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Abstract

We estimate a structural model of herding behavior in which feedback arises due to mutual

concerns of traders over the unobservable “true” level of market liquidity. In a herding regime,

random shocks are exacerbated by endogenous feedback, producing a dampened power-law in

the fluctuation of largest sales. The key to the fluctuation is that each trader responds not only to

private information, but also to the aggregate behavior of others. Applying the model to the data

on portfolios of institutional investors (fund managers), we find that the empirical distribution

is consistent with model predictions. A stock’s realized illiquidity propagates herding and raises

the probability of observing a sell-off. The distribution function itself has desirable properties

for evaluating “tail risk.”
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1 Introduction

1.1 Motivation and Main Findings

Many apparent violations of the efficient market hypothesis, such as bubbles, crashes and “fat tails”

in the distribution of financial market returns have been attributed to the tendency of investors

to herd. Particularly, in a situation where traders have private information related to the pay-

off of a financial asset their individual actions may trigger a cascade of similar actions by other

traders. While the mechanism of a chain reaction through information revelation can explain a

number of stylized facts in finance, such behavior remains difficult to identify empirically. This is

partly because many theoretical underpinnings of herding, such as informational asymmetry, are

unobservable and partly because the complex agent-based models of herding do not yield testable

closed-form solutions. This paper attempts to bridge this gap.

We consider a stylized model of “synchronization risk” based on Abreu and Brunnermeier (2002,

2003).1 A large number of traders simultaneously decide whether to remain invested in an asset or

sell, knowing that selling an overvalued stock too early, before a critical mass of others sells, or too

late, after a critical mass of others has sold, would lead to losses. The prospect of earning excess

returns by riding the trend for an additional time period is weighed against the possibility that

a large enough number of traders will dump the stock today, overwhelming market liquidity and

forcing the price to drop, resulting in losses for those who remain. Each agent receives imperfect

information about the market’s ability to supply liquidity. The traders employ Bayesian learning

and, in equilibrium, choose whether or not to continue holding the security based on their private

information and the actions of others.2 The equilibrium strategy exhibits complementarity, since

each trader is more likely to sell when the aggregate number of sellers is higher. Herding in this

1In addition to funding risks, fund managers face what Abreu and Brunnermeier (2002, 2003) call “synchronization

risk” – the risk of selling an overvalued stock too early, before a critical mass of other investors sells, or too late,

after a critical mass of other investors has sold. Missing the timing of the price correction in either case would lead

to losses and underperformance relative to other traders in the short-run. Such incentive to synchronize with other

informed traders due to short time horizons and relative performance considerations (Shleifer and Vishny (1997)) can

lead to herd behavior.
2The reliance on the actions of others for information rather than making decision based on prices alone implies that

not all interactions between agents are mediated through the market and that these interactions are not anonymous,

Cowan and Jonard (2003). For instance, Shiller and Pound (1989) find that word-of-mouth communications are

important for the trading decisions of both individuals and institutional investors.
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environment is stochastic because the information conveyed by the aggregate action may or may

not dominate the private information available to each trader. The model predicts a non-trivial

probability of “explosive” incidents of sell-offs due to herding.

Whereas the central limit theorem characterizes an outcome of a simple information aggregation

process, choice correlation (e.g. herding) leads to fat tail effects. The equilibrium fraction of traders

that herd on the same action is drawn from a probability distribution that exhibits exponential

decay, which can be observed before the “explosive” sell-out takes place.3

Fitting the distribution implied by the model to the data on equity portfolios of institutional

investment managers, we find that it is consistent with the empirical distribution of the number

of institutional investment managers selling off their shares several quarters before the peak of

the S&P 500 index in 2007 and that it outperforms a number of alternative distributions.4 The

parameter capturing the degree of herding behavior rises over time until the first quarter of major

institutional sell-off of S&P 500 stocks. Consistent with model predictions, we find that exponential

decay decreases in market illiquidity and in a stock’s backward looking volatility measure. Both

factors are important determinants of the degree of choice correlation among traders. Once the

exponential truncation vanishes, an explosive synchronization occurs sooner or later. Then, through

the information revealed by the actions of others, it becomes common knowledge among traders

that the bubble has burst. Accordingly, all traders choose to sell. Since, at this stage, we only

observe an aggregate of idiosyncratic variations in behavior, a normal distribution characterises the

data due to the Central Limit Theorem. The analogous behavior is not found on the buy side in

line with investors reacting differently to potential losses than to potential gains.5

3Morris and Shin (1999) also argue that choice interdependence among traders must be explicitly incorporated into

estimates of “value at risk” and call for greater attention to game-theoretic issues since market outcomes depend on

the actions of market participants. One such attempt is made by Nirei and Sushko (2011) who identify key features of

foreign exchange speculation that make carry traders susceptible to stochastic herding. The ability of their approach

to incorporate “rare” disasters as well as daily volatility in the same data generating process allows to use historical

data to quantify the risk of currency crash even if such an event is not a part of the historical sample. However,

unlike the present paper, their approach is less direct as they do not observe the actions of traders, but rather have

to infer the impact of trades from prices.
4The data comes from 13F filings with the Securities and Exchange Commission (SEC) in which institutional

investment managers report the number of shares under management for each individual security at quarterly fre-

quency.
5We do, however, acknowledge that the mandate-based nature of the institutional asset management industry will

constrain the buy and sell decisions taken by individual asset managers relative to what is assumed in our model (see,

for example, CGFS (2003)), suggesting that any findings based on institutional equity holdings have to be interpreted
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1.2 Stochastic Herding and Related Literature

Scharfstein and Stein (1990), Bikhchandani, Hirshleifer, and Welch (1992), Banerjee (1992), and

Avery and Zemsky (1998) have formulated a theory of informational cascades, a type of herding that

takes place when agents find it optimal to completely ignore their private information and follow

the actions of others in a sequential move game.6 Because players select their actions sequentially,

the system will eventually, but unexpectedly, swing from one stable state to another. In contrast,

in our framework herding is stochastic, with some foundation going back to probabilistic herding

in the famous ant model of Kirman (1993).7 Only a fraction of agents synchronize, the size of

the fraction in turn depends on the realization of private signals. Stochastic herding emerges

because strategic complementarity makes it optimal for some agents to place higher value on the

informational content of the actions of others’ relative to own private signals.8 This setup differs

from pure informational cascades similarly to Gul and Lundholm (1995) in that in our case, as in

theirs, none of the information goes unused. As a result, strategic complementarity is not perfect

and the transition between states for an agent is not deterministic even if some other agents herd,

but rather happens with certain endogenous probability.

