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Bank capital shock propagation via syndicated interconnectedness

Abstract

Loan syndication increases bank interconnectedness through co-lending relationships. We

study the financial stability implications of such dependency on syndicate partners in the

presence of shocks to banks’ capital. Model simulations in a network setting show that such

shocks can produce rare events in this market when banks have shared loan exposures while

also relying on a common risk management tool such as value-at-risk (VaR). This is because

a withdrawal of a bank from a syndicate can cause ripple effects through the market, as the

loan arranger scrambles to commit more of its own funds by also pulling back from other

syndicates or has to dissolve the syndicate it had arranged. However, simulations also show

that the core-periphery structure observed in the empirical network may reduce the probability

of such contagion. In addition, simulations with tighter VaR constraints show banks taking

on less risk ex-ante.

JEL Classification: E44, E52, G12, G20, E32.
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I. Introduction

The erosion of bank capital and the subsequent deleveraging cycle in the aftermath of the 2008

Lehman collapse transmitted the credit crunch to the real economy. Such episodes underline the

need to better understand the mechanisms behind the propagation of bank distress to the broader

economy. This paper examines the propagation of bank capital shocks in one important segment

of international credit markets: the syndicated loan market.

Over the last 30 years, the syndicated loan market has evolved into a key vehicle through

which banks lend to large corporations (Ivashina and Scharfstein, 2010a). In 2007, international

syndicated loans made up 40% of all cross-border funding to firms in the United States and more

than two thirds of cross-border flows to emerging markets (Haas and Horen, 2012). Syndicated

loan interlinkages among banks have also been shown to have a positive impact on trade, foreign

direct investment (FDI), and cross-border portfolio flows through various direct and indirect

channels (Hale, Candelaria, Caballero, and Borisov, 2011, 2013). At the same time, the market is

characterized by the sensitivity to banks’ balance sheet constraints and rapid adjustments. Recent

empirical literature suggests that the withdrawal of banks from syndicated lending in 2008 was

particularly swift and that this may have contributed to the rapid spillover of the subprime shock

across borders.1 Yet, despite its central role in international financial intermediation, the financial

stability implications of the structure of the syndicated loan market have been little explored.

In this paper, we study how shocks to bank equity capital affect banks’ participation in the

syndicated loan market. We build a micro-founded model of syndicated lending, taking into

account the implications of several particular market features on the optimisation problem faced

by banks. Banks operate subject to a value-at-risk (VaR) constraint, maintaining the level of

capital to meet the risk profile of their loan portfolios. To the extent that capital requirements

depend on VaR estimations, they provide one rationalization for the use of the VaR constraint.

A related empirical finding by Adrian and Boyarchenko (2012) points to a close relationship

1For instance, as the market collapsed during the first year of the global financial crisis from approximately
$800 billion to $300 billion in quarterly issuance volume (Gadanecz, 2011), international trade experienced the
most sudden, severe, and globally synchronized collapse on record (Antonakakis, 2012). On the sensitivity of the
syndicated loan market to banks’ balance sheets and its rapid speed of adjustment, see Chui, Domanski, Kugler,
and Shek (2010), Ivashina and Scharfstein (2010a), and Haas and Horen (2012).
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between credit tightening by banks and the risk-adjusted cost of leverage.2 Thus, when banks

face an erosion of their equity capital, they face a trade-off between selling liquid assets, issuing

more equity, or reducing lending.3 In this paper, we focus on the last of those three options. All

solutions are derived assuming rational expectations.

We first show that a market for syndicated loans emerges naturally after allowing syndication

in a model with risk-neutral banks that optimize their loan portfolios under a VaR constraint.

Implicitly, we assume that in the absence of equity shocks banks maintain the same syndicates

(e.g., keep rolling over lending to the same borrowers), rationally taking into account project

risk. However, once banks’ equity shocks realize, some of them find it optimal to pull back on

their pre-commitments. To the extent that a withdrawal of a bank from a syndicate induces the

lead arranger to adjust its own behavior (either commit additional funds to its own syndicate

and reduce participation in other syndicates or dissolve the syndicate), this causes ripple effects

through the market.

Similar to Caccioli, Shrestha, Moore, and Farmer (2014), who study bank interconnectedness

though overlapping portfolios, our model suggests that bank interconnectedness via co-lending

in the syndicated loan market brings about a form of efficiency-stability trade-off. On the one

hand, syndicated lending allows banks to diversify their credit risks, while also increasing lending

in aggregate. On the other hand, complementarity in bank lending decisions due to dependency

on syndicate partners can be a source of contagion.

We then calibrate the model parameters to reflect key syndicated loan and bank character-

istics and simulate the propagation of bank equity shocks under alternative shock distributions

and network topologies. By basing the model simulations on behavioral micro-foundations of

optimizing agents, we are aiming to address the critique of Upper (2011), who points out that

in order to reproduce non-linearity and threshold effects that lead to rare systemic events, it is

necessary to look at strategic complementarities in bank behavior in addition to direct on-balance

sheet linkages.

The model further reproduces (agrees with) three stylized facts identified by the existing liter-

2Using data from from Q2 1991 to Q2 2012, Adrian and Boyarchenko (2012) estimate a correlation coefficient
of 0.7 between the Chicago Board of Exchange Option Implied Volatility Index (VIX) and tightening of lending
standards by US banks.

3See, for example, BCBS (2012) and BCBS (2013).
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ature and the data from the crisis period.4 First, the market is subject to very rapid adjustments

in times of stress (the total volume of syndicated loans reported by Dealogic contracted by ap-

proximately 43% in 2008). Second, most of the adjustment takes place through a reduction in

the number of loans rather than a typical loan size, that is along the extensive rather than the

intensive margin.5 Third, the immediate contraction in lending comes from banks not responsible

for originating the loan (see Figure 1, left-hand panel); at the same time, the average loan share

of lead arrangers actually increased from 28 to 30% during the crisis (see Figure 1, right-hand

panel). This indicates that, to the extent possible, lead arrangers had been compensating for the

withdrawals by other syndicate participants.6

Figure 1. Left: Inverse relation of lead arrangers’ share of total lending; Right: Asymmetric
exposure of lead arrangers

Our paper is related to two strands of literature. One strand is the literature on risk man-

agement by financial intermediaries and the role of bank capital constraints in the propagation

of shocks. Adrian and Shin (2010) have shown that when investment banks target the level of

equity capital to satisfy the VaR constraint, this introduces procyclicality in their balance sheet

management and can feed into aggregate asset price fluctuations.7 Danielsson, Shin, and Zigrand

4We rely on the Dealogic Loan Analytics database to draw out stylized facts about syndicated loan market
dynamics and for parameter calibration.

5Specifically, from 2007 through 2009, about 80% of the contraction came from the reduction in the number
of loans, and only 20% from the average loan size. The total number of unique tranches declined from 15,070 to
11,556, while average tranche size declined only by 13%, from $305 million to $266 million.

6These numbers are comparable with those of Allen and Gottesman (2006) who show that the loan share held by
lead arrangers has on average been 27%, compared with the average loan share of 3% held by syndicate participants.

7This approach contrasts, for example, with He and Krishnamurthy (2013), who use log utility with risk-averse
agents and derive a feature whereby leverage is countercyclical.
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(2012) derive a closed-form solution to the dynamic problem of balance sheet management by

capital constrained banks, while Adrian and Shin (2014) go one step further to provide possible

microfoundations for the widespread use of VaR.8 Corsi, Marmi, and Lillo (2013) show analyti-

cally that the resulting combination of VaR technology with greater portfolio diversification can

actually increase systemic risk. Similarly, using network simulations, Caccioli, Shrestha, Moore,

and Farmer (2014) show that the combination of leverage with overlapping portfolios amplifies

financial contagion.

Other papers examine the consequences of balance sheet constraints for the international

propagation of shocks. In a general equilibrium open economy model, Pavlova and Rigobon (2008)

demonstrate how portfolio constraints lead to cross-country spillovers of financial shocks and

increase asset price correlations. Devereux and Yetman (2010) model two countries populated by

savers and investors to show that a combination of leverage constraints and overlapping portfolio

holdings produces a powerful cross-country financial transmission channel. These findings have

been challenged somewhat by van Wincoop (2013), who also uses a two-country model with

leveraged financial institutions, but finds that it cannot reproduce the magnitudes in transmission

and asset price fluctuations observed in the data.

