moreover, it reduces banks’ exposure to
non liquid assets. Eventually banks are forced to sell non-liquid assets if they do not meet
regulatory requirements. If the sale of the assets is large enough, the market experiences a
collapse of the asset price. This is the essence of pecuniary externalities, namely the fact that
liquidity scarcity and the ensuing individual banks’ decisions have an impact on market prices.
In an environment in which banks’ balance sheets are measured with mark-to-market accounting,
the fall in the asset price induces accounting losses to all banks which have invested in the same
asset. Accounting losses force other banks to sell non-liquid assets under distress. This vicious
circle also contributes to turn a small shock into a spiraling chain of sales and losses. Three
elements are crucial in determining the existence of fire sale externalities in our model. First,
the presence of equity requirements affects market demand elasticities in a way that individual
banks’ decisions about asset sales do end up affecting market prices. Second, the tâtonnement
process described above produces falls in asset prices whenever supply exceeds demand. Third,
banks’ balance sheet items are evaluated with a mark-to-market accounting procedure.

All the above-mentioned channels (credit interconnections among banks, liquidity hoarding
and fire sales) have played an important role during the 2007 crisis. Caballero & Simsek (2013)
for instance describe the origin of fire sale externalities in a model in which the complex financial
architecture also induces uncertainty, which amplifies financial panic. Afonso & Shin (2011)
instead focus on loss transmission due to direct exposure of banks in the money market and
through liquidity hoarding. Our model merges those approaches and gains a full picture of the
extent of the cascade following shocks to individual banks27.

Notice that the mechanisms just described are in place even if the shock hits a single bank.
However to produce a more realistic picture in the simulations presented below we assume a
multivariate normal distribution of shocks to non-liquid assets: initial losses can therefore hit
all banks and can also in principle be correlated. Therefore our numerical exercise will account
for the quantitative relevance of contagion by assuming also asset risk commonality.

At this stage, it is instructive to discuss the impact of the various channels also through
analytical derivations. Specifically, using the banks’ first order conditions to the optimal problem
outlined in P we can derive expressions for the various risk-premia characterizing our model.
Those risk premia provide an extent of the size and evolution of systemic risk and can be put

26It is important to note though that in the simulations the shock transmission process is kickstarted by means
of shocks to non-liquid assets.

27A short description of the shock transmission process is given in Appendix A.
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in relation to margins which proxy the contagion channels operating in our model. Of course,
due to the presence of many constraints and choice variables, the optimization problem itself
is too complex to be solved analytically. This is the reason why we resort to simulations.
The derivations below, therefore, aim at guiding our thoughts in thinking about contagion and
interpreting the results of the simulations.

Merging together the bank’s first order conditions with respect to interbank lending, li, and
borrowing, bi, we obtain a metric for the interbank risk premium. The latter read as follows:

IR = rl
(

ξδi
ξδi − 1

)
=

σ
2E[πi]

−(1+σ) ∂σ
2
π

∂bi
+ λ2ηωl

E[πi]−σ + σ
2 (1 + σ)E[πi]−σ−2σ2

π

(22)

where λ2 is the Lagrange multiplier on the equity requirement. This premium provides the
extent to which interbank network externalities impact risk through the propagation of debt

defaults. Notice that
∂σ2

π

∂bi
can be either positive or negative thereby contributing to decrease

or increase the interbank risk premium. Whether the term
∂σ2

π

∂bi
is positive or negative depends

upon whether V ar
(

1
1−ξδi

)
is larger or smaller than the term 2nip cov

(
rni ,

1
1−ξδi

)
. The variance

of the interbank default premium, V ar
(

1
1−ξδi

)
, captures the risk of interbank debt default,

while the term 2nip cov
(
rni ,

1
1−ξδi

)
determines whether interbank default losses are compensated

by returns on non-liquid assets. If the first term is larger than the second this means that

interbank network externalities are large,
∂σ2

π

∂bi
≤ 0, and this raises the interbank risk premium.

We now merge the banks’ first order conditions with respect to non-liquid assets and inter-
bank lending. This leads to an asset risk premium which reads as follows:

AR =

(
rni
p2
− rl

)
=

σ
2E[πi]

−(1+σ) ∂σ
2
π

∂ni
1
p + λ2η(ωn − ωl)

E[πi]−σ + σ
2 (1 + σ)E[πi]−σ−2σ2

π

(23)

The above asset risk premium captures the role of asset substitution for risk. Banks have
always the option to invest either in non-liquid assets or in interbank lending. If the spread
between the two is large banks will prefer to invest in non-liquid assets and this raises the
scope for fire sale externalities. Indeed the terms on the right hand side of equation 23 all

depend upon the transmission channels linked to fire sale externalities. The term
∂σ2

π

∂ni
, which is

positive, captures the fact that higher banks’ exposure to non-liquid asset increase profits’ risk,

σ2
π. A higher

∂σ2
π

∂ni
contributes to increase the overall asset risk premium. Furthermore, as is well

known, fire sale externalities are larger when equity constraints bind: indeed λ2 ≥ 0 contributes
to increase the asset risk premium, as the risk weight on non-liquid assets is larger than the one
for interbank lending.