The probability distribution of herding agents is derived from the threshold rule governing their

actions. This is similar to the threshold-based switching strategy in Global Games (see Morris and

Shin (1998)). However, each agent’s threshold is also affected by the observation of the actions of

others because their actions aggregate private information and affect future payoff. In this sense,

with caution. For example, part of the uniform reduction in institutional asset holdings over the observation period

may have been driven by the enactment of the Pension Protection Act of 2006 which, among other things, changed

the accounting treatment of pension fund equity holdings, CGFS (2007).
6See Chari and Kehoe (2004) for the application of information cascades to financial markets.
7Alfarano, Lux, and Wagner (2005) and Alfarano and Lux (2007) extend the Kirman model in a different direction:

they focus on the ability of the model with asymmetric transition probabilities of different types of traders to match

higher moments in financial returns. In a related study Lux and Sornette (2002) illustrate the mechanics by which

rational bubbles give rise to power-law tails in the distribution of returns. In contrast, we put greater emphasis

on microfoundations employing the stochastic herding approach which focuses on the mapping of heterogeneous

information onto the action space of rational agents.
8Related arbitrage literature includes Shleifer, DeLong, Summers, and Waldmann (1990) who show that rational

traders will tend to ride the bubble because of risk aversion. Abreu and Brunnermeier (2003) model a continuous

time coordination game in which the market finally crashes when a critical mass of arbitrageurs synchronizes their

trades. In such a setting, it is futile for well-informed rational arbitrageurs to act on some piece of information unless

a mass of other arbitrageurs will do so also. The coordination element coupled with information asymmetries create

an incentive for fully rational investors to base their actions on the actions of others, i.e. herd.
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the role of aggregate action is analogous to the role of endogenous public signals in the Tarashev

(2007) extension of Global Games. Endogenously fluctuating thresholds can generate cascading

behavior whereby agents continuously lower their threshold belief for liquidating an assets as they

observe more and more liquidation around them. This leads to a non-trivial possibility of an

“explosive” event in which the vast majority of traders liquidate simultaneously causing market

liquidity to dry up. In this manner, we show that even if private signals about future market

liquidity are normally distributed, the resulting aggregate action will follow a highly non-normal

distribution implying stylized facts such as volatility clustering and fat tails in the distribution of

financial returns.9 Finally, agents are rational but myopic. This feature is particularly suitable for

modelling trader behavior whose relative performance is often evaluated on a short-term basis.10

Empirical studies of herding have mostly focused on abnormal changes in institutional portfolio

composition as evidence of herding (see Nofsinger and Sias (1999), Kim and Nofsinger (2005), and

Jeon and Moffett (2010) for the ownership change portfolio approach).1112 Sias (2004) examines

herding among institutional investors in NYSE and NASDAQ by using a more direct measure

that looks at the correlation in the changes of an institution’s holdings of a security with last

period changes in holdings of other institutions. Our empirical approach is more closely related to

Alfarano, Lux, and Wagner (2005) and Alfarano and Lux (2007). These authors focus on matching

the empirical moments of asset returns with a model of switching trader sentiment. Similarly, we

examine the goodness of fit of the empirical distribution of the number of selling agents to the

theoretical distribution predicted by the threshold switching strategy with endogenous feedback.

We utilize two additional sources of variation in stock holdings not commonly found in data: the

9Our approach also bears some relationship to the studies of markets for information such as Veldkamp (2006)

who identifies herding as an element of intrinsic instability because it makes markets respond disproportionally to

seemingly trivial news.
10Our model is intended to explain fund manager choice of action at quarterly frequency so implicitly we assume that

each manager optimizes with one quarter ahead horizon. Another class of investors whose behavior we do not model

include individual investors and managers of funds with substantial restrictions on customer redemptions, access to

a wider variety of investment instruments, and subject to less stringent regulations. These investors operate at a

different performance horizon and have served as liquidity providers during such episodes as the 1987 stock market

crash (Fung and Hsieh (2000)) to the more constrained institutional investors such as pension funds, endowment

funds, and insurance companies that we focus on in this study.
11In related empirical studies McNichols and Trueman (1994) finds herding on earnings forecasts, Welch (2000)

finds that security analysts herd, and Li and Yung (2004) finds evidence of institutional herding in the ADR market.
12Laboratory studies of herding in speculative attacks include Brunnermeier and Morgan (2004) and Cheung and

Friedman (2009).
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variation across individual investors and the variation across securities. This means that instead

of observing one realization of the aggregate action during each period one can observe a sample

of data points large enough to get an insight into the underlying data generating mechanism by

looking at its distribution. Each observation in the sample is a group of institutional investors

that fall within same class (e.g. banks, pension funds, etc.) holding the same stock. If investors

are unsure about the accuracy of their private signal about future liquidity of a stock and are

prone to follow the actions of others within the same stock-investor-type group, then, because of

the complementarity of their market-timing strategies, the probability of observing large outliers is

much higher compared to the case when investors act independently. Specifically, the distribution

of their actions will exhibit a power law distribution with exponential decay.1314

The paper is organized as follows. Section 2 presents the model of stochastic herding, derives

the equilibrium distribution of herding agents, and conducts numerical simulations of the model.

Section 3 discusses the data on institutional 13F filings and describes how the unit of observation

is constructed. Section 4 examines the distribution of the actions by institutional investment

managers from 2003:Q1 through 2008:Q1 covering both the run-up to and the collapse of the most

recent U.S. equity bubble. In this section we compare the empirical distribution to the numerical

simulations, evaluate the fit of the distribution implied by the model of stochastic herding against

several alternatives and track the evolution of this behavior over time. Section 5 extends the

theoretical and empirical exercise to account for the effect of market illiquidity and risk aversion

on herding behavior. Section 6 concludes.

13Somewhat in line with traders’ actions giving rise to a mixture of exponential and power-law distribution, Malev-

ergne, Pisarenko, and Sornette (2005) find that the speed of probability decay of stock returns is bounded between

stretched exponential and Pareto distributions.
14In a related work, Gabaix (2009) describes a number of data generating processes with feedback effects that have

been known to produce power law distributions. However, we depart from their approach in several ways. Gabaix,

Gopikrishnan, Plerou, and Stanley (2006) derive power-law scaling in trading activity from the power-law distribution

in the size of the traders, while we obtain this result from the interactions of same-size traders. In other words, we

obtain power-law scaling without imposing parametric assumptions on exogenous variables. Instead, it suffices that

the signals about the true state are informative in the sense of satisfying the Monotone Likelihood Ratio Property

(MLRP). For instance, as in this paper, the information and the true state can follow a bivariate normal distribution.
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2 Model

2.1 Threshold Switching Strategy

In this section, we present a model of stochastic herding by informed traders. Our model setup

is motivated by Abreu and Brunnermeier (2003) in which traders try to time their exit from a

bubble market. In this setup, we apply an analytical tool shown by Nirei (2006, 2011) in order to

obtain the distributional pattern of traders’ herding. This distributional form then motivates our

empirical investigation in the next section on the distributions of the herd size of traders before

and during the sell-out period.