The second strand is the literature on syndicated lending networks. Networks are endogenous

to the process of syndication as banks become more strongly connected to one another as a

result of collectively lending to the same borrowers. Hale (2012) uses data on bank relationships

through mutual syndicated lending to find that the global banking network responds to economic

and financial shocks. Cai, Saunders, and Steffen (2011) find that closer syndicates have safer

borrowers and safer loans but more interconnected lenders contribute more to systemic risk. Bos,

Contreras, and Kleimeier (2013) show that over the past 20 years the global syndicated network

for corporate loans has become more interconnected, with lead arrangers becoming increasingly

active, hence increasing the network density. There is also evidence that countries in which banks

were more connected to other banks through the syndicated loan market were less affected by

8More generally, a robust empirical relationship between bank capital and lending, as well as the ability of equity
capital to serve as a buffer against negative shocks, are found by Gambacorta and Mistrulli (2004), Berrospide and
Edge (2010), Cornett, McNutt, Strahan, and Tehranian (2011), Gambacorta and Marques-Ibanez (2011), and
Carlson, Shan, and Warusawitharana (2013).
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the global financial crisis (Caballero, Candelaria, and Hale, 2009).9 While the most centrally

located banks (which tend to be large and reputable global institutions) appear safer on average,

Hale, Kapan, and Minoiu (2013) show that those banks that intermediate between the central

and peripheral ones appear more exposed and exhibit significant losses during crisis times.10

Our findings are four. First, simulation results indicate that syndicated interconnectedness

matters for the propagation of bank distress in the system. With loan syndication, massive

dissolution of loans can occur even when the negative common shock is mild; whereas it takes a

large negative common shock to cause a substantial number of dissolved loans when banks are

independent.11 This suggests that the market structure specific to the syndication process serves

to propagate bank equity shocks, amplifying market disruptions in periods of stress. Importantly,

these dynamics occur in a rational equilibrium setting, where banks know the true distribution

of shocks yet still behave in a way that generates tail effects in aggregate lending that are not

warranted by the distribution of the exogenous shocks themselves.12

Second, the aggregate effects of a common equity shock are present across networks with dif-

ferent shapes. We consider a homogeneous-degree network, a network with uniformly distributed

degrees, and an empirical network based on Euclidean distance in banks’ loan portfolios or based

on the direct links to lead arrangers. The homogeneous-degree network corresponds to our bench-

mark model, in which each syndicate has the same number of participants. The uniform degree

network is constructed using an indirect measure of connectivity based on the extent of overlaps

in banks’ syndicated loan portfolios.13 The empirical network is constructed using directed links

from participant banks to lead banks identified in the data prior to the global financial crisis.14

9In terms of geographic proximity, Haas and Horen (2012) use more traditional empirical tools to find that banks
continued to lend more to geographically close countries, where they are integrated into a network of domestic co-
lenders, and where they have more lending experience. Such bank-borrower closeness may matter especially in
times when a firm’s net worth drops (Ruckes, 2004) or for carving out local captive markets (Agarwal, 2010).

10At the more aggregate, banking system or country, level the network analysis of cross-border banking can
also be done using the BIS banking statistics: Hattori and Suda (2007) and Minoiu and Reyes (2013) examine
international banking networks using BIS consolidated and locational banking statistics respectively.

11Not too surprisingly, simulation results show that a common, rather than idiosyncratic, component to bank
capital shocks is the most evident driver of rare events in this market (these are defined as an aggregate rate of
decline in loan syndication in excess of 30%). While, in the absence of a common component to bank equity shocks,
the market is quite stable, when a common component is introduced the distributions of withdrawals from lending
and of dissolved syndicates shows a long tail.

12This differs from the results of Caballero and Simsek (2013), who study the propagation of liquidity shocks
through interbank markets with the uncertainty about the network itself (e.g., Knightian uncertainty) serving as a
key driver.

13Specifically, we look at the distribution of the Euclidean distance between each pair of banks based on their
portfolio overlaps using the methodology of Cai, Saunders, and Steffen (2011).

14We look at new syndicated loans during year 2005 reported by Dealogic
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Since the network structure of the syndicated loan market may change over time and may be

sensitive to the sample selection of banks (e.g. our empirical network is based only on connec-

tions among banks which are themselves lead arrangers at least once during the sample period

and meet a certain threshold in their lending contributions), we do not take a stance on the

actual network structure of this market. Still, among different network structures, we find that

the homogeneous-degree network is least stable. The equilibrium distribution of withdrawals and

syndicate dissolutions in the homogeneous-degree network exhibits a form of bifurcation, whereby

the aggregate outcome in response to the same-size common equity shock can be in one of two

extremes: zero dissolved syndicates (hereafter referred to as dissolved loans) or more than 50%

dissolved. This points to a form of efficiency-stability trade-off characteristic of fragile market

structures (in the spirit of Battiston, Gatti, Gallegati, Greenwald, and Stiglitz (2012) and Cac-

cioli, Shrestha, Moore, and Farmer (2014)), should the actual empirical network approach this

homogeneous case.

Third, the empirical network exhibits a more stable core-periphery structure. The simula-

tion of aggregate withdrawals suggests that this actual loan network is more localized than the

homogeneous-degree network, which might subdue systemic events.

Lastly, we conduct two simple policy experiments. In one, we hit the bank with the highest

number of syndicate participations with a large unexpected negative equity shock. The resulting

simulations show only a moderate increase in the probability of large withdrawals and syndicate

dissolutions. This suggests that the failure of a very active bank may not necessarily generate a

large systemic event in this market given the current empirical network structure. In the other

experiment, we impose a tighter VaR constraint. Simulation results suggest that the greater

chance of violating the VaR constraint due to an equity shock induces banks to take on less risky

portfolios ex-ante.

The remainder of the paper is organized as follows. Section II presents the model. Section III

shows simulation results under alternative network topologies and shock distributions. Section

IV discusses the results of the two experiments. Section V concludes.

6



II. Model

This section develops a micro-founded model of syndicated lending.15 The basic setup resembles

Danielsson, Shin, and Zigrand (2012), Corsi, Marmi, and Lillo (2013), Adrian and Shin (2014),

and Caccioli, Shrestha, Moore, and Farmer (2014) whereby risk-neutral banks maximize returns

subject to a value-at-risk (VaR) constraint. The model is augmented with the formation of

syndicates, allowing banks to trade a share of a loan to benefit from risk-sharing.

Reflecting the specificity of the market, each project is financed by a lead arranger, which in

effect underwrites the loan. Lead arrangers follow a threshold rule: if hit by sufficiently large

adverse equity shocks or if a critical mass of syndicate participants withdraw, then the lead

arranger abandons the project. We refer to this process as “syndicate dissolution,” understanding

that in practice existing syndicates are not dissolved, but rather new syndicates are not formed.

The modelling sequence reflects lead arrangers’ forward-looking behavior, and can be thought of

as “planned syndicate” formation absent exogenous shocks to own or participating banks’ capital.

It also reflects long-term relationships between lead arrangers and the borrower and that a firm’s

sequential refinancing in the syndicated loan market largely takes place through the same set of

banks.

A. Autarky – No risk sharing

We begin by defining a benchmark without loan syndication (autarky). There are N investment

projects of equal size, X1, . . . , XN . For simplicity, we assume equal characteristics for all invest-

ment projects. We make a standard assumption in portfolio theory that the return to project j,

R′j , has an idiosyncratic (diversifiable) and a common (non-diversifiable) component. We assume

that R′j is normally distributed with mean R and variance σ2 + σ2
c , where σ2 and σ2

c denote

15The syndicated loan market follows an “originate-to-distribute model,” whereby the originating bank, dubbed
lead arranger or lead manager, retains about a third of each syndicated loan on average (Allen and Gottesman,
2006; Ivashina and Scharfstein, 2010b). The remaining share is sold to a syndicate of investors including banks,
pension funds, mutual funds, hedge funds, and sponsors of structured products. The lead arrangers screen and
monitor the borrower and typically have an informational advantage based on their long-term relationship with the
borrower (Allen, Gottesman, and Peng, 2012). The lead arrangers choose the participant lenders and administer the
loan/syndicate, whereas participant lenders essentially just fund the loan. Large loans are typically structured in
multiple facilities. All facilities are covered by the same loan agreement; however, they may have different maturity
or drawdown terms. One of the most obvious benefits of loan syndication has to do with a reduction in agency
problems and informational asymmetries (Dennis and Mullineaux, 2000; Ivashina, 2009). See Wilson (1968) for a
general theory of syndication and Pennacchi (1988) for a more general model of bank loan sales.
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the variance of the idiosyncratic and common components, respectively. We further assume that

banks can only invest into one project.