At last, merging the banks’ first order conditions for non-liquid assets and interbank bor-
rowing we obtain the following banks’ external finance premium:

EF =

(
rni
p2
− rl

1− ξδi

)
=

σ
2E[πi]

−(1+σ)
[

1
p
∂σ2

π

∂ni
+

∂σ2
π

∂bi

]
+ λ2ηωn

E[πi]−σ + σ
2 (1 + σ)E[πi]−σ−2σ2

π

(24)

The above external finance premium measures the risk induced by fire sale externalities,
net of the risk induced by interbank debt defaults. This premium increases when the equity
constraint is binding. As with the asset risk premium, the external finance premium positively

depends on
∂σ2

π

∂ni
, whereas the effect of

∂σ2
π

∂bi
on the finance premium will depend on whether this

expression is positive or negative, as discussed for the interbank risk premium.
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3.6. Systemic Risk

The 2007-8 crisis moved the attention of supervisory authorities from the too-big-to fail to
the too-interconnected-to fail banks. In the past, systemic importance was primarily seen in
the context of size, pointing to measures such as concentration indices such as the Herfindahl
index. Following the crisis experience, the concept of systemic importance was expanded to
also include those banks that are highly interconnected with others. To measure the relevance
of interconnections, an important distinction arises between ex ante and ex post metrics. Ex
ante measures determine the contribution of each bank to systemic risk based on a time-t
static configuration of the network. These measures are useful as they identify banks/nodes
which can potentially be risk spreaders, but they have little predictive power, as they do not
consider the transformations in the network topology following shocks. On the contrary ex post
measures do so, hence they can be fruitfully used in stress tests. Overall ex ante measures
can be used for preemptive actions, while ex post measures can be used to predict the possible
extent of contagion in the aftermath of shocks, an information crucial to establish the correct
implementation of post-crisis remedies.

Our focus here is on one ex post metric, namely the Shapley value28. In Appendix B we
report the performance in the numerical analysis of a set of ex ante metrics, namely network
centrality measures, as well as their comparison with the Shapley value. The Shapley value
comes from the literature on cooperative and non-cooperative game theory, and provides the
contribution (through permutations) of each bank to an aggregate value. The latter in our case

is computed via the ratio of assets from all defaulting banks to total assets, Φ =
∑

Ω assetsΩ∑
i assetsi

,

where Ω ∈ i identifies the set of defaulting banks. One desirable property of the Shapley value
is additivity, which in our case implies that the marginal contribution of each bank adds up to
the aggregate default probability.

Formally the Shapley value is defined as follows. Define first C as a coalition of players
which is a subset of the set defining all possible coalitions with N players (the latter denoted
by CN ). In this spirit, C−i stands for a coalition which does not include player/bank i. Next,
define vΨ a function which maps subsets of players to the real numbers (i.e. vΨ : 2N → R, where
by convention it is assumed that v(∅) = 0). This so called characteristic function will generate
a value vΨ(C) for every possible coalition C: in our case this value is systemic risk when the
coalition C of banks is being shocked. Similarly, vΨ(C−i) will indicate the value generated by
a coalition which does not include bank i (i.e. the systemic risk generated when the group of
banks C, excluding i, is being shocked). With these elements in mind, the Shapley value for
bank i can be expressed in the following way:

Ξi(v
Ψ) =

1

N !

∑
C∈CN

(
vΨ(C−i ∪ i)− vΨ(C−i)

)
(25)

where vΨ(C−i ∪ i) is the value obtained by coalition C−i but when also including bank i.
That is, Ξi(v

Ψ) gives the average marginal contribution of player i over all possible coalitions
of player set N . In our context the Shapley value is thus a way of assigning to each bank its
average marginal contribution to systemic risk. Note that the index Ψ denotes different possible
shock scenarios, hence banks’ contribution to systemic risk is computed conditional on a shock
vector to the banking system.29

28See Shapley (1953) for the formal problem. Drehmann & Tarashev (2013) applied this concept to banking
for the first time, and it was subsequently used by several authors.

29As can be seen by the fact that the possible coalitions which can be formed with player set N is
given by 2N , the computation of the Shapley value is usually subject to the curse of dimensionality. For
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4. Baseline Scenario Results and Empirical Matching

In this section we present the baseline network configuration, which we characterize using
synthetic metrics, namely density, average path length, assortativity, clustering, betweenness
and eigenvector centrality. Additionally, we consider other features of the final configuration
of the network which are useful in assessing its realism. In particular we consider the ratio of
interbank assets to total assets, the equilibrium interest rate achieved through the interbank
market tâtonnement process, the number of intermediaries in the system (i.e. banks which both
borrow and lend), and the subset of intermediaries which form the core of the system.30

Our primary goal is to verify that our banking network shares topological properties with the
empirical counterparts. We indeed find that our model is able to replicate a number of stylized
facts characterizing real world interbank networks (core-periphery structure, low density and
dis-assortative behavior).

Before presenting the simulation results for the baseline structure, we describe the model cal-
ibration, which is largely based on banking and regulatory data. Table 1 summarizes calibrated
values and shock distributions.