There are N informed traders indexed by i = 1, 2, . . . , N , for conciseness we will refer to them

simply as traders. Each trader is endowed with one unit of risky asset. The trader gains (g−r)p by

riding on bubbles and loses βp if the bubble bursts. Trader i can either sell (ai = 1) or remain in the

same position (ai = 0). Each trader observes the aggregate number of selling traders a ≡
∑N

i=1 ai

and a private signal xi. Let α denote the fraction of selling traders α = a/N .

Market liquidity is denoted by θ.15 The informed traders cannot observe θ, but only observe a

noise-ridden proxy xi = θ + εi. xi is a private information and εi is independent across traders.

The bubble bursts if the selling pressure by the informed traders overwhelms the liquidity

provided by the noise traders. The burst occurs if α > θ. Informed traders’ expected utility of

holding the asset is:

(g − r)pPr(θ ≥ α | xi, a, ai = 0)− βpPr(θ < α | xi, a, ai = 0), (1)

and the expected utility of selling is 0. Then the optimal strategy is to sell if:

g − r
β

<
Pr(θ < α | xi, a, ai = 0)

Pr(θ ≥ α | xi, a, ai = 0)
, (2)

or, equivalently,
g − r
β

<
Pr(xi, a, ai = 0, θ < α)

Pr(xi, a, ai = 0, θ ≥ α)
, (3)

and hold otherwise.

15θ represents the liquidity provided by noise traders – market participants that trade for reasons other than

profiting from prices (e.g. liquidity reasons).
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2.2 Equilibrium

We make a guess that all traders follow a threshold rule that trader i sells if xi ≤ x̄(α) and holds

otherwise. We will verify this guess later. We consider an equilibrium in which each trader does

not have an incentive to deviate from the threshold rule at any observation (xi, α), given that all

the other traders obey the rule. When there are multiple equilibria for a realization of the private

information (xi), the outcome with the smallest a is selected. We denote the selected equilibrium

by a∗. This equilibrium can be implemented by submission of supply schedule to a market maker.

In this scheme, each trader submits their action of selling or holding conditional on α, and the

market maker selects the smallest α such that it is equal to the aggregate supply conditional on α.

The equilibrium can be interpreted as the outcome of a sequential trading where informed traders

can sell immediately after observing the selling of other traders.

Define:

G(x̄, a) = Pr(xj > x̄(a) | θ < a/N) (4)

F (x̄, a) = Pr(xj > x̄(a) | θ ≥ a/N) (5)

A(x̄, a) = G(x̄, a)/F (x̄, a) (6)

δ(xi, a) = Pr(xi, θ < α)/Pr(xi, θ ≥ α) (7)

A(x̄, a) represents the information revealed by a holding trader at the observed supply a. The

information is expressed in the form of an odds ratio. δ(xi, a) is the odds ratio obtained by the

private information xi.

Under the guessed threshold policy, the joint probability in (2) can be decomposed by the

information revealed by the actions of traders. For example, when a = 0, the joint probability is

written as:

Pr(xi, a = 0, ai = 0, θ < 0) = Pr(xi | θ < 0) Pr(xj > x̄(0) | θ < 0)N−1 Pr(θ < 0) (8)

Then, (3) is rewritten for a = 0 as:

g − r
β

< A(x̄(0), 0)N−1δ(xi, 0) (9)

Thus, x̄(0) is implicitly determined by:

g − r
β

= A(x̄(0), 0)N−1δ(x̄(0), 0) (10)
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Now consider the case a > 0. If a > 0 were chosen to be an equilibrium, it reveals that no

smaller supply a′ = 0, 1, . . . , a − 1 is consistent with the supply schedule, since the market maker

chooses the smallest α that is consistent with the supply schedule. Thus, the equilibrium reveals

not only that there are a traders who sell conditional on a, but also that there are at least a′ + 1

traders who sell at a′ for each a′ < a.

Therefore, there are a traders with private information xi < x̄(a), there are at least a traders

with private information xi < x̄(a− 1), there are at least a− 1 traders with xi < x̄(a− 2), and so

forth up to that there is at least 1 trader with xi < x̄(0). This set of conditions is equivalent to

that there is one trader in each region xi < x̄(a′) for all a′ = 0, 1, . . . , a− 1.

Consider the trader who would hold at a′− 1 but sell at a′. Define the information revealed by

such a trader at equilibrium a as follows:

B(x̄(a′), a) =
Pr(xj ≤ x̄(a′) | θ < a/N)

Pr(xj ≤ x̄(a′) | θ ≥ a/N)
. (11)

Then, the selling condition (3) is rewritten for a = 1 as:

g − r
β

< δ(xi, 1)A(x̄(1), 1)N−2B(x̄(0), 1). (12)

Then, x̄(1) is determined by xi = x̄(1) that equates the both sides above. Generally, the threshold

x̄ is determined recursively by the equation:

g − r
β

= δ(x̄(a), a)A(x̄(a), a)N−1−a
a−1∏
k=0

B(x̄(k), a) (13)

for a = 0, 1, 2, . . . , N − 1. We note that the posterior likelihood in (3) has three components: the

private information xi, the information revealed by holding actions of N − 1 − a traders, and the

information revealed by selling actions of a traders.

We assume that the prior belief on θ and the noise εi jointly follow a bivariate normal distribution

with mean (θ0, 0) and variance (σ2
0, σ

2
e). Then (θ, xi) also follows a bivariate normal distribution,

since xi = θ + εi. The normal distribution implies that:

Pr(xj > x̄ | θ) < Pr(xj > x̄ | θ′), for any θ < θ′. (14)

Thus,

A(x̄, a) =
Pr(xj > x̄ | θ < a/N)

Pr(xj > x̄ | θ ≥ a/N)
< 1 (15)

for any a and x̄. Likewise,

B(x̄, a) =
Pr(xj ≤ x̄ | θ < a/N)

Pr(xj ≤ x̄ | θ ≥ a/N)
> 1. (16)

The threshold policy has the following property.
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Proposition 1. The increment of the threshold x̄(a+ 1)− x̄(a) is positive and of order 1/N for a

large N .

Proof. See Appendix A.