The bank’s investment is subject to a Value-at-Risk (VaR) constraint: Pr(R′jXj < −e) ≤ α,

where e is the bank’s equity (common across banks) and α is the tolerance level for insolvency

probability. Since R′j follows a normal distribution, the VaR constraint can be rewritten as

Φ((−e−R′jXj)/(σXj)) ≤ α, where Φ denotes the standard normal distribution function. Define

φ such that Φ(−φ) = α. Then the VaR constraint is expressed as

e+ E(R′jXj)√
V (R′jXj)

≥ φ (1)

where V (·) refers to variance. Namely, the VaR constraint requires that the ex-ante return-to-risk

ratio of bank j’s portfolio is greater than φ, which is determined by the tolerance probability α.

The lead bank is risk neutral and chooses Xj to maximize expected return subject to the VAR

constraint:

max
Xj

E(R′jXj) (2)

s.t. (e+RXj)
2 ≥ φ2(σ2 + σ2

c )X2
j (3)

where (3) is derived from (1). By solving the maximization problem, the optimal loan size is given

by X∗ = e/
(
φ
√
σ2 + σ2

c −R
)

. Thus, the total lending amount in autarky is simply derived as

NX∗.

B. Risk-sharing through the syndicated loan market

The total lending amount can be increased by risk-sharing through syndication of bank loans. A

lead arranger in project j in effect underwrites the loan. For tractability, we assume that a bank

can be the lead arranger in at most one project, so we use the notation bank j to indicate the

lead arranger of a syndicated loan for project j.

In the syndicated loan market, banks can trade a share of a loan. To model this, we assume

that loans are divisible and other banks can buy shares of the loan that bank j is lead-arranging.

The amount of the share, s, is set as an exogenous parameter, and for simplicity we assume that

it is equal among participating banks.
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As a participant of project j, the participating bank receives return R′j−f , where f denotes the

spread between return earned by the lead arranger and a participant. It reflects compensation to

lead arrangers for administering, screening, and monitoring the loan. In practice, f is determined

in complex ways and may not have a simple accounting counterpart in the contractual terms of

the loan. So, for simplicity we will assume that f is constant across loans and, following Ivashina

(2009), we will refer to it as a “fee.” In return for accepting a discount of f relative to lead

arrangers, participating banks benefit from the opportunity to invest in diversified projects at

low cost.

Let aj denote the lending to project j by lead bank j and s denote its lending to other projects.

Let Ωj denote the set of banks that lead projects that bank j joins as a participant. Let lj denote

the size of Ωj . Bank j’s future wealth is thus:

W ′j = R′jaj +
∑
i∈Ωj

(R′i − f)s (4)

where R′i thus denotes gross return to bank j for a project in which the bank is a participant

rather than lead arranger. Given (4), banks diversify their idiosyncratic project risk by choosing

optimal participation in the syndicates of other banks. The fee f appears only in the return

to participation lending (the second term), because the spread earned by arranging own loan

compensates dollar-for-dollar for administrative and other costs that a bank incurs as the lead

arranger. Under these assumptions we have:

E(W ′j) = Raj + (R− f)slj (5)

and

V (W ′j) = σ2(a2
j + ljs

2) + σ2
c (aj + ljs)

2. (6)

Note that the variance from the participation lending increases only linearly in lj if there was

no common component σc. The variance of bank’s own lending increases quadratically in a2
j .

This indicates that, when one considers diversification risks, then as banks’ syndicated portfolios

expand, the risk contribution from participation lending is lower than that of direct lending.
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Hence, banks benefit from risk-sharing by participating in the syndicated loans.16

The bank’s problem is to maximize E(W ′j) by choosing aj and lj subject to the VaR con-

straint:17

e+ E(W ′j)√
V (W ′j)

≥ φ. (7)

Since all banks face the same fee f and project attributes R, σ, and σc, the optimal choices a∗

and l∗ are symmetric across banks. The total amount of lending for project j is X = a∗+ l∗s, and

the total lending amount in this economy is NX. The total lending amount with syndication is

never smaller than that in autarky, NX∗. This can be shown as follows. When syndication is an

option, a bank can always achieve the level of expected wealth achieved in autarky by choosing no

syndication, l = 0. Therefore, the maximized expected wealth satisfies Ra∗ + (R− f)l∗s ≥ RX∗.

Using this, we obtain a∗ + l∗s ≥ X∗ + (f/R)l∗s. Thus, the economy can benefit by the risk-

sharing mechanism of bank syndicate formation. Intuitively, loan syndication increases total

lending, because a marginal shift from direct lending to syndicated lending increases the risk-

adjusted returns, which, in turn, allows a bank to choose a greater combined amount of direct

and syndicated lending.

C. Addition of bank capital shocks

As shown above, syndicated loans provide a means of risk-sharing among banks, and thus enhance

the total lending amount in an economy. However, the syndication may pave the way for a new

kind of aggregate risks through interlinked portfolios and interrelated decisions. In order to

capture such risks, we extend the previous model by incorporating a noise-ridden equity. We

assume that banks’ equity has an idiosyncratic stochastic component εj , so that bank j’s equity

can be written as e′j = e+ εj , where εj is normally distributed with mean 0 and variance σ2
e and

independent across j (later we will also relax the i.i.d. assumption, allowing instead for part of

16Note that in the autarky case we assumed that banks could invest in only one project as lead arrangers. Thus,
they were not able to spread investments across different loans and achieve benefits of diversification this way. In
a simple world of only one project per lead bank, syndication offers advantages by allowing banks to buy shares in
other lead banks’ loans. We note that similar gains may be obtained by allowing banks to diversify by investing in
different projects as lead arrangers. However, as we are interested in exploring the implications of different network
topologies when allowing banks to interact through syndication, we maintain the assumption of only one project
per bank as lead arranger and abstract from the possibility of diversifying loan portfolios as lead arrangers.

17This maximization problem has a solution when σ2 and σ2
c are sufficiently large relative to R. Note that lj is

chosen from the set of positive integers.
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the shock to be common across banks). We assume that εj is an exogenous shock, because this

study is interested in how an exogenous shock to bank’s equity can be propagated to other banks’

behavior through syndicated loans. Under these assumptions, the VaR constraint is modified as:

Pr(W ′j + εj < −e) ≤ α. (8)

We consider a situation where the equity risk realizes before the return risk realizes. There is

a chance that the VaR constraint is violated for some banks due to the realized equity risk. In

order to maintain the VaR constraint, some of these banks may find it optimal to withdraw from

some syndicates that they intended to participate in. To keep things tractable, we assume that

banks withdraw 100% of their participation s.18

We also postulate that in order to proceed with the syndicate, the lead bank is obliged to

compensate for the amount of any contributions withdrawn by other participants. Thus, the

withdrawal of a bank from a syndicate raises the risk exposure of the lead bank, inducing the

lead bank to withdraw from some another syndicates in order to meet the VaR constraint. We

model this situation below.

Events realize sequentially as follows. First, the banks decide on aj and lj , and the total

lending amount Xj = aj +
∑

i∈Ωj
lis is committed to project j. Second, the idiosyncratic equity

risk εj realizes. At this point, the participating banks may withdraw from the syndicate. If a

bank withdraws, the lead bank of the syndicate either fulfils the pledged lending by increasing its

own lending amount and adjusts its participation in other syndicates accordingly, or it decides to

dissolve its own syndicate. As a commitment device, the bank is required to withdraw from all

the other loans when it dissolves its own syndicate. In the final stage, the investment return R′j

realizes.

Let Ωj,0 denote the set of projects that j decides to withdraw from. Ωj,0 is a subset of Ωj ,

and its size is denoted by kj . Namely, kj denotes the number of syndicated loans withdrawn by

bank j. Also, let hj denote the number of participants which withdraw from the syndicated loan

that is led by bank j. That is, hj is the number of times that bank j appears in the set ∪Ni=1Ωi,0.