Following Drehmann & Tarashev (2013), the number of banks is set to 20. This keeps the
system manageable in terms of size (allowing us to track the behavior of different banks) and in
terms of computation time. All policy related parameters are taken from the implementation
of Basel III in Europe (see the Regulation No 575/2013 of the European Parliament and of the
Council of 26 June 2013). The liquidity requirement (α), equity requirement (γ), risk weights
on non-liquid assets (ωn) and interbank lending (ωl) are set respectively to 10%, 8%, 0.2 and
1.31 We use data from Bureau van Dijk’s Bankscope database to calibrate deposits and equity.
We take the average of total assets for the period 2011-2013 for Euro Area (EA) banks, and use
deposits and equity (again averaged over 2011-2013) of the top 20 banks in terms of assets. The
return on non-liquid assets is randomly drawn from a uniform distribution over the range 0−15%
(the variance is computed accordingly), whereas the vector of shocks to non-liquid assets, which
is the starting point of the shock transmission process, is drawn from a multivariate normal
distribution with a mean of 5, a variance of 25 and zero covariance (we draw 1000 shocks to
evaluate the model). We set the loss given default parameter ξ to 0.5 (see for instance Memmel
& Sachs (2013)), whereas we assign values of 0.5% and 0.3% to the expected probability of
default and its variance respectively. Finally, the banks’ risk aversion parameter σ is set equal
to 2. For precautionary saving to arise such parameter must be larger than 1. Note also that
the parameter β capturing the price responsiveness to the sale of non-liquid assets is endogenous
and calculated as the number necessary to achieve a 10% drop if all non-liquid assets optimally

this reason it is normally approximated in numerical simulations by the average marginal contribution of

players to the aggregate value over M randomly sampled permutations or coalitions, Ξi(v
Ψ) ≈

∧
Ξi(v

Ψ) =
1
M

∑
C∈CM

(
vΨ(Ci ∪ i)− vΨ(C−i)

)
.

30As noted by Craig & von Peter (2014), interbank markets typically present a tiered structure, and interme-
diation plays a key role in determining that structure. In particular, an interbank market is tiered when there
are banks which intermediate between other banks that are not directly connected. The two tiers thus form a
core of densely connected banks and a periphery of banks unconnected to each other but connected to the core.
Core banks are therefore a strict subset of intermediaries: those intermediaries that serve to connect peripheral
banks that would otherwise be disconnected from each other.

31We view γ as a floor regulatory value. The banks’ capital buffer τ (on top of the equity requirement) is set
to 1%. As noted earlier, this can be seen as market requirement on top of regulatory requirements, and it also
serves a technical purpose by guaranteeing that a shock will not push banks automatically into fire-sales (in case
the equity requirement is binding pre-shock). Note that this does not imply that all banks will choose the same
equity requirement as a results of their optimization. Furthermore, given banks’ risk aversion it will typically be
the case that the equity constraint is not binding.
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chosen by banks are sold on the market (see Greenwood et al. (2015) and references therein for
price responsiveness in fire sales processes).

Par./Var. Description Value
N Number of banks in the system 20
α Liquidity requirement ratio 0.10
ωn Risk weight on non-liquid assets 1
ωl Risk weight on interbank lending 0.20
γ Equity requirement ratio 0.08
τ Equity buffer 0.01
di Bank deposits Top20 EA
ei Bank equity Top20 EA
σ Bank risk aversion 2
ξ Loss given default 0.5
E[δ] Expected default probability 0.005
σ2
δ Variance of default probability 0.003
rni Return on non-liquid assets U(0, 0.15)
σ2
rbi

Variance of rni
1
12 (max(rni )−min(rni ))2

Ψ Shocks to non-liquid assets ℵ(5, 25 ∗ I)

Table 1: Baseline calibration

We start by describing the partitions of banks into borrowers and lenders, the share of
interbank assets over total assets and the equilibrium interbank rate (see also Table 2 below).
Given the above calibration, the equilibrium interbank rate is 2.98%, in line with the pre-crisis
average of EONIA. Interbank assets as a share of total assets stand at 23.7%, also in line
with real world counterparts. There are 5 banks that only lend (banks 6, 10, 16, 17 and 19), 6
that only borrow (2, 5, 7, 8, 14 and 15) and 9 that both borrow and lend (1, 3, 4, 9, 11, 12, 13, 18
and 20). Generally speaking banks which borrow are those whose returns on non-liquid assets
are high (and higher than returns on interbank lending). Since those have good investment
opportunities they wish to invest and require liquidity beyond the one present in their portfolio.
On the contrary banks decide to lend when the rate that they receive on bank lending is higher
than the rate of return on non-liquid assets. The convexity of the optimization problem implies
that internal solutions exist and banks can be on both sides of the market, i.e., they can be
borrowers and lenders at the same time. Few large banks enter both sides of the market and
act as central nodes: those banks have high returns on non-liquid assets, hence they wish to
obtain liquidity for investment, but they also have large cash balances and are willing to lend
to acquire a diversified portfolio.

4.1. Synthetic Measures of Network Architecture and Empirical Matching

Our next step is to describe the network topology by using synthetic network indicators.32

Notice that synthetic metrics describing the network largely depend upon the banks’ optimiza-
tion problem and upon the matching algorithm. On the other hand, for the static network
configuration the three contagion channels described previously do not play a role since they

32To compute some of the network indicators we made use of the Brain Connectivity Toolbox and the Mat-
labBGL library.
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become operative only when banks are hit by shocks. The network response to shocks and the
role of the contagion channels for systemic risk will be analyzed in Section 5.

Figure 2 presents the baseline configuration with an interbank matrix computed via the
closest matching algorithm, given the parameters from Table 1. Different nodes represent banks
and their size is given by total assets. The width of arrows indicates the amounts transacted
and an arrow going from i to j indicates that i is exposed to j through lending. The number
of links is not particularly high; in network parlance, the network exhibits low density. In fact
the density of the network is 7.37%, in line with the evidence from country-specific studies of
interbank markets.33

(a) Standard representation (b) Circle representation

Figure 2: Baseline network configuration

Table 2 shows results for the other synthetic metrics considered, given the baseline parame-
terization.