Next, we construct a fictitious tatonnement process that converges to the equilibrium a∗ as a

means to characterize the equilibrium. First, we define −H ′/H as the hazard rate for the traders

who have remained holding the asset to sell upon observing a. Let θ1 denote the realized value

of the liquidity θ. Then H(x̄) =
∫
x̄ e
−

(xj−θ1)2

2σ2
e dxj/

√
2πσe. We define µ(a) as the mean number of

traders who do not sell upon observing a− 1 but decide to sell upon observing a. Then:

µ(a) = (H(x̄(a− 1))−H(x̄(a)))(N − a). (17)

µ(a) is also expressed by the product of the increment in the threshold x̄(a+ 1)− x̄(a), the hazard

rate, and the number of traders who continue to hold the asset:

µ(a) ∼ H ′

H
(x̄(a+ 1)− x̄(a))(N − a)→ H ′/H

F1/F

log(B/A) + (∂A/∂α)/A

(G1/F1)/A− 1
, (18)

where the limit is taken as N →∞.

Now, as a fictitious tatonnement process, we consider a best response dynamics au+1 = Γ(au)

that starts from a0 = 0, where au+1 denotes the number of traders with private information

xi < x̄(au). We can show that the best response dynamics can be regarded as a tatonnement which

converges to the selected equilibrium a∗.

Proposition 2. For any realization of θ and (xi), the best response dynamics au converges to the

equilibrium selected by the market maker, a∗.

Proof. Suppose that the best response dynamics did not stop at a∗. Then there exists a step s so

that as < a∗ < as+1. But, the definition of a∗ prohibits that there is any a′ < a∗ such that the

number of traders with xi < x̄(a′) exceeds a∗. Hence, there is no such s.

Unconditional on the realization of the private information, (au) can be regarded as a stochastic

process. In the first step, a1 follows a binomial distribution with population N and probability x̄(0).

In the subsequent steps, the increment au+1 − au conditional on au follows a binomial distribution

with population N − au and probability H(x̄(au−1))−H(x̄(au)).

As N →∞, the binomial distribution asymptotically follows a Poisson distribution with mean

(N − au)(H(x̄(au−1)) − H(x̄(au))). Now consider a special case where µ(a) defined in (17) is
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constant across a asymptotically as N → ∞. If this holds, the asymptotic mean of the Poisson

distribution above becomes (au − au−1)µ. A Poisson distribution with this mean is equivalent to

(au− au−1)-times convolution of a Poisson distribution with mean µ. Thus, in this particular case,

the best response dynamics asymptotically follows a branching process with a Poisson distribution

with mean µ, which is a population process that starts with the “founder” population with a1

and each “parent” bears “children” whose number follow the Poisson with mean µ. The selected

equilibrium a∗ is the cumulated sum of the branching process. The following is known for the

distribution function of the cumulated sum of a branching process.

Theorem 1. Consider a branching process bu, u = 1, 2, . . ., in which the number of children born

by a parent is a random variable with mean µ.

1. When b1 = 1, the cumulated sum Z =
∑∞

u=1 bu follows:

Pr(Z = z | b1 = 1, z <∞) ∼ c−zz−1.5 (19)

for large z and for a constant c ≥ 1 with the equality holding if and only if µ = 1.

2. The branching process converges to zero in a finite time u with probability one if and only if

µ ≤ 1.

3. If µ > 1, The cumulated sum Z is infinite with a non-zero probability.

4. If the number of children born by a parent follows a Poisson distribution with mean µ, then:

Pr(Z = z | b1) = (b1/z)e
−µz(µz)z−b1/(z − b1)! (20)

for z = b1, b1 + 1, . . ..

5. In addition to the previous assumption, if b1 follows a Poisson distribution with mean µ1,

then:

Pr(Z = z) = µ1e
−(µz+µ1)(µz + µ1)z−1/z! (21)

∼ (µe1−µ)zz−1.5 (22)

The first item in this theorem implies that the number of traders in a herd follows a non-normal

distribution function which exhibits a power-law decay with exponential truncation. Moreover, the

distribution of the herd size exhibits a pure power law when µ = 1, since then the exponential term
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c disappears. The second item implies in our model that the best response dynamics converges

with probability one if µ ≤ 1, and thus it verifies that the best response dynamics serves as a valid

fictitious tatonnement in this case. The third item implies that there is a positive probability for

an “explosive” event if µ > 1. In our model, this event corresponds to the equilibrium in which

all traders sell. The fourth and fifth items further characterize the herd size distribution, known

as Borel-Tanner distribution in the queuing theory (Kingman (1993)). This particular distribution

forms our preferred hypothesis in the empirical investigation of the herd size distribution in the

next section.

2.3 Numerical Simulations

Before we move on to our empirical investigation, we numerically compute the model threshold

x̄(a) and the equilibrium α∗. The purpose of this simulation is to show that the distribution of

α∗ (the equilibrium herd size) drawn from large number of simulations of the model follows the

same distribution as the one obtained analytically. We set the parameter values as follows. The

number of traders is N = 160, the return from riding the bubble is g = 0.1, the interest rate is

r = 0.04, and the discount by the burst of the bubble is β = 0.82. The liquidity θ follows a normal

distribution with mean 0.5 and standard deviation 0.3. The noise εi follows a normal distribution

with zero mean and standard deviation 1.

Figure 1 plots the threshold function x̄(a). The plot is truncated at the point a = 140, since
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Figure 1: Threshold function x̄(a)

for higher a we could not compute x̄ because it is too large.
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We then simulate the distribution of equilibrium a. We compute a for each draw of a random

vector (εi), and iterate this for 100,000 times. We observe a = 0 for 72, 908 times, and observe

a = 140 (the upper bound) for 1215 times. Figure 2 plots the histogram of the all 100, 000

observations. In Figure 2, it is clear that a is distributed similarly to an exponential distribution

for 0 < a < 50. There is no incident of a > 50 except for the 691 “explosive” incidents in which

case basically all the traders decide to sell.
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Figure 2: Histogram of a for 0 ≤ a ≤ 140
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Figure 3: Histogram of a for 0 < a < 140

Figure 3 shows the the blow-up plot of the histogram for 0 < a < 160. The left panel plots the

histogram on a linear scale and the right panel plots it on a semi-log scale. The tail distribution
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exhibits a straight line on semi-log scale, a characteristic of exponential decay. This is due to

herding which is built into the model. It causes the frequency of the number of sellers in the tail

to exceed predictions based on a random data generating process (such as normal dispersion of

information or idiosyncratic shocks). Instead, the simulated distribution arises due to propagation

effects in the underlying data generating process. The shape of the probability density function of

the equilibrium distribution of a derived in the model (21) is illustrated in Figure 10 in Appendix

B.