Using this notation, bank j’s wealth when the bank decides to maintain the syndicate is written

18Thus, banks are not allowed to optimize their withdrawals in a similar manner to how they optimize their
initial investments.
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as:

W ′j = R′j(aj + hjs) +
∑

i∈Ωj\Ωj,0

(R′i − f)s, (9)

whereas bank j’s wealth is zero (W ′j = 0) when j decides to dissolve the syndicate.

The intuition behind the model is as follows. Implicitly, we assume that, in the absence of

equity shocks, banks maintain the same syndicates (e.g., lending to the same borrowers), rationally

taking into account project risk, hence in each round we repopulate the model from the same

distribution. However, once banks’ equity shocks realize, some of them find it optimal to pull back

on their pre-commitments. To the extent that a withdrawal of a bank from a syndicate induces

the lead arranger to adjust its own behavior (either commit additional funds to its own syndicate

and reduce participation in other syndicates or dissolve the syndicate), this causes ripple effects

through the market.

D. Bank behavior

Second stage maximization (after εj and hj realize). In this extended model with equity

shocks, the VaR in the second stage (Pr(W ′j + εj < −e | εj) ≤ α) is different from that in the first

stage, because the equity risk realized: the denominator of the Sharpe ratio no longer includes

σ2
e , while the numerator is e+ εj instead of e. Thus, bank j’s decision in the second stage given

hj depends on the realized value of εj . When εj is sufficiently high, the bank maintains the

participation lj . When εj is low, it reduces lj − kj or dissolves the syndicated loan. This can be

seen as follows. Suppose that bank j experiences hj = 1 (i.e., one participating bank withdraws

from j’s leading loan). It increases j’s lending amount to project j from aj to aj + s, if j decides

to maintain the syndicate. aj was determined so that the VaR constraint in the first stage binds.

Thus, the increase to aj + s along with a decrease in lj necessarily violates the first stage VaR (if

the shock were known), because otherwise aj was not the optimal decision (mean return to the

leading loan is higher than the participating loan by the fee f). After observing hj = 1, bank

j decides to maintain the participation lj if realized εj is sufficiently large. Otherwise, bank j

decides to reduce its risk exposure by decreasing some participations (i.e., kj > 0) or by dissolving

its own syndicate altogether.

We can compute the policy of the bank as a threshold function of εj . For each realiza-
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tion of εj , given an equilibrium number of withdrawals hj , bank j chooses kj and whether

to maintain its leading project or not in order to maximize E(W ′(kj ; aj , lj , hj , εj)) subject to

Pr(W ′(kj ; aj , lj , hj , εj) < −e) ≤ α, where the expectation of W ′ is taken over project risks. The

wealth of bank j if the bank decides to maintain its own project is:

W ′(kj ; aj , lj , hj , εj) = R′j(aj + hjs) +
∑

i∈Ωj\Ωj,0

(R′i − f)s, (10)

and W ′(kj ; aj , lj , hj , εj) = 0 otherwise. Provided that the project is maintained, the bank’s wealth

follows a normal distribution with mean:

R(aj + hjs) + (R− f)(lj − kj)s (11)

and variance:

σ2((aj + hjs)
2 + (lj − kj)s2) + σ2

c (aj + hjs+ (lj − kj)s)2. (12)

Thus, the bank’s problem in the second stage (after εj realizes) is reduced to:

max
kj

R(aj + hjs) + (R− f)(lj − kj)s (13)

subject to:
e+ εj +R(aj + hjs) + (R− f)(lj − kj)s√

σ2((aj + hjs)2 + (lj − kj)s2) + σ2
c (aj + hjs+ (lj − kj)s)2

≥ φ. (14)

The bank chooses to dissolve if the above maximum expected wealth does not achieve 0. We

denote the maximized expected wealth E(W ′(kj ; aj , lj , hj , εj)) by W (aj , lj ;hj , εj).

First stage maximization. A bank’s problem in the first stage (before εj realizes) is

maxaj ,lj E(W (aj , lj ;hj , εj)) subject to Pr(W ′j + εj < −e) ≤ α. W (aj , lj ;hj , εj) is determined from

the second stage maximization, and the expectation is taken over εj and hj . The distribution

of equity shock εj is given exogenously. The distribution of hj , the number of participants

withdrawing from a syndicate arranged by bank j, is endogenously determined in equilibrium.

We assume that the equilibrium distribution of hj is regarded as an exogenous environment by

each bank. Let p(h) denote the probability for h to occur, where
∑h̄j

h=0 p(h) = 1 in which h̄j

denotes the number of participants originally planned before the equity shocks realize. The bank’s
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maximization determines an integer lj , and aj is determined by the VaR constraint with equality

holding.

Figure 2 shows the timing of events in the first and second maximization stages, with the

latter differentiated by the shaded region.

Figure 2. Timeline with bank equity shocks

Banks’ policy functions. Banks’ policy functions are aj , lj and kj(aj , lj , hj , εj). q0 = Pr(εj >

ε̄), where ε̄ is the minimum εj such that kj(aj , lj , 0, ε) = 1, denotes the probability of bank j

withdrawal from a syndicated loan even when there are no banks withdrawing from j’s project.

E. Rational expectations equilibrium

The probability distribution p(hj) is determined by other banks’ policy functions and the network

structure. An equilibrium is characterized by the probability distribution p(hj) plus the policy

functions aj , lj and kj(aj , lj , hj , εj), such that the policy functions solve the bank’s maximization

problem given p(hj). The equilibrium p(hj), in turn, is consistent with the bank’s policy functions,

the distributions of shocks εj , and the network structure. The equilibrium maps a realization

of the equity shock profile (εj) to the outcomes (hj), withdrawals from syndicate j, and (kj),

withdrawals or own syndicate dissolution by lead arranger j. Thus, the equilibrium fluctuations

of
∑

j hj and
∑

j kj are well defined.

III. Model simulations

In this section, we investigate the fluctuations of the numbers of withdrawals
∑

j kj and dissolu-

tions. We are particularly interested in the tail part of the distribution of
∑

j kj , which signifies

14



the endogenous rare-event risk in the syndicated loan market that arises from the propagation

effects of participations. By numerically simulating the rational expectations equilibrium de-

fined above, we evaluate the rare-event probability at the systemic level. The simulations are

conducted under three alternative network structures. First, we simulate a homogeneous-degree

network, which corresponds to the benchmark model. Second, we simulate shock propagation in

a network with uniform degree distribution. This corresponds to the weighted degree distribution

of a network based on the Euclidean distance of banks’ syndicated loan portfolios (this is based

on the methodology of Cai, Saunders, and Steffen 2011). Third, we conduct simulations in an

alternative network, constructed using directed links between the 82 most active banks in our

sample.

We also explore how the distributions of withdrawals and dissolutions change under different

distributions of bank equity shocks, including when part of the shock is common across banks.

The common equity shock captures an environment such as the 2008 subprime crisis, when many

banks faced the prospect of capital shortfall at once. Specifically, we let εc denote the common

component to the equity shock. Then, j bank’s equity becomes e′j = e+
√
θεc +

√
1− θεj ; where

εc ∼ N(0, σ2
ec), εj ∼ i.i.d. N(0, σ2

e), and σ2
ec = σ2

e .19 We assume that the banks observe realizations

of e′j , but they do not observe realisations of εc and εj independently. Namely, the banks do not

know how much of the realized equity shock is caused by the loading on the common factor

and how much is specific to their institution. As a result, they still solve the same optimization

problem as when all of variation in e′j is idiosyncratic. This mimics the environment of interbank

market freezes in the U.S. and Europe following the subprime shock, when banks were essentially

unable to accurately assess the solvency of other institutions. We conduct simulations for three

alternative loadings of shocks on the common component: θ = 0, θ = 0.05, and θ = 0.50.20

A. Parameter choice

We calibrate model parameters to match broad features of the syndicated loan market. Table

I shows calibrated parameters. We construct the networks using syndicated loan transactions

from Dealogic, including information on 2-SIC codes, deal nationality, and tranche amounts. The

19Since the weight θ on the common component of equity shock is a free parameter, the standard deviation of
εc is effectively a normalization parameter in the simulations. The situation where the standard deviations differ
between the common and idiosyncratic components can be expressed by adjusting the value of θ.