The first two network metrics are closely related. The density of the network is the fraction
of existing links over the total amount of possible links, whereas the average degree is the average
number of connections per bank. Both metrics proxy the extent of diversification in the network.
By construction, the CMA network presents low density and hence a low average degree: a bank
is connected on average to 1.4 other banks.

The average path length is the mean shortest path between pairs of nodes. It gives an idea
of the ease with which one can expect to get from a given node to any other given node. In
our case this number is 2.6, implying that the average bank is almost 3 connections away. The
average path length is small, in line with real-world interbank networks (see Alves et al. (2013)
or Boss et al. (2004) among others). This implies that exposure is not far away for the average
bank in the network.

Betweenness and eigenvector centrality are computed as averages for all nodes in the network.
The CMA network features high betweenness and eigenvector centrality since a few banks act

33See for instance van Lelyveld & In’t Veld (2012) for the Dutch case. Regardless of the specific number, a
general finding from the literature is that interbank markets present low density.
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Density (%) 7.37
Average Degree 1.40
Average Path Length 2.60
Betweenness Centrality (Av.) 7.10
Eigenvector Centrality (Av.) 0.13
Clustering Coefficient (Av.) 0.03
Assortativity

out-in degree -0.15
in-out degree 0.26
out-out degree -0.31
in-in degree -0.44

# Intermediaries 9
# Core Banks 3
Interbank Assets/Total Assets (%) 23.68
Equilibrium Interbank Rate (%) 2.98

Table 2: Network characteristics - Baseline setting

as gatekeepers.
The clustering coefficient measures the tendency of neighbors of a given node to connect

to each other, thereby generating a cluster of connections. For our network configuration the
average clustering coefficient is low, especially in relation to other types of networks (for instance,
trade networks), and in line with evidence on real-world interbank networks (see Hüser (2015)
for a summary of stylized facts).

The assortativity coefficient aims at capturing the tendency of high-degree nodes to be linked
to other high-degree nodes. As noted by Bargigli et al. (2015), interbank networks tend to be
dis-assortative, implying that high-degree nodes tend to connect to other high-degree nodes less
frequently than would be expected under the assumption of a random rewiring of the network
that preserves the nodes’ degrees. With the exception of the in-out coefficient, which presents
positive assortativity, our network presents in fact dis-assortative behavior. These results are in
line with those observed in the data (see for instance Bargigli et al. (2015) or Alves et al. (2013)
among others). Notice that dis-assortative behavior is associated with core-periphery structures;
this is true both in the data and in our model. As already mentioned above, a necessary condition
for the presence of a core-periphery structure is to have banks which both borrow and lend, i.e.
to have intermediaries. Out of the 20 banks in our model, 9 are intermediaries. Furthermore,
from these 9 banks, 3 constitute the core of the network.34

To sum up topological properties of our network as captured by most synthetic indicators,
are in line with their empirical counterparts. In particular the network is characterized by low
density, low clustering, low average path length, dis-assortative behavior and a core-periphery
structure in which the core is a strict subset of all intermediaries. Further results for the
simulation of the baseline network can be found in Appendix B.

34Our conception of the core follows that of the seminal work of Craig & von Peter (2014). We thank Ben
Craig for sharing the code for the computation of the core-periphery structure.
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5. Model Response to Shocks

An essential prerequisite of prudential regulation consists in measuring systemic risk and
identifying systemically important banks. Assessing the contribution of each bank to risk prop-
agation is indeed a crucial aspect of the inspecting activity that supervisors conduct to prevent
crises. To this aim and prior to the analysis of the prudential policy we present some metrics
that measure the contribution of each bank to systemic risk and that allow the supervisor to
detect systemically important intermediaries. In this section we focus specifically on the Shapley
value. Given the system-wide default probability following a distribution of banks’ shocks, the
Shapley value determines the contribution of each bank to it.

Figure 3 presents each bank’s contribution to systemic risk, based on the Shapley value
methodology. The clearing algorithm for the interbank market used is that of Eisenberg &
Noe (2001). We simulate shocks to the value of non-liquid assets with multivariate normal
distributions. In response to those shocks all channels of contagion are activated. First and
foremost, banks become more cautious and start to hoard liquidity thereby producing a credit
crunch in the interbank market. The fall in the supply of liquidity together with the adverse
shocks on some banks’ assets produces many de-stabilizing effects: some banks stop honoring
their debt obligations, most banks de-leverage and some banks sell their non-liquid assets to meet
equity and liquidity requirements. All those actions trigger further losses. Liquidity hoarding
reduces the system’s resiliency to shocks: banks which do not repay their debt transmit direct
losses to exposed lenders; fire sales of non-liquid assets, by triggering falls in assets prices,
transmit indirect losses to the balance sheets of other banks because of asset commonality.
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Figure 3: Contribution to systemic risk (mean Shapley Value) by bank