3 Data

3.1 Sources and the Unit of Observation

We use data on the institutional holdings of stocks included in the S&P500 index focusing on the

time period around the latest run-up and the subsequent collapse of the U.S.stock market associated

with the asset bubble of the 2000s. Institutional investors manage between 60 and 70 percent of

outstanding U.S. stocks and are regarded as sophisticated investors whose rising importance in

capital markets has been extensively documented by Gompers and Metrick (2001) among others.

Institutional investors increased their equity holdings markedly between 2003:Q1 and 2006:Q1

after which point the majority of them began reducing their stock portfolios to pre-2003 levels. In

particular, managers of pension and endowments funds(who account for 48 percent of total market

value of S&P 500 stocks or approximately 80 percent of total institutional holdings) began dumping

S&P 500 stocks during 2006:Q2 and within four quarters virtually reverted their equity exposure to

the pre-2003 level (Figure 4). This episode provides a unique opportunity to examine the role played

by herding in the propagation of such massive adjustments. While some of this adjustment may

have been driven by the enactment of the Pension Protection Act of 2006 (CGFS (2007)), herding

behavior is especially suspect given the scale and the timing. It is noteworthy that this marked

adjustment in institutional holdings preceded the subsequent stresses in the credit markets.16

We use data on institutional equity holdings from Spectrum database available through Thomp-

son Financial.17 The data is complied from quarterly 13F filings with SEC in which institutional

investment managers with over $100 million under discretionary management are required to report

16See Brunnermeier (2009) for the timing of the 2007-2008 liquidity and credit crunch.
17Studies that utilize 13F data include Gompers and Metrick (2001), Brunnermeier and Nagel (2004), Sias (2004),

Hardouvelis and Stamatiou (2011) and Campbell, Ramadorai, and Schwartz (2009)
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Figure 4: Number of shares (in millions) of S&P 500 stocks held by pension and endowment funds

(the largest institutional investor category) and the S&P 500 index.

their long positions in exchange traded stocks, closed-end investment companies, equity options and

warrants. In addition, we obtain daily data on stock prices, returns, and trading volume from the

Center for Research in Security Prices (CRSP).

Table 1 shows the breakdown of institutional investment managers in our sample by type for

each quarter from 2003:Q1 through 2008:Q1. Pension and endowment funds comprise the largest

reporting category ranging between 71% and 80% of all institutional investment managers. Invest-

ment advisers comprise the second largest category followed by investment companies, insurance

companies, and banks. In 2008:Q1 the dataset covers 2,119 pension and endowments funds, 521

investment advisers, 96 investment companies, 19 insurance companies, and 9 banks.

As Table 2 illustrates, institutional investors hold the majority of outstanding U.S. equities, as

proxied by the S&P 500 stocks. The share of institutional holdings rose from 53% in 2003:Q1 to

67% in 2006:Q1 then declined steadily through 2008:Q1. Pension and endowment funds are the

most dominant category accounting for more than four fifth of total institutional holdings of S&P

500 stocks.

The high degree of disaggregation in the Spectrum data allows to group institutional invest-

ment managers into stock-investor-type groups, N(j, k), where j indicates an S&P500 stock and k

indicates institutional investor type. For example, N(APPL, Banks and Trusts) is the number of

banks and trusts that own Apple stock. Only groups with 10 managers or more are included in the
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sample. Table 3 shows the summary statistics. The number of quarterly observations for N(j, k)

ranges from 1,535 to 1,882. The size of the groups varies considerably, with quarterly mean ranging

from 114 to 146, and quarterly maximum ranging from 1,046 and 1,222. Each quarter a(j, k) out of

N(j, k) institutions in each group liquidate their holdings. Institutional managers dumping more

than 80% of their holdings are counted into a(j, k), but the results are generally robust to different

cutoff levels.18

3.2 Summary Statistics

Table 4 shows quarterly summary statistics for a(j, k). Note the stark difference between 2006:Q2

through 2007:Q1 and the surrounding quarters. During 2006:Q2 through 2007:Q1 the mean a(j, k)

is between 104 and 117 compared to 2 and 4 in other quarters and the maximum during this

four quarter period ranges from 1057 to 1114 compared to 23 and 347 during other quarters. The

corresponding fraction of institutions liquidating a stock, a(j, k)/N(j, k), controls for any group size

effect in the values of a(j, k). Table 5 shows the summary statistics for a(j, k)/N(j, k) confirming

that during the period of 2006:Q2 through 2007:Q1 is associated with a large liquidation of stocks

by institutional investment managers. The mean fraction of institutional managers liquidating a

stock jumped to the 79% and 89% range from the earlier range of 3% to 4%. Moreover, during this

four quarter period some stock-investor type groups experienced complete liquidation as seen from

the maximum α(j, k)’s of 100%. In sum, the summary statistics of a(j, k) and a(j, k)/N(j, k) in

Tables 4 and 5 illustrate a regime change in institutional equity holdings during 2006:Q2 through

2007:Q1 when the vast majority were dumping their S&P 500 stocks. We refer to this period as

the sell-out phase.

Focusing on the two quarters immediately preceding the sell-out phase, the summary statistics

of a(j, k) and a(j, k)/N(j, k) show a rise in both mean and maximum values compared to previous

quarters indicating a possible shift in institutional investment managers’ behavior beginning to

take place. The mean of a(j, k) increased to 4 during 2005:Q4 and 2006:Q1 compared to 2 to 3

during all preceding quarters (Table 4) and the maximum a(j, k) is 105, more than double the value

18The model of stochastic herding yields prediction regarding an “extreme” event, namely a complete liquidation

of a position in a security. Realistically, large block holders, such as institutional investors, are restricted in their

ability to unload a substantial number of shares at once, therefore we interpret the sale of 80% or greater share as an

extreme event. The results are robust to different levels of cutoff, however, choosing the cutoff at 100% as stipulated

by the model greatly reduces the number of observations while missing valuable information contained in extremely

large sales approaching 100%.
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during the four preceding quarters. The corresponding fraction, α(j, k), also rose during 2005:Q4

and 2006:Q1 compared to the preceding quarters (Table 5). This increase in the average and in the

tail of the distribution of aggregate selling behavior may indicate greater degree of synchronization

immediately before the regime change in 2006:Q2. In the remainder of the section we conduct

distributional analysis motivated by the model of stochastic herding to examine whether the fat

tail in the distribution of a(j, k) during the run-up to the sell-out phase is a result of greater

choice correlations and herding by institutional investment managers as opposed to being driven

by uncorrelated events.