20Note that θ = 0 corresponds to the benchmark case of no common equity shock.
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aggregate parameter calibrations are guided by information on mean and standard deviations

of loan spreads (obtained from Dealogic), bank capital ratios (obtained from Bankscope), and

default likelihood (obtained from Bloomberg). Specifically, from Dealogic we obtain tranche-level

data on lead and participating banks, their role in the syndicate, tranche signing and maturity

date, interest rate spread on the loan, and percentage of loan amount allocated to each bank. We

then merge this with the data from Bankscope on bank capital ratios (Bankscope item 18155),

and with data on market-based estimates of bank default likelihood (Bloomberg DRSK). In all,

we obtain consistent coverage for syndicated lending by the 82 most active/largest global banks

in the years 2005-2007.21

Table I. Exogenous parameters

mean excess return R 0.05
standard deviation of returns σ 0.14
standard deviation of common returns shock σc 0.01
equity (normalized) e 1
standard deviation of idiosyncratic equity shock σe 0.01
standard deviation of common equity shock σec 0.01
VaR confidence level set to 99% α 0.01
number of banks N 82
average number of participants observed in the dataset l̄ 6
loan amount per participant s 0.1
weight of common equity component θ 0, 0.05, and 0.50

The total number of banks is set at 82, corresponding to the number of banks in the merged

dataset. The average number of participants is set to 6, based on the Dealogic sample once banks

with average loan share of less than 0.5% are excluded. In the simulation, we set the starting

value for the loan share per participant to 0.1, which leaves lead arranger with loan share four

times that of a typical participant. The size of equity is normalized to 1, and the standard

deviation of equity risk is set at 1% for both idiosyncratic and common components, which also

keeps equity risk small enough not to cause default by itself. The standard deviation of common

returns shock is also set at 1%. We set σ to 14%, which corresponds to 2.3% default risk of

the investment project j. The average crisis-period default risk is calculated using market-based

default likelihood measure (DRSK) from Bloomberg for the subsample of 50 banks (since the

21The Dealogic database has 706,385 observations from 2005 through 2007. We limit the bank sample to the
largest 131 banks. Combined, they account for 63.98% of all observations during this sample period. However, we
are able to match only 82 banks with Bankscope’s balance sheet data.
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DRSK measure is not available for all institutions in the sample, for example Bloomberg does

not provide the measure for Japanese banks).22

For the computation of the policy functions, we start from an initial guess of fee f and

a binomial distribution for p(h) and then solve the bank’s maximization problem numerically.

Then we run simulations with the policy functions and the network and obtain simulated p(h).

Then we solve the maximization by again using the simulated p(h). The procedure is repeated

until we observe convergence of p(h). Once p(h) converged, we check if l̄ is the optimal number of

participations a bank chooses. If l̄ is optimal, then we obtain the solution. Otherwise, we update

f and go back to the iteration on p(h). Further details of the computation sequences are shown

in Appendix A.

B. Simulation results under homogeneous-degree network

The benchmark model employs a homogeneous-degree network, in which the number of partici-

pants l̄ is set to a constant across projects. Given the constant degree, the pair of a lead and a

participating bank is drawn randomly.23 With a finite number of banks i = 1, . . . , N , we draw the

network in our simulation as follows. First, we choose l̄ participating banks randomly for bank

i = 1. Next, we choose l̄ participating banks for i = 2 randomly from the banks with the least

number of existing participations (0 in this case). If the banks with 0 participation are less than

l̄, then we choose those banks and choose the remaining number of participation banks randomly

from the banks with 1 participation. Then, we repeat the process for i = 3, . . . , N .

No common equity shocks. As explained before, we model the equity shock as composed

of two components, an idiosyncratic and a common component, so that j bank’s equity is e′j =

e+
√
θεc+

√
1− θεj , where θ is the contribution of the common component of the equity shock. We

start by simulating a situation with no common equity shocks, so that θ = 0. Panel A of Figure

3 shows the distributions of the number of withdrawals and the number of dissolutions obtained

by 10,000 Monte-Carlo simulations of the equilibrium with a homogeneous-degree network and

no common equity shocks.

22As we do not observe the life of the loan in Dealogic, only information at the origination, we do not have
accurate information on the number of defaulted loans. Therefore, we use an institution-level default likelihood
measure from Bloomberg, which averages 2.3% for our sample of banks during the crisis period (year 2008).

23This type of network is sometimes called the configuration model in the network literature.
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With a homogeneous-degree network, the withdrawal rate has a thin tail. This indicates that

while the market does exhibit some aggregate fluctuations arising from idiosyncratic equity shocks

and interrelated share decisions, the likelihood of massive withdrawal events is very low.

Common equity shocks. Now we assume that a portion of the equity shock is common across

banks. Importantly, banks know the aggregate distribution of the shock, but cannot identify what

portion of e′j is idiosyncratic or common. Panel B of Figure 3 shows the rate of withdrawals and

the ratio of dissolved loans in the case of a common shock of 5% of banks’ equity (θ = 0.05). We

now observe a slightly longer tail in the distribution of dissolutions.

Panel C of Figure 3 shows simulation results for the case of 50% of equity risk being common

across banks (i.e., equal contributions from common and idiosyncratic components of equity

shock so that θ = 0.50). As the comparison with the case of 5% common shock in Panel B

indicates, the equilibrium rate of withdrawals from syndication and the dissolution rate are quite

sensitive to the correlation of equity shocks across banks. The propagation effects of syndicated

lending are best gleaned by comparing the left-hand panels of the figure: the tail structure of the

withdrawal distribution changes considerably. As bank equity shocks exhibit greater correlation,

the withdrawal distribution begins to display fat tail features, with maximum withdrawal rate

exceeding 30% in some cases.

C. Comparison to a restricted model without syndicated interconnectedness

How does the aggregate risk seen in the previous network model compare with the case with no

interaction across banks? To answer this question, we consider a restricted case of the two-stage

maximization problem by adding an additional constraint l=0 – that is by shutting off syndicate

participation. The equity risk realizes after a bank decides its project size. The bank shuts

down its project when it incurs a large negative equity shock such that the project risk violates

the VaR constraint given the realized equity shock. The project size is chosen to maximize the

expected wealth under the VaR constraint such that the probability that the bank faces either

the dissolution of the project due to the equity risk or insolvency caused by the project risk is

less than 1%.

Since banks no longer share the project risk through syndication, the number of dissolved
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Panel A. No common equity shocks (θ = 0)
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Panel B. 5% of equity risk is common across banks (θ = 0.05)
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Panel C. 50% of equity risk is common across banks (θ = 0.50)
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Figure 3. Distributions of withdrawals and dissolutions under different common equity risks
across banks. Left: Rate of withdrawals

∑N
j=1 hj/(Nl̄); Right: Ratio of dissolved loans to total

loans N .

projects follows a binomial distribution if the equity shock is independent across banks. When

the probability of dissolution is small, the number of dissolved projects asymptotes to a Poisson

distribution. A simulated distribution for the number of dissolved projects with no common

equity risk shown in the left-hand panel of Figure 4 confirms this prediction. The center panel of

Figure 4 shows the distribution when 5% of equity risk is common across banks. We observe a

slightly extended tail distribution, but the difference from the case without common shock is not

large. However, we observe a great difference when the common shock comprises 50% of equity
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risk, as shown in the right-hand panel of Figure 4. As can be seen, the tail events can induce

20%-50% of dissolutions of total projects.
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Figure 4. Ratio of dissolved loans to total loans in a model restricted by l=0: no syndicated
interconnectedness. Left: No common equity risk across banks (θ = 0) Center: 5% of equity risk
is common across banks (θ = 0.05). Right: 50% common equity risk (θ = 0.5).

The long tail under the large common equity risk can be understood as follows. Since banks

maximize the expected wealth, they take on as much risk as the VaR constraint allows them. Even

though the idiosyncratic component of equity risk makes the banks’ risk position heterogeneous,

they are still similar enough relatively to the large common equity risk. Hence, many banks

find themselves below the dissolution threshold when a large negative common shock hits. This

indicates that when the common shock is large enough, the aggregate risk of dissolutions exists

and will show up as fat tails in the aggregate distribution even without interacting behavior of

banks.24 However, the interaction does transform the magnitude and distributional form of the

aggregate risk. By comparing the distributions of dissolved loans with and without interaction

under a 50% common shock, we note that the interaction amplifies the extent of tail events. Also,

by comparing the distributions under a 5% common shock, we clearly observe that the aggregate

tail event is present with interacting banks but not present with independent banks.