By jointly analyzing the data in Figure 3 and the banks’ optimal portfolio allocations as
reported in Table B.3 in Appendix B we find that the banks which contribute the most to
systemic risk are the ones which both borrow in the interbank market and invest highly in
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non-liquid assets.35 Generally speaking we find a strong connection between Shapley value and
total assets.36 Interbank borrowing increases the extent of risk transmission through direct
interconnections, while investment in non-liquid assets increases the extent of risk transmission
via fire sale externalities. The more banks borrow and the more banks invest in non-liquid assets,
the larger is their contribution to cascading defaults and to systemic risk. The rationale behind
this is as follows. Banks which leverage more in the interbank market are clearly more exposed
to the risk of default on interbank debts. The larger is the size of debt default the larger are
the losses that banks transmit to their counterparts. Borrowing banks therefore contribute to
systemic risk since they are the vehicle of network/interconnection externalities. On the other
hand, banks which invest more in non-liquid assets transmit risks since they are the vehicle of
pecuniary externalities. The higher is the fraction of non-liquid asset investment, the higher
is the negative impact that banks’ fire sales have on market prices. The higher is the collapse
in market prices, the higher are the accounting losses experienced by all other banks due to
asset commonality and mark-to-market accounting. Notice that banks which invest and borrow
a lot are also those with the highest returns on non-liquid assets investment. As banks invest
more they also grow in size, consequently there is also a positive correlation between banks’
size and systemic risk. By jointly observing Figure 3 and total assets as from Table B.3 (which
presents the optimal balance sheet structure in the baseline setting) we can infer, for instance,
that smaller banks tend to contribute less to systemic risk. While the Shapley value shows a
strong connection to total assets, the connection to other balance sheet items or relevant balance
sheet ratios is not particularly strong (see Figure B.6 in Appendix B.2).37 To assess the role
of banks’ risk aversion and precautionary savings on the transmission of risk we present the
main results for systemic risk by comparing the models with and without risk averse banks: see
subsection 6.1.

To test the robustness of the Shapley value we compute the ranking of systemically impor-
tant banks also using alternative metrics, namely network centrality indicators. Due to space
considerations, simulation results for those are presented and discussed in Appendix B.

6. Policy Analysis: Stability versus Efficiency

The new Basel III regulatory framework is an approach centered on multiple, complementary
prudential standards, with minimum requirements for both capital and liquidity. A crucial policy
question is whether adjustments to these requirements should be expected to affect systemic risk
and banks’ individual contributions to it. This will involve trade-offs. For instance, higher equity
requirements are likely to be beneficial because they reduce the extent of banks’ leverage and
increase their ability to absorb losses. Yet, this may have to be traded-off against an impaired
ability to invest in illiquid assets, as tighter equity requirements typically increase the extent of
pecuniary externalities (via a higher elasticity of excess asset demand). Intuitively, the tighter
the constraint, the higher may be the need to sell assets to meet the regulatory requirements in
the face of adverse shocks. Note that, in our model, the investment in external non-liquid assets
is a proxy for the integration of the banking system with the real economy so that we can take
it as a measure of efficiency and as a crude substitute for welfare. Hence an increase in equity

35Usually those are also the banks with the higher returns on non-liquid assets investment.
36That said, it is important to note that “size” alone does not capture the role of too-interconnected-to-fail,

whereas the Shapley value does. This is a way of incorporating the interconnectedness metric used by the
Financial Stability Board to designate systemic institutions.

37This holds irrespective of the matching algorithm used: in exercises not reported here we have computed
the interbank matrix using other matching algorithms (which deliver a different network topology) and the
qualitative message stays unaltered.
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requirements generates a trade off between financial stability (mitigation of systemic risk) and
efficiency (maximization of investment in external assets). Similar trade-offs apply to liquidity
requirements.

We inspect the variations in systemic risk and in the optimal allocation for different values
of the liquidity requirement α and of the equity requirement γ. As in the baseline setting, we
evaluate the model subject to 1000 shocks.

Figure 4 summarizes the main results from the policy experiments. We consider six indi-
cators. From left to right in the first half (first and second row) of the table: systemic risk
(measured as the ratio of assets of defaulting banks to total assets of the system), interbank
lending as a share of total assets, non-liquid assets as a share of equity; in the second half (third
and fourth row): equilibrium interbank interest rate, aggregate leverage (solid line, left axis)
and simple average leverage of the 5 most leveraged banks (dashed line, right axis) and network
density. For each indicator there are two panels: the upper (lower) panel shows the dynamic
pattern of the indicator as the liquidity (equity) requirement increases.

We start by examining how overall systemic risk and the contribution of each bank to it
change when altering the two policy parameters. Let’s consider first the effects of changes in
the liquidity requirement (first and third row of the figure). At first glance, overall systemic
risk shows a downward trend when the liquidity parameter α goes up (see the first panel in the
first row of Figure 4). That said, as is obvious from the chart, starting from values around 0.2
systemic risk exhibits a jig-saw behavior within this general downward trend. Such behavior
poses a challenge for prudential regulators as even small changes in the liquidity ratio can have
significant effects on systemic risk. It is therefore important to understand the origins of this
pattern and its implications. First of all, by simulating the model with risk-neutral bankers we
observe a much smoother pattern. Hence convex optimization problems are a primary reason
for this behavior. Indeed in this case the dynamic of risk has first order effects on banks’
optimal decisions, which in turn become much more sensitive to all channels responsible for risk
amplification (fire sale and network externalities primarily). This has important consequences
for the prudential authority. It highlights the fact that the design of regulation in complex
environments that feature significant risk amplification channels is a much more demanding
task than the one envisaged in simple banking models featuring linear optimization and no
market interactions. Notice that in our simulations we have included error bands around the
dynamic of systemic risk in response to changes in regulation. Those are instructive particularly
in the context of a complex and uncertain policy environment: error bands indeed provide a
metric for the possible variation in the target (systemic risk) for a given policy action. There
are some banks that always contribute to systemic risk (mostly banks 1, 2, 3, 5, 12 and 16, see
Figure C.9). The rationale for these results is as follows. As banks must hold more liquidity
for precautionary motives, their exposure in the interbank market declines, though this is not
reflected in interbank assets as a share of total assets (second panel in the first row) since the
reduction in non-liquid assets is quite substantial (third panel in the first row). The interbank
interest rate increases due to the scarce supply of liquidity (first panel in the third row) and
banks’ investment in non-liquid assets declines as available liquidity falls. Overall, there is a
strong reduction in the scope for fire sale externalities and a relatively milder increase in the
scope for network externalities. Since both systemic risk and the investment in non-liquid assets
go down for the range of values of α under consideration, we detect a trade off between the
mitigation of financial instability (as proxied by systemic risk) and efficiency (as proxied by
aggregate investment in non-liquid assets).