4 Analysis of Empirical Distribution

4.1 On Zipf’s Law in the Distribution of Institutional Investor Holdings

Zipf’s law, a Pareto distribution with exponent equal to 1 (Zipf (1949)), has been proposed as

a possible explanation of the distribution of large trades in the stock market. Recently, Gabaix,

Gopikrishnan, Plerou, and Stanley (2006) conclude from the CRSP data on mutual funds that their

sizes follow a power law distribution with exponent equal to -1. They use this conclusion to derive

power-law scaling in trading activity from the power-law distribution in the size of the traders. In

contrast, we obtain a power-law result from trader interactions, irrespective of size distribution. In

other words, we do not rely on the assumption of power-laws in exogenous variables.

In order to test if Zipf’s law describes the behavior of institutional investors, we run “log rank-

log size regressions” for the value of the change of each institutional investor’s holdings in each

stock as an independent variable (Table 6). For robustness, we also apply the Hill (1975) extreme

value estimator.19 In all our regressions, the size coefficient is negative and significantly different

from zero (ranging from -0.372 to -0.445), but the Wald statistics reject the hypothesis that the

19The table presents results for the subsample of institutional investors that sold more than 80% of their stock

holdings of a each stock in a particular quarter. We also tried three alternative specifications: a specification based

on the total sample of the 13F investor’s holdings and using the value of the total portfolio (rather than changes

in shares under managements) of each institutional investor for both samples. The use of the full sample does not

contradict the tail assumption of the power law distribution. By definition, 13F institutional investor holdings consist

of the holdings of all managers with more than $100 million of assets under management (the cutoff for the power

law distribution). While we correct for the bias in OLS esimator of Pareto exponent following Gabaix and Ibragimov

(2011), we also acknowledge the pitfalls of the OLS and Hill estimators discussed in Clauset, Shalizi, and Newman

(2009). Complete results are available upon request.
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coefficient is equal to -1. Therefore our results do not support the hypothesis that the trades of

the 13F institutional investor holdings are driven by Zipf’s law (i.e. that the size coefficient in the

“log rank-log size regressions” or the Hill’s estimator are equal with -1).

4.2 Model Fit

Figure 5: 2003:Q1 - 2008:Q1 (38,353 observations); Left histogram of empirical a(j, k). Right

histogram of (a(j, k)− b(j, k))/N(j, k).

Figure 6: 2005:Q2 - 2006:Q1: Left histogram of empirical a(j, k). Right semi-log probability plot

of empirical a(j, k) and the fitted model (red).

The left panel of Figure 5 shows the histogram of empirical a(j, k) for the entire sample period

(2003:Q1 through 2008:Q1). The histogram bears close similarity to the numerical simulations of the
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model in Figure 2. Like the distribution of simulated a, the empirical distribution of a(j, k) exhibits

a fat tail along with exponential decay in the high probability mass region. The mean number of

institutional fund managers dumping a particular stock is 23, while the standard deviation is 79

and the maximum is 1114.

To control for rare events on the “buy side,” we also examine a symmetric indicator to a(j, k)

for fund managers who increase their holdings of an S&P 500 stock by more than 5 times (inverse

of 0.80) during a given quarter, b(j, k). For each stock-investor-type group we then construct the

net measure as a(j, k) − b(j, k) and normalize it by group size N(j, k). The right panel of Figure

5 shows the histogram of the corresponding fraction. The bimodality of the distribution indicates

the presence of “explosive” sellout events, with virtually no observations in the intermediate range.

Moreover, such extreme switching from low activity to high activity level is only present on the sell

side, indicating that coordination on the same action characterizes sellouts but not purchases by

institutional fund managers.

Independent rare events, such as portfolio liquidations due to idiosyncratic shocks, should be

well approximated by a Poisson distribution. Recall that in Equation (22), µ1 represents the Poisson

mean of the number of agents taking extreme action at the beginning of the tatonnement process

independently (responding only to their private signal), while µ represents the total number of

agents induced to follow the actions of the first-mover until the system settles at a new equilibrium.

In other words, µ quantifies the degree of herding. If µ = 0 then Equation 22 reduces to a probability

density function of a Poisson distribution with arrival rate µ1, indicating the absence of herding

(portfolio liquidations are independent of each other). On the other hand, µ = 1 is a critical

point with µ > 1 corresponding to the phase where the explosive aggregate actions happen with a

positive probability. In the intermediate range, the probability distribution of a(j, k) will exhibit

exponential decay, with the speed of the decay dictated by µ. We can also think of µ as a measure

of length of the tail of the distribution – larger µ implies that an initial outlier (itself governed by

Poisson arrival rate µ1) attracts greater probability mass to itself, effectively stretching the tail.

The common benchmark distribution for rare independent events is Poisson. Table 7 shows

the results of Kolmogorov-Smirnov goodness of fit test for Poisson distribution to a(j, k). Poisson

distribution is rejected at the 5% significance level with p-value=0 and the test statistic of 0.769

(three orders of magnitude larger than the critical value of 0.008). Apart from correlated arrivals,

Poisson may also be rejected because the distribution of a discrete random variable with Poisson

arrival rate asymptotes to normal in the limit. However, as Table 8 shows, the moments of a(j, k)
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point at a highly non-normal distribution (consistent with the histograms in Figure 5). If the

correlated arrival results from stochastic herding then Equation (22) should adequately characterize

the probability distribution of emprical a(j, k). Table 9 shows the associated maximum likelihood

estimates (MLE) of the distribution parameters. The estimates for µ1 and µ are 2.058 and 0.938 and

are statistically significant at 1% level, indicating that stochastic herding is a plausible candidate

for the underlying data generating mechanism of empirical a(j, k).

Figure 6 focuses on the four quarter period before the sell-out phase (2005:Q2 through 2006:Q1).

The left panel of Figure 6 shows the histogram of empirical a(j, k) with distribution exhibiting

exponential tail similar to the simulation in Figure 3. The largest value in the histogram corresponds

to 95. The right panel of Figure 6 shows the corresponding semi-log probability plot. The straight

line formed by the observations of a(j, k) on the semi-log scale indicates an exponential distribution

with persistent outliers, indicative of correlated arrivals in the underlying data generating process.

The solid line shows the fit corresponding to the stochastic herding outcome (of Equation 22) to the

empirical distribution of a(j, k). The line was formed by sampling the data from the proportional

theoretical probability density (Equation 22) with parameters first estimating using empirical a(j, k)

via MLE and the proportionality constant set equal to the theoretical prediction for the power

exponent of 1.5.