The relation of the realized common shock to the total number of dissolved loans also differs

between the cases with and without interactions. Figure 5 illustrates this through scatterplots of

the number of dissolved loans against the realized common shocks observed in simulations under

a 50% common equity shock. The left-hand panel shows the case without interaction, while the

right-hand panel shows the case with interaction through syndication.

24This is similar to the “coherent noise” mechanism proposed by Sneppen and Newman (1997), where the maxi-
mization behavior of banks replaces the function of the extinction dynamics in the coherent noise mechanism.
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When banks are independent, the tail events of large dissolutions of loans are almost always

associated with the realization of large negative common shocks. However, when banks are

interacting through syndicated lending, this relation disappears. There are incidents of massive

dissolution of loans even when the negative common shock is mild, and there are numerous

incidents of few dissolutions even when the common shock is large and negative. Therefore, with

interacting banks, a mildly negative common shock is a necessary condition for the tail aggregate

risk, but whether the risk materializes or not depends on the configuration of idiosyncratic shocks

to the bank network.
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Figure 5. Scatterplots of realized common shocks and number of dissolved loans in simulations
with 50% common equity risk (θ = 0.50). Left: Model restricted to l=0: no syndicated
interconnectedness Right: Homogeneous-degree network model.

D. Heterogeneous degree network

Next, we begin to incorporate additional empirical network features using market data. The first

network structure we consider is based on banks’ connectivity measured using commonalities in

their syndicated loan portfolios. This measure of syndicated interconnectedness is based on Cai,

Saunders, and Steffen (2011). Let wi,j denote the weight bank i invests in syndicate j such that

for each bank
∑J

j=1wi,j = 1, where J is the number of deals in year t. We compute the Euclidean

distance between bank m and bank n in the J-dimensional space:

dm,n =

√√√√ J∑
j=1

(wm,j − wn,j)2. (15)

If neither bank m nor bank n is a lead arranger in loan j, then (wm,j − wn,j) is not counted
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(i.e., set to missing).25,26 Then a measure of the degree of connectedness for bank m with other

banks through participation in common syndicates in year t is given by degm =
∑N

n 6=m dm,n.

The deal network constructed in this way exhibits a uniform degree distribution, which appears

stable through the time sample.27 This implies that the banks are rather heterogeneous in terms

of degrees, when these are computed based on syndicated loan portfolio weights. To mimic this

network, we need to extend the model so that it allows a network with heterogeneous in-degrees

(the number of banks participating in a project) and heterogeneous out-degrees (the number of

projects that a bank participates in).

We extend the model by allowing the equity ej and participation fee fj to be heterogeneous

across banks. Equity ej is set proportional to the number of participants in the project led by j,

while the equity of a bank with l̄ = 6 participants is normalized as ej = 1 as in the homogeneous

case. The fee fj is calibrated such that bank j chooses the number of participations lj as observed

in the data.

Bank j chooses fewer participations lj when the fee fj is high. Finally, we redefine the

withdrawal hazard function pj(hj) to be dependent on j, since the probability of having hj banks

withdrawing from j’s project depends on the number of initial participants and the network

position of bank j. Thus, the rational expectations equilibrium requires each pj(hj) to be equal

to the simulated hazard function for each bank j.

Using the rational expectations equilibrium with a heterogeneous-degree network, we simulate

the aggregate distributions of withdrawals and dissolutions. To mimic the empirical degree distri-

bution above, we use the uniform distribution, and have an average number of participants equal

to 6, which is the average number of participants observed in the data. Thus, in this simulation

we draw a network of 88 banks, and have equal numbers of banks for degrees 1, 2, . . . , 11.28

Figure 6 shows the aggregate fluctuations under the heterogeneous-degree network. Compared

25While Cai, Saunders, and Steffen (2011) compute the distance measure using syndicated portfolio commonalities
based on cross-syndication in same industries (2-digit SIC code) or countries, we apply the same measure to cross-
syndication at the loan level, j. This is possible because the degree of cross-syndication in this market is relatively
high.

26Following Ivashina and Scharfstein (2010a), if a bank’s role is that of an administrative agent, arranger,
bookrunner, documenting agent, facility agent, mandated arranger, or syndication agent, the bank is designated as
a lead arranger. In most cases, one lead arranger assumes most of these roles, while the database identifies other
banks only as participants.

27See Figure 12 in Appendix B, which shows histograms of degm for selected years.
28Namely, there are 8 banks that lead projects with 1 participant, 8 banks with 2 participants, and so forth.

This approach ensures an average number of participants of 6.
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Figure 6. Heterogeneous-degree network: Left: Simulated histograms of the aggregate
withdrawals. Right: Simulated histograms of the dissolved loans.

with the case of a homogeneous degree distribution, we observe that the distributions do not have

jumps. Moreover, we observe that the distributions of withdrawals and dissolutions both exhibit

longer tails. We interpret this as an effect of heterogeneity in the degree distribution.

Importantly, the common component of equity risk does affect the tail risk greatly for the

dissolved loans, but does not affect the tail distribution for the withdrawals as much. This implies

that the aggregate adjustments of syndicated loans for the event of common equity shocks occur

at the extensive margin rather than the intensive margin. In other words, syndicate dissolutions

dominate as the margin of adjustment. This is consistent with the syndicated loan market collapse

in 2008, when the average tranche size decline was moderate, only 13% (from $ 305 million to

$266 million), but the number of tranches declined from 15,070 to 11,556 (a 23% decline).

E. Alternatively defined empirical bank network

Next, we define an empirical bank network alternatively by focusing on whether each pair of

banks has an arranger–participant relation at all. To define the network, we use Dealogic data

on loans signings completed in 2005. We observe 82 banks that participate in any loan with a

significant level of share, which we define below. For each loan, we identify which banks take a

lead role and which banks are participants. Then, we form a directed link from a participant bank

to a lead bank. This structure is robust to cases with multiple lead arrangers, in which case each
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lead bank receives a directed link from participants. Hence, we depart from one lead arranger

per loan assumption made in the model, with each node in the network instead representing a

bank, but not necessarily a unique loan/syndicate.

Figure 7. Directed network of banks in the syndicated loan market. A directed link is drawn
from a participating bank to a lead bank.

We choose the threshold level of share to identify participating banks at 0.5% so that the

average degree of this network is comparable to the homogeneous case above (i.e., l̄ = 6). With

this threshold value, we count 465 links among 82 banks. This empirical bank network is visualized

in Figure 7, with the distribution of the number of participations by a bank shown in Figure 8.

In the directed network of banks, this distribution can be called an out-degree distribution.

Both figures point at a core-periphery network structure, with a core of highly connected banks

surrounded by banks with only few syndicated connections.29

Figure 9 shows simulation results of aggregate withdrawals and dissolved loans when bank

capital shocks propagate through this actual network. The left-hand panel shows the simulated

histograms of the aggregate withdrawals for the cases with a 5% and a 50% common equity shock.

The right-hand panel shows the simulated histograms of the dissolved loans.

29In a different context, such core-periphery topology has been found to be a robust feature of interbank networks
across different jurisdictions. See, for example, ? for the Fed Funds market, Craig and von Peter (2014) for the
German banking system, and Fricke and Lux (2014) for Italian payment system.
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Figure 9. Simulated fluctuations in empirical lead-participant network: Left: Simulated
histograms of aggregate withdrawals. Right: Simulated histograms of dissolved loans.

The distributions of withdrawals and dissolutions under this empirical network are similar

to the distributions in the heterogeneous degree case. The aggregate fluctuations obey smooth

distributions, reflecting heterogeneous degrees. The aggregate risks are evidently present: the

withdrawal rate can reach 15-20% and the dissolution rate can exceed 50% for the case with a

50% common equity shock. Similar to the heterogeneous degree case, we also observe that the

tail distribution for withdrawals does not depend on the common component of equity risk, but

the tail for the fraction of dissolved loans is significantly amplified by the common equity risk.
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IV. Two simple experiments

The model of syndicated lending nested in the empirical network of interconnected banks allows to

run various experiments. Here, we present the results based on two simplified scenarios potentially

of interest to policy makers and for future analysis. The first one tests the robustness of the

market when a highly interconnected institution (in the syndicated loan market) fails; the second

experiment studies the propagation of bank capital shocks assuming tighter regulatory capital

requirements.