Results are somehow more complex when we increase the equity requirement. As γ increases,
overall systemic risk declines over an initial range, but it stays flat after roughly 0.13 (first panel
in the second row). Banks de-leverage (second panel in the fourth row) and the interbank interest
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Figure 4: Main results of the policy analysis. On the y-axis, in the panels of the first half of the table (first and
second row), from left to right we measure: systemic risk, interbank lending over total assets, non-liquid assets
over equity; in the panels of the second half (third and fourth row): equilibrium interbank interest rate, aggregate
leverage (solid, left-hand-side) and simple average leverage of 5 most leveraged banks (dashed, right-hand-side),
and network density.
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rate declines (first panel in the fourth row) as the demand of liquid funds has gone down. This
reduces the overall scope for transmitting default losses, and in fact interbank lending as a
percentage of assets reaches very low values (second panel in the second row). However, banks
also reduce the amount of liquid assets (not shown here), while keeping the amount of non-liquid
asset investment roughly unchanged (as a fraction of equity) for an initial range and then only
reducing it slightly (third panel in the second row).38 The scope of risk transmission through
fire sales is therefore only slightly reduced. Increasing the equity requirement above 10% seems
to have a non-negligible impact on systemic risk, while at the same time not reducing efficiency
as strongly as with increases in the liquidity requirement. This improvement is concentrated in
the range 10-13%, as beyond that point systemic risk is largely unresponsive to a higher equity
requirement.

As for the contribution of each bank to overall systemic risk (see Shapley values in Fig-
ure C.10) we observe that, while most banks tend to transmit less risk as γ increases, a few
instead tend to contribute more. Since all banks are less exposed to the interbank market the
scope for loss cascades through network linkages is reduced. On the other hand some banks
invest more in non-liquid assets. This exposes the latter to the swings in the market price for
non-liquid assets and increases the probability that they will engage in fire sales.

The sixth panel of the third (fourth) row describes the evolution of network density for
increasing levels of the liquidity (equity) requirement.39 Network density is increasing with the
liquidity requirement parameter α and decreasing with capital requirement γ. In the latter
case, density is roughly halved over the range of values of γ considered. While the upper limit
for network density is roughly the same for the two policy exercises, it is worth noting that in
the case of changes in the liquidity requirement, density never falls below the starting value of
approximately 6.5%, whereas it falls to almost 3.5% when increasing the equity requirement.
When changing the equity requirement there is a noticeable drop starting at around γ = 0.12.
The reason for this can be seen in Figure C.8b in Appendix C. The number of active banks in
the interbank market drops substantially. This is true, in particular, for those banks that both
borrow and lend. If we take the number of banks on both sides of the market as a proxy for
intermediation activity, Figure C.8b shows that intermediation reaches a peak when γ = 0.12.
As the equity requirement increases, fewer banks are active in the market and the ones that are
actually active demand less liquidity relative to existing supply, forcing the continuous downward
trend in the interbank rate that we see in the first panel, fourth row of Figure 4.

As Figure C.8a shows, no such development occurs when increasing the liquidity requirement.
This essentially leaves the number of active banks unchanged. When the liquidity requirement
increases two countervailing forces seem at work that balance each other. As the liquidity re-
quirement goes up, banks supply less liquidity in the interbank market and this has a depressing
effect on density and other measures such as closeness (not shown here). On the other hand,
some banks increase their demand of liquid funds driving the interbank rate up and inducing
other banks to substitute investment in non-liquid assets with interbank lending. This asset
substitution effect increases the available liquidity in the interbank market (as shown in the
second panel, first row of Figure 4), which in turn has a positive impact on density and related
measures.

38Notice that in our model issuing equities does not entail adjustment costs. In reality, depending on the
degree of financial market development, some adjustment costs might make equity adjustment stickier. If so, it
is possible that, in the face of increases in equity requirements, banks might decide to partly increase equities
and partly reduce their assets in order to re-balance the ratio. In any case we would observe a stronger fall in
non-liquid assets under an increase in equity requirements than under an increase in liquidity requirements.

39Average degree, path length and clustering coefficients paint a very similar picture so we left them out for
the sake of space.
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While we do not evaluate the joint optimality of the regulatory requirements in our model, the
policy exercise provides support for the notion that the different requirements can be combined
to complement each other. In Figure 4, whenever we evaluate the change in a policy parameter
(say, liquidity), the other policy parameter is kept at its benchmark value. Thereby, changes in
the liquidity (equity) requirement in the context of a fixed equity (liquidity) requirement lead
to improvements in systemic risk. Furthermore, the path towards reaching the joint benchmark
scenario (i.e. when moving from α = 0 to α = 0.1 in the case of liquidity and from γ = 0
to γ = 0.08 for equity) is associated with reduced systemic risk and minimal negative adverse
effects in terms of non-liquid asset investment and interbank market activity.