4.3 The Sell-Out Phase in 2006:Q2-2007:Q1

Figure 7 plots a(j, k)/N(j, k) against the cumulative distribution (log rank over the number of

observations). The left panel corresponds to the 2005:Q2 through 2006:Q1 period, the four quarters

preceding major institutional sales. The inverse of the slope of the semi-log plot provides an estimate

of the mean parameter of an exponential distribution. A least squares regression for a(j, k)/N(j, k)

yields an estimate of the slope of -31.443 (standard error 0.055) with an R-squared 0.988. This

examination of the semi-log plots favors a model that generates exponential rather than normal

decay in a(j, k)/N(j, k) during the final phase in the run-up to the shift in institutional behavior

in 2006:Q2.

The probability plot in the left panel also shows a convex deviation from the exponential tail as

the size of observations approaches zero. This is consistent with a Gamma-type distribution, such

as the Borel-Tanner distribution (Equation (20)), which exhibits an exponential tail with a power

decline near zero. Moreover, the small number of observations that lie very far from the probability

mass are indicatibe of a Gamma-type distribution with a low value of the shape parameter. This
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Figure 7: Semi-Log Probability Plots of a(j, k)/N(j, k)

is because, all observations drawn from a Gamma distribution will have the same expectation of

the order 1/N , but there is high probability that at least one observation will be several standard

deviations greater than the average (Kingman (1993)).

The intuition behind semi-log plots is as follows. Suppose the average perception of the value

of fundamentals is strong and the mean fraction of institutional investment managers liquidating a

particular stock is small. In the absence of selling cascades within some stock-investor-type groups

the probability of observing a given value of a(j, k)/N(j, k) would be declining at an increasing

rate as we move further away from the mean. This Gaussian decay would produce a concave line

in the semi-log plot. On the other hand, suppose investors are attempting to time the market by

basing their actions on the actions of others. For example, within stock investor-type group a fund

manager having observed a small fraction of other fund managers liquidating their holdings in a

particular stock interprets this as the beginning of a “correction” and is induced to sell herself.

If the conditions are so fragile that even in the absence of major changes in the fundamentals a

number of investors are inclined to act as this hypothetical fund manager, then we would observe

selling cascades within some stock-investor-type groups, creating outliers. Hence, if investment

managers are locked in a herding regime then, even though the mean of the aggregate liquidation

may still be low, the probability of observing large deviations from the mean will be higher than

predicted by Gaussian decay that characterizes random deviations.

The right panel of Figure 7 shows the semi-log probability plots of a(j, k)/N(j, k)) for 2006:Q2

through 2007:Q1. Consistent with transition from subcritical (µ < 1) to supercritical phase (µ > 1),

this four quarter period is characterized by a state of “explosive” sell-outs. When the system is
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supercritical, there is a positive probability in which all the traders sell (explosion). Thus our

model predicts a probability mass for fraction a(j, k)/N(j, k) = 1. If we allow for other exogenous

randomness not considered in our model, then it is natural to think that the actual fraction is

normally distributed around the mean close to 1.

The probability mass of a(j, k)/N(j, k) is concentrated in the region between 0.8 and 1.0, in-

dicating that the vast majority of institutional investors were dumping most of their S&P 500

stock. The relatively close fit of the normal distribution indicates that aggregate high mean value

of a(j, k)/N(j, k)) is an informative summary statistic for the sell-out regime in the sense that the

deviations from this high mean are random and the vast majority of institutions were liquidating

their S&P 500 stocks during this period.

In sum, Figure 7 conveys two things. First, the sell-out ensued as early as 2006:Q2 and continued

for approximately 4 quarters. Second, institutional investors in the stock market operated according

to two different regimes during the duration of the bubble. During the run-up phase, the distribution

of the aggregate action exhibits exponential decay, consistent with stochastic herding when the

uncertainty over market timing actions of other institutional investment managers dominates. The

exponential decay then vanishes during the sell-out phase. Such regime switching is consistent with

transition from subcritical (µ < 1) to supercritical phase (µ > 1) with positive probability that all

institutions act in unison (see Theorem 1).

Our hypothesis is that the process that generated empirical a(j, k) shown in Figure 6 is best

described by the probability density in Equation (22). We fit the model implied distribution against

three alternatives: a truncated normal, Gamma, and Exponential. Table 10 shows the results.

The log likelihood values are higher for the model than any of the alternative distributions while

truncated normal, which tests the possibility of Gaussian decay, has the smallest log likelihood

value. In addition we conduct a non-nested goodness of fit test using Vuong’s statistic.20 The

Vuong statistics for the model (H1) against H0 that data follows either Gaussian, Gamma, or

Exponential distributions are 30.393, 21.785, and 28.140 respectively rejecting H0 in favor of the

model.

Recall that µ1 is the Poisson mean of the number of traders induced to sell when there are

20It is based on Kullback-Leibler information criterion which tests if the hypothesized models are equally close to

the true model against the alternative that one is closer. Defining li = logL(i;H1)− logL(i;H0) as the log likelihood

ratio for each observation i, Vuong’s statistic, V ≡
√
N(li)/(Std(li)), follows a standard normal distribution if the

hypothesis H0 and H1 are equivalent (Vuong (1989)).
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there are N traders. When there are N − a traders, then the mean number induced traders is

µ(N − a)/N , which asymptotes to µ. Hence, µ quantifies that degree of herding which leads to a

stretched tail in the distribution of a(j, k). µ1 = 2.068 indicates approximately 2 managers within

each group would have sold the stock even if no one else was selling. µ = 0.570 indicates that on

average during the 2005:Q2 through 2006:Q1 time period another fund manager would have chosen

to follow the actions of these initial “random” sellers with a probability of 0.57/N .

4.4 Exponential Decay and the Rise of µ Over Time

Figure 11 through Figure 13 show quarterly semi-log probability plots of empirical a(j, k) against

the data simulated from the model and the two benchmark alternatives, Poisson and normal dis-

tributions. The data was simulated with distribution parameters first obtained via MLE using

empirical a(j, k).21 A concave line corresponds to an accelerating probability decay in the tail char-

acteristic of a Gaussian distribution while a straight line indicates decelerating exponential decay.

The model of stochastic herding predicts that due to choice correlations the distribution of the

number of institutional investment managers liquidating a particular stock will exhibit exponential

decay because of the persistence of outliers due to choice correlation.

During the early quarters (Figure 11), Poisson captures the probability decay close to the

mean however misses the exponential decay in the tail. A normal distribution approximates the

probability decline fairly well in 2003:Q2 when the probability mass in the empirical data follows

a concave curve characteristic of the Gaussian decay. The fit of the model improves in 2003:Q4

and 2004:Q1, these are two quarters when mean and maximum of a(j, k) temporarily increased

(see Table 4). However, in both cases the empirical distribution exhibits bimodality and in both

cases higher mean appears to have been driven by one outlier. It is nonetheless noteworthy that

the tail of the distribution exhibits a rightward shift, as if pulled by the outliers but never lining

up perfectly behind them.