A. What if the most active bank fails?

First, we conduct an experiment on the effect of a targeted shock by using the heterogeneous-

degree network model. We select the bank which has the highest number of participations. Then,

we shock that bank with an unexpected 10σ decline in equity, while all the other shocks are

randomly drawn as in previous simulations. Figure 10 shows the aggregate fluctuations that arise

from this large negative shock to the most active bank. In the figure, we re-plot the benchmark

distribution without the attacks that were shown in Figure 6. We observe more incidents of

withdrawal rates less than 0.15 in the case of an attack. This is a natural consequence of a

forced distress to a bank. However, the tail distribution of the withdrawal does not exhibit any

pronounced shift. Similarly, the distribution of dissolutions does not deviate from the benchmark

case without attacks.

This result suggests that the failure of the most active bank in this market may not necessarily

trigger a large systemic event. This may not be too surprising, given that the bank network

considered here is not based on interbank lending/borrowing relationships. Furthermore, even

for direct on-balance sheet interlinkages, the networks have been found to be robust. For example,

Furfine (2003) conducts simulations using federal funds market data, Upper and Worms (2004)

look at German interbank maker, while Mistrulli (2011) studies Italian payment system, with all

finding some contagion but very limited system losses in response to a single bank failure.30

In our model, a large number of dissolutions occur when a group of banks, each of which draws

30This literature generally finds that for the systemic contagion to occur additional factors must be present on
top of an idiosyncratic bank shock. For example, Upper and Worms (2004) conclude that a failure of one bank can
affect sizeable impact only in association with large loss rates on interbank loans.
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a negative equity shock, happen to be connected through syndicated loans. On the one hand, the

most active bank is likely to be included in this connected group of damaged banks. On the other

hand, it is not necessarily the case that the most active bank always triggers the propagation of

dissolutions. Rather, it is likely that there are some other triggering banks in the group, because

the group has a large number of banks. Due to these latter effects, our result suggests that the

occurrence of rare events is not conditional on the most active bank drawing an extremely large

idiosyncratic shock. Instead, the rare systemic event occurs through the configuration of negative

shocks to the network, independent on which exact bank triggers the propagation.
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Figure 10. Targeted attack (assuming a 50% common equity shock): Left: Simulated
histograms of the aggregate withdrawals. Right: Simulated histograms of the dissolved loans.

B. More conservative risk management.

We now turn to the implications of banks running more conservative risk management. In a very

simplified way, banks can set aside capital in proportion to the VaR-based confidence interval of

potential loss. The previous simulations were conducted assuming a 99.0% confidence interval

of not breaching the implicit capital threshold (φ=2.33). We now raise the confidence interval

to 99.5% (φ=2.56).31 We perform this experiment under the heterogeneous-degree network,

since this is the network that best resembles the way banks are connected in the syndicated loan

31While the actual VaR constraint might be more strict, it is not desirable to push the threshold too close to the
value of one because numerical implementation can become unstable. Still, this simplified framework is consistent
with banks operating at the point at which they feel the restriction binding given the cushion they deem appropriate
in terms of their risk management.
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market from their asset side (i.e., based on portfolio commonalities derived from cross-syndication

to same borrowers). The distributions of withdrawals and dissolutions under the new tighter VaR

constraint are shown in Figure 11.

The simulations suggest that a tighter VaR constraint leads to more incidents of non-zero

aggregate withdrawals and dissolutions. However, conditional on non-zero withdrawals or disso-

lutions, the distributions exhibit little difference between the cases of tight and loose constraints.

This is because the tighter VaR constraint produces two effects. First, it induces more withdrawals

and dissolution decisions in the second stage after the realization of equity shocks if the risk-taking

decision in the first stage is fixed. Second, the tight VaR constraint induces less risk-taking (by

having a smaller project size aj) in the first stage, as the banks anticipate more instances of

withdrawals and dissolutions upon the realization of equity shocks. These two countervailing

effects result in the similar distribution of systemic events, as long as some withdrawals/dissolved

syndicates occur.

V. Conclusion

Syndicated lending has evolved into a key vehicle through which banks lend to large corporations.

At the same time, the market is also quite volatile, with the volume of lending contracting by

almost a half in 2008. We show that such rapid contractions in lending can arise when banks’

reliance on a common risk management technology, such as value-at-risk (VaR), is combined with

their exposure to common borrowers through loan syndication.

We develop a micro-founded model with capital-constrained banks which are allowed to form

syndicates. The syndicated loan market emerges naturally in equilibrium because forming con-

nections with other banks by sharing exposures to common borrowers allows banks to diversify

credit risk while also increasing lending in aggregate. However, particular market features, such

as bank interconnectedness through common syndicates and distinct roles of lead arrangers, pro-

duce threshold effects that can lead to significant non-linearities when banks are hit with a shock

to their equity capital.

Model simulations under different network topologies show that there are instances of large

numbers of dissolved loans even when the negative common shock is mild. Such tail risk appears

strongest in the homogeneous-degree network, where we observe considerable non-linearity in the
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Panel A. 5% of equity risk is common across banks (θ = 0.05)
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Panel B. 50% of equity risk is common across banks (θ = 0.50)
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Figure 11. Tightening the VaR constraint. Heterogeneous degree network. Left: Rate of
withdrawals

∑N
j=1 hj/(Nl̄); Right: Ratio of dissolved loans to total loans N .

aggregate outcome: virtually no adjustments as well as an explosion in the number of dissolved

loans are both possible in response to the same-size negative common shock.

The distributions of the adjustment size in heterogeneous networks are smoother. These are

the network with uniformly distributed degrees and the empirical network of banks with directed

links to lead arrangers from banks participating in a syndicated loan. Importantly, the degree

distribution of the empirical directed network exhibits a core-periphery structure, which is more

localized than a homogeneous-degree network, so might subdue systemic events.

We show the potential usefulness of the framework developed in this paper via two simplified
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experiments. In the first, we hit a bank that has the highest number of syndicate participations

with a large unexpected negative equity shock. The simulation results show only a moderate

increase in the probability of sizeable pullback from lending and dissolved syndicates, suggesting

that the failure of a highly active bank may not necessarily generate a large systemic event in

this market – a sign of robustness, given the empirical core-periphery network structure.

In the second experiment, we tighten the VaR constraint to mimic more conservative risk

management by banks. Simulation results suggest that the greater chance of violating the VaR

constraint due to bank capital shocks is largely offset by the banks’ preventive measure to unload

risks beforehand. Both experiments show that banks’ purposeful behavior and rational expecta-

tions considerably affect the predicted likelihood of a systemic event in a bank network model.

Still, further extensions of the model and simulation would be required before any conclusions

about the market’s resilience to financial sector shocks and policy implications can be made with

greater confidence.

30



References

Adrian, T., and N. Boyarchenko (2012): “Intermediary leverage cycles and financial stabil-

ity,” FRB Staff Reports 567, Federal Reserve Bank of New York.

Adrian, T., and H. S. Shin (2010): “Liquidity and leverage,” Journal of Financial Intermedi-

ation, 19(3), 418–437.

(2014): “Procyclical Leverage and Value-at-Risk,” Review of Financial Studies, 27(2),

373–403.

Agarwal, S. (2010): “Distance and Private Information in Lending,” Review of Financial Stud-

ies, 23(7), 2757–2788.

Allen, L., and A. A. Gottesman (2006): “The Informational Efficiency of the Equity Market

As Compared to the Syndicated Bank Loan Market,” Journal of Financial Services Research,

30(1), 5–42.

Allen, L., A. A. Gottesman, and L. Peng (2012): “The impact of joint participation on

liquidity in equity and syndicated bank loan markets,” Journal of Financial Intermediation,

21(1), 50–78.

Antonakakis, N. (2012): “The great synchronization of international trade collapse,”Economics

Letters, 117, 608–614.

Battiston, S., D. D. Gatti, M. Gallegati, B. Greenwald, and J. E. Stiglitz (2012):

“Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk,” Journal of

Economic Dynamics and Control, 36(8), 1121–1141.

BCBS (2012): “The policy implications of transmission channels between the financial system

and the real economy,” Basel Committee on Banking Supervision Working Paper, 20, Bank for

International Settlements.

(2013): “Literature review of factors relating to liquidity stress - extended version,” Basel

Committee on Banking Supervision Working Paper, 25, Bank for International Settlements.