To sum up, within the confines of our model,40 increasing the liquidity requirement un-
ambiguously reduces systemic risk as it reduces the investment in non-liquid assets while only
marginally increasing the scope for network externalities. The fall in the overall non-liquid
asset investment shows however that an increase in the liquidity requirement reduces system
efficiency. An increase in the equity requirement also decreases systemic risk (though the latter
remains flat after γ = 0.13), but without a substantial decrease in efficiency.

6.1. Systemic Risk and Contagion Channels

To assess the contribution of each of the channels considered (liquidity hoarding, intercon-
nections and fire sales) we compare the evolution of systemic risk (under different values for α
and γ) under four alternative models:

• Model 1: this model is the benchmark considered so far, featuring risk averse banks and
the interaction of fire sales and network externalities.

• Model 2: this model has risk neutral instead of risk averse banks, hence the objective
function is linear and simply given by utility of expected profits, which in this case is
equal to expected utility of profits. The constraints remain the same, and fire sales and
interbank contagion are also kept. It is worth noting that in this model there are no banks
that participate on both sides of the market simultaneously, i.e. they are either borrowers
or lenders.

• Model 3: this model is similar to Model 1 but it eliminates the fire sales channel. Non-
liquid assets are no longer a choice variable of banks and are instead calibrated by the
values banks would have chosen if given the chance. Once a shock hits banks cannot sell
the assets and the transmission of distress takes place only through the interbank channel.

• Model 4: this model is a small variation of Model 3, in which we set the risk aversion
parameter to σ = 0 (i.e. risk-neutral banks).

Results from the comparison exercise are presented in Figure 5, which shows the effects of
changes in the liquidity and equity requirements on systemic risk, interbank lending over total
assets and non-liquid assets over equity.

We can summarize the difference in results as follows. First, the benchmark model (with all
contagion channels) shows larger swings in the changes of systemic risk with respect to α and
γ. This is due to the fact that the presence of risk averse agents features higher non-linearities
by triggering precautionary saving. Second, in Model 4 systemic risk increases with respect

40It is important to note that ours is a stylized model, not encompassing general equilibrium effects for the
economy at large. Importantly, it does not feature a central bank, which could mitigate the stress in the banking
system following a shock. Such interventions by a central bank can be critical, in particular in terms of liquidity.
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to increases in α. This is empirically puzzling, although it is internally consistent with the
assumptions of model 4, namely the absence of other investment opportunities beyond those
in non-liquid assets and the assumption of σ = 0. As the liquidity requirement increases,
banks which are short of funds increase their demand of interbank borrowing. This raises the
interbank rate and makes interbank lending attractive for banks which have excess liquidity.
Overall network linkages in the interbank market increase and so does contagion of default risk.

Our benchmark model has two important appealing features. First, it generates realistic
amplifications of risk and features non-linearity in transmission channels: both are realistic
features of banking panics triggered by contagion channels. Second, and contrary to alternative
models considered, it provides reasonable predictions for the response of the network to changes
in policy regulations.
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Figure 5: Model Comparison
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7. Concluding Remarks

We have analyzed a banking network model featuring risk transmission via different chan-
nels. Banks in our model are risk averse and solve an optimal portfolio problem. The individual
optimization problems and the market clearing processes deliver a matrix of network links in the
interbank market. Each bank can be both borrower and lender vis-à-vis different counterparties.
Shocks to one bank are transmitted through defaults on interbank debt, through price collapses
of non-liquid assets triggered by fire sales or through liquidity hoarding. Clearing in the market
takes place through a price tâtonnement iterative process and through a trading matching algo-
rithm, namely closest matching (or minimum distance). The network thus obtained replicates
some characteristics from the empirical counterparts. In particular, it presents low density, low
average degree, dis-assortative behavior and a core-periphery structure.

We use our banking network to assess the role of prudential regulation in reducing systemic
risk. We find that increasing the liquidity requirement unequivocally reduces systemic risk and
the contribution of each bank to it. As banks must hold more liquidity for precautionary motives,
their exposure in the interbank market declines, though this is not reflected in interbank assets
as a share of total assets as the reduction in non-liquid assets is quite substantial. The former
limits somewhat the scope for network externalities, whereas the latter substantially reduces
the scope for pecuniary externalities. The reduction in non-liquid assets is so strong that there
is an associated cost to it in terms of efficiency of the system, highlighting the existing trade-off
between stability and efficiency. An increase in the equity requirement instead does not present
this strong trade-off. Systemic risk decreases, in particular for an initial range of values of γ.
The scope for network externalities is persistently reduced as the share of interbank assets over
total assets steadily declines to reach very low values in the upper range of γ. While there is
also a slight reduction in the scope for fire sales externalities, the reduction in non-liquid assets
is relatively minor. The system becomes more homogeneous and the potential damage from
interbank market collapses is markedly reduced. This comes at the expense of having less banks
trade in the interbank market, with an associated reduction in its density.