Berrospide, J. M., and R. M. Edge (2010): “The effects of bank capital on lending: What

do we know, and what does it mean?,” International Journal of Central Banking, 6(4), 5–54.

31



Bos, J. W., M. G. Contreras, and S. Kleimeier (2013): “The evolution of the global

corporate loan market: A network approach,” Mimeo, Maastricht University.

Caballero, J., C. Candelaria, and G. Hale (2009): “Bank relationships and the depth of

the current economic crisis,” FRBSF Economic Letter.

Caballero, R. J., and A. Simsek (2013): “Fire Sales in a Model of Complexity,” Journal of

Finance, 68(6), 2549–2587.

Caccioli, F., M. Shrestha, C. Moore, and J. D. Farmer (2014): “Stability analysis of

financial contagion due to overlapping portfolios,” Journal of Banking & Finance, 46(0), 233 –

245.

Cai, J., A. Saunders, and S. Steffen (2011): “Syndication, Interconnectedness, and Systemic

Risk,” NYU Working Papers FIN-11-040, NYU.

Carlson, M., H. Shan, and M. Warusawitharana (2013): “Capital ratios and bank lending:

A matched bank approach,” Journal of Financial Intermediation, 22(4), 663 – 687.

Chui, M., D. Domanski, P. Kugler, and J. Shek (2010): “The collapse of international bank

finance during the crisis: evidence from syndicated loan markets,” BIS Quarterly Review.

Cornett, M. M., J. J. McNutt, P. E. Strahan, and H. Tehranian (2011): “Liquidity

risk management and credit supply in the financial crisis,” Journal of Financial Economics,

101(2), 297 – 312.

Corsi, F., S. Marmi, and F. Lillo (2013): “When Micro Prudence Increases Macro Risk: The

Destabilizing Effects of Financial Innovation, Leverage, and Diversification,” Mimeo, Available

at SSRN: http://ssrn.com/abstract=2278298.

Craig, B., and G. von Peter (2014): “Interbank tiering and money center banks,” Journal of

Financial Intermediation, 23(3), 322–347.

Danielsson, J., H. S. Shin, and J.-P. Zigrand (2012): “Procyclical Leverage and Endogenous

Risk,” LSE working papers, London School of Economics.

Dennis, S. A., and D. J. Mullineaux (2000): “Syndicated Loans,” Journal of Financial

Intermediation, 9(4), 404–426.

32



Devereux, M. B., and J. Yetman (2010): “Leverage Constraints and the International Trans-

mission of Shocks,” Journal of Money, Credit and Banking, 42, 71–105.

Fricke, D., and T. Lux (2014): “Core-Periphery Structure in the Overnight Money Market:

Evidence from the e-MID Trading Platform,” Computational Economics, doi:10.1007/s10614-

014-9427-x.

Furfine, C. H. (2003): “Interbank Exposures: Quantifying the Risk of Contagion,” Journal of

Money, Credit and Banking, 35(1), 111–128.

Gadanecz, B. (2011): “Have lenders become complacent in the market for syndicated loans?

Evidence from covenants,” BIS Quarterly Review.

Gambacorta, L., and D. Marques-Ibanez (2011): “The bank lending channel: lessons from

the crisis,” Economic Policy, 26(66), 135–182.

Gambacorta, L., and P. E. Mistrulli (2004): “Does bank capital affect lending behavior?,”

Journal of Financial Intermediation, 13(4), 436–457.

Haas, R. D., and N. V. Horen (2012): “International shock transmission after the Lehman

Brothers collapse: Evidence from syndicated lending,” American Economic Review, 102, 231–

237.

Hale, G. (2012): “Bank relationships, business cycles, and financial crises,” Journal of Interna-

tional Economics, 88(2), 312–325.

Hale, G., C. Candelaria, J. Caballero, and S. Borisov (2011): “Global banking network

and international capital flows,” Mimeo, Federal Reserve Bank of San Francisco.

Hale, G., C. Candelaria, J. Caballero, and S. Borisov (2013): “Bank linkages and

international trade,” FRBSF Working Papers 2013-14, Federal Reserve Bank of San Francisco.

Hale, G., T. Kapan, and C. Minoiu (2013): “Crisis Transmission in the Global Banking

Network,” Mimeo, Workshop on the Economics of Cross-Border Banking, Paris, December

13-14.

Hattori, M., and Y. Suda (2007): “Developments in a cross-border bank exposure network,”

in Research on global financial stability: the use of BIS international financial statistics, vol. 29

of CGFS Papers chapters, pp. 16–31. Bank for International Settlements.

33



He, Z., and A. Krishnamurthy (2013): “Intermediary Asset Pricing,” American Economic

Review, 103(2), 732–70.

Ivashina, V. (2009): “Asymmetric information effects on loan spreads,” Journal of Financial

Economics, 92(2), 300–319.

Ivashina, V., and D. Scharfstein (2010a): “Bank lending during the financial crisis of 2008,”

Journal of Financial Economics, 97(3), 319–338.

(2010b): “Loan Syndication and Credit Cycles,” American Economic Review, 100(2),

57–61.

Minoiu, C., and J. A. Reyes (2013): “A network analysis of global banking: 1978–2010,”

Journal of Financial Stability, 9(2), 168–184.

Mistrulli, P. E. (2011): “Assessing financial contagion in the interbank market: Maximum

entropy versus observed interbank lending patterns,” Journal of Banking & Finance, 35(5),

1114–1127.

Pavlova, A., and R. Rigobon (2008): “The Role of Portfolio Constraints in the International

Propagation of Shocks,” Review of Economic Studies, 75(4), 1215–1256.

Pennacchi, G. G. (1988): “Loan Sales and the Cost of Bank Capital,” Journal of Finance,

43(2), 375–396.

Ruckes, M. (2004): “Bank Competition and Credit Standards,” Review of Financial Studies,

17(4), 1073–1102.

Sneppen, K., and M. Newman (1997): “Coherent noise, scale invariance and intermittency in

large systems,” Physica D, 110, 209–222.

Upper, C. (2011): “Simulation methods to assess the danger of contagion in interbank markets,”

Journal of Financial Stability, 7, 111–125.

Upper, C., and A. Worms (2004): “Estimating bilateral exposures in the German interbank

market: Is there a danger of contagion?,” European Economic Review, 48(4), 827–849.

van Wincoop, E. (2013): “International Contagion through Leveraged Financial Institutions,”

American Economic Journal: Macroeconomics, 5(3), 152–89.

34



Wilson, R. (1968): “The Theory of Syndicates,” Econometrica, 36(1), 119–132.

35



A. Simulation computation strategy

Our main objective is to obtain the distributions of the number of withdrawals
∑

j kj and the

number of dissolutions. We obtain the distributions by Monte-Carlo simulations of the equi-

librium. The following is the computation algorithm for the case of the homogeneous-degree

network, where the degree is given by l̄.

1. Initialize f and the first-stage policy functions aj , lj

(a) Solve for f so that lj = l̄

i. Pick initial f and set p(0) = 1 (there is no withdrawals)

ii. Solve the bank’s first-stage maximization problem

iii. Adjust f by bisection method until lj = l̄ is obtained

2. Set p as a binomial distribution with the probability for a bank to withdraw due to the

equity shock and population lj (this forms a “naive” expectation in which banks do not take

into account the fact that withdrawal behaviors may be correlated)

(a) Solve the second-stage maximization and obtain the expected wealth conditional on

aj , lj , hj

(b) Solve the first-stage maximization

(c) Update p until p converges

(d) Check if lj is still an optimal choice. If not, adjust f and repeat above

3. Simulations with network

(a) Draw a random network with homogeneous degree lj . Draw equity shocks εj .

(b) With the policy functions and the network, compute the realized withdrawals and

dissolutions.

(c) Repeat for many times (10000) and obtain the simulated distribution of h

4. Compute a rational expectations equilibrium

(a) Replace p with the simulated distribution of h
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(b) Proceed to Steps 2 and 3 above

(c) Check if lj is still optimal. If not, adjust f and repeat above
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B. Histrogram of degrees based on the Euclidean distance in loan portfolios

Figure 12. The figure shows histograms of degree distributions for selected years based on the
Euclidean distance in banks’ syndicated loan portfolios. This measure of syndicated
interconnectedness is based on Cai, Saunders, and Steffen (2011).
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