In light of recent policy discussions, our model highlights some important trade-offs to bear in
mind. First, the model suggests that increasing the equity requirement relative to the benchmark
can yield benefits in terms of more stability without any cost in terms of a substantial reduction
in banks’ non-liquid assets investments. At the same time, there are limits to this strategy. Too
high a regulatory burden can make the requirements close to binding, which can increase the
likelihood of fire sales in the aftermath of large-scale shocks. On the other side, the results of
our model give strong support for introducing liquidity requirements in terms of their potential
for systemic risk reduction, though with the caveat of costs in terms of reduced non-liquid asset
investment. Finally, our results provide general support for the Basel III approach based on
complementary regulatory metrics.

We have explored the effects of contagion and risk transmission stemming from the asset
side of banks’ balance sheets. Incorporating risk originating from the liability side would take
our model one step further in the direction of realism. We leave this avenue for future research.
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Appendix A. Shock Transmission

The shock transmission process can be succinctly summarized as follows. After the vector of
shocks is drawn the supply of non-liquid assets will be affected and therefore the price will have
to be adjusted. Following such adjustment, some banks may not be able to fulfill their interbank
commitments. Such banks will liquidate their entire non-liquid asset holdings, pay as much as
they can to interbank creditors and be added to the default set. The interbank adjustment is
done following the now classic algorithm outlined in Eisenberg & Noe (2001). Note that, at this
stage, interbank connections are taken as given and banks are not re-optimizing; changes to the
interbank market structure are at this point the result of applying the clearing mechanism of
Eisenberg & Noe (2001). At the same time, many banks may not be able to fulfill the equity
requirement. Within this group, two sub-groups may be distinguished. First there are those
banks that after selling part of their non-liquid asset holdings will be able to fulfill the equity
requirement; the second group cannot fulfill the requirement even after selling all their non-liquid
assets. The former group will just liquidate what it needs in order to comply with requirements,
whereas the latter group will liquidate all and be added to the default set. All the non-liquid
assets put on the market by all banks will be used for a recalculation of the price p and start a
new round of the transmission process. When no more defaults occur the algorithm stops and
systemic risk is computed as set out in the main text.

Appendix B. Additional results for baseline scenario

Appendix B.1. Balance sheet characteristics and systemic importance ranking
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Appendix B.2. Additional results on Shapley value and systemic importance

Figure B.6 plots the Shapley value versus bank characteristics. Results point to a strong
connection with total assets as discussed in the main body of the paper. The connection to
other balance sheet items is rather weak.

Figure B.6: SV vs. bank characteristics

For systemic importance measures we consider network centrality indicators. In graph theory
and network analysis the centrality of a vertex or node measures its relative importance within
the graph. In particular, we consider the following measures: degree, closeness, betweenness
and eigenvector centrality.41 Degree centrality captures the number of connections that a bank
has. In networks in which the direction of links matter, like ours, it can be divided into in- and
out-degree. The former accounts for the number of links “arriving” to a node, whereas the latter
quantifies the number of links “leaving” a node. Closeness centrality assesses the importance
of nodes based on how reachable they are from all other nodes (i.e. how “close” they are).
Betweenness centrality gauges the relative importance of nodes based on how often they lie in
paths connecting other nodes (i.e. how important they are as “gatekeepers”). Finally, eigenvec-
tor centrality is a generalization of degree centrality which captures the idea that connections
to other nodes which are themselves well connected should carry more weight.42

Table B.4 above presents the ranking of systemic importance for the baseline setting and for
all the measures considered. Depending on the measure one chooses to focus on, the assessment
differs substantially for many banks. At one extreme we have for instance bank 7, which can be
ranked first according to one measure, and up to seventeenth by another. There are some banks
that are consistently ranked high or low (see for instance bank 18 for the former and bank 17
for the latter).

Another interesting question is whether systemic importance measures (i.e. centrality indi-
cators) and systemic risk measures (i.e. Shapley value) deliver a consistent ranking. Figure B.7

41With this choice we cover the range of possible measures based on standard taxonomy (see for instance Alves
et al. (2013)).

42In directed networks one can also subdivide closeness and eigenvector centrality, the former into in and out
versions, the latter into left and right eigenvectors.
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sheds light on this issue by plotting the Shapley value versus the different network centrality
measures considered.43 The bottom line is that there is no apparent connection between the
ranking provided by the two types of measures. While this may seem disappointing at first
glance, one should bear in mind that these measures are not only different algebraically, but
also conceptually. Systemic importance measures are of an ex-ante nature in the sense that all
that is needed for their computation is a matrix representing the connections between banks.
Importantly, to construct these measures there is no need for a shock to hit the system and
thereby no need either for the specification of behavioral responses. They are in this sense also
static. For systemic risk indicators to be computed one needs indeed to measure risk, and to
that end assume some kind of shock to the system.44 Furthermore, behavioral responses of some
sort are needed for the shock process to converge. In this respect this type of measures have a
more dynamic flavor.

Figure B.7: SV vs. centrality measures

Appendix C. Additional results for policy analysis

43In the working paper version of this paper we also perform the comparison with other family of systemic
importance indicators, namely input-output-based measures, and the message remains unaltered.

44This can be for example the targeted exogenous failure of a given institution, the sequential exogenous failure
of all institutions, or as we explore in this paper, multivariate shocks to all banks simultaneously.
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(a) Changes in LiqR (α) (b) Changes in ER (γ)

Figure C.8: Number of active banks in interbank market for different values of α and γ

Figure C.9: Contribution to systemic risk (Shapley Value, y axis) by bank for different values of α (x axis)
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Figure C.10: Contribution to systemic risk (Shapley Value, y axis) by bank for different values of γ (x axis)
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