The fit of the model improves substantially during 2006:Q1 (Figure 12), one quarter before

the onset of the sell-off phase. The distribution of empirical a(j, k) exhibits exponential decay,

moreover the data points tend to from a more continuous line indicating higher instances of sell

outs at intermediate values.

The following four quarters (2006:Q2 through 2007:Q1) the probability mass of a(j, k) is concen-

trated around values an order of magnitude higher than in the previous period, indicating massive

21Note that for 2003:Q4, 2004:Q1, 2004:Q4 we show a second plot with estimation dropping one outlier.
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institutional dumping of stocks. Moreover, a more dense empirical plot indicates much greater inci-

dence of a(j, k) across all stock-investor type groups. However, during this period the distribution

of a(j, k) also exhibits bimodality, likely driven by heterogeneity in group sizes. This is because,

as indicated in the discussion of Figure 7 in previous section, when controlling for group size via

a(j, k)/N(j, k), the bimodality disappears in favor of Gaussian decay around the mean close to 1.

After the sellout period the herding signature virtually vanishes – the empirical distribution of

a(j, k) is similar to the earlier periods of 2003 and 2004, with bimodal features (in 2007:Q2 and

2007:Q4 in particular) and the decay in the probability mass region approximated fairly well by a

normal distribution.

Figure 8: Herding – quarterly estimates of distribution parameter µ, where µ/N measures the

probability of a “chain reaction” in response to a random liquidation by an investment manager.

Initial independent liquidations occur with Poisson arrival rate of µ1. The probability density of

the aggregate action is then given by Pr(Z = z) = µ1e
−(µz+µ1)(µz + µ1)z−1/z!

Table 11 supplements graphical simulation analysis with quarterly MLE parameter estimates

for the model. The last column shows the results of a non-nested goodness of fit test based on

Vuong’s statistic. If V > 1.96 then H0 of normal distribution is rejected in favor of H1 of the

model under 5% significance level. The goodness of fit test confirms the inference based on the

semilog probability plots and shows that the empirical distribution rejects normal decay in favor of

the model during all quarters except for 2006:Q2 through 2007:Q1. During the quarters when the

model captures the empirical distribution the Poisson mean µ1 is approximately 2 indicating that
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on average two investors in each stock-investor-type group, N(j, k), chose to liquidate at random

in the beginning of the tatonnement process. On the other hand, the estimates for µ, the degree of

endogenous feedback, are rising from 0.347 in 2003:Q1 to 0.638 in 2006:Q1 indicating intensifying

degree of herding up until sell-out phase.

The trend increase in µ, which accelerated during the last year before the sell-out phase, is

shown in Figure 8. The rise of µ over time as the run-up on S&P 500 stocks continued is consistent

with weakening fundamental anchors and a rising importance of market-timing considerations that

make the system susceptible to herding. During the sell-out period the empirical data favors an

alternate distribution, as seen by large negative Vuong’s statistics. Note however that during the

2006:Q2 through 2007:Q1 period the estimates for µ range between 0.931 and 0.941 indicating that,

although misspecified, the likelihood of a power-law with exponential truncation is maximized for

µ close to 1, where µ = 1 corresponds to the criticality at which exponential truncation vanished

in favor of pure power law (consistent with semilog plots for this four quarter period shown in

Figure 13). Finally, after the sellouts have subsided, exponential decay emerges once again but the

estimates of µ remain below the 2006:Q1 level.

Overall, the rise of µ over time indicates that institutional investment manager actions increas-

ingly exhibited contagious behavior intensifying the branching process until the sell-out phase.

During the four quarters in 2003 the estimates of µ rise moderately after which point µ is ap-

proximately stationary until 2005:Q3, when µ begins to rise again until a sudden jump to the

neighborhood of 1. This suggests that the population dynamics of fund manager behavior that we

viewed as a the branching process with intensity µ transitioned from subcritical phase of µ < 1 to

a critical phase of µ = 1 between 2006:Q1 and 2006:Q2. If in fact institutional fund managers learn

about a stock’s illiquidity, Pr(θ < a/N | ·)/Pr(θ ≥ a/N | ·), by accumulating private information

and observing aggregate action, then over time Bayesian learning ensures that beliefs about θ con-

verge and the triggering action eventually occurs with probability 1.22 This is because as private

information, which is jointly normally distributed with the true θ hence informative, accumulates

over time the average belief decreases causing some managers to liquidate even if no one else is

liquidating. Their actions affect the threshold of others triggering a chain of liquidations. If suffi-

cient amount of private information has been accumulated over time such that the average belief

is low enough, then the chain reaction becomes “explosive” in the sense of self-organized criticality

put forth by Bak, Tang, and Wiesenfeld (1988). In Bak’s sandpile model the distribution of the

22See Nirei (2011) for a more general dynamic extension to information aggregation problem in financial markets.
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avalanche size depends on the slope of the sandpile. Our analog of the slope of the sandpile is the

inverse of the average belief.

5 Model Extentions

5.1 Illiquidity

The key feature of the model is that a stock’s illiquidity, 1/θ, propagates herding. Specifically, the

model predicts a negative (positive) relationship between the intensity of the branching process, µ,

and the realized liquidity (illiquidity) of a security.

We defined:

H(x̄) =

∫
x̄
e
−

(xj−θ1)2

2σ2
e dxj/

√
2πσe. (23)

Then, we obtain:

H ′(x̄) = −e−
(x̄−θ1)2

2σ2
e /
√

2πσe < 0, (24)

d

dθ1
H ′(x̄) = H ′(x̄)(x̄− θ1)/σ2

e . (25)

Thus, H ′(x̄) is strictly increasing for any x̄ < θ1. From Equation (17), we have:

µ(a) = (H(x̄(a− 1))−H(x̄(a)))(N − a). (26)

Therefore, we obtain dµ(a)/dθ1 < 0 for any a such that x̄(a) < θ1.

This implies that, when the realized amount of liquidity θ1 is decreased, µ increases for a range

of a near 0. Thus, while the realized liquidity does not affect the strategy, it affects the outcome.

Specifically, when the realized liquidity is lower, a large propagation is more likely to occur.

We confirm this point by numerical computations and simulations. The left panel of Figure 9

plots the numerically computed µ for various a using Equation (17). We computed for two cases

in which the realized liquidity, θ1, is equal to 0.8 and 0.2. (θ follows a normal distribution with

mean 0.5 and standard deviation 0.3.) We observe that µ(a) is greater when the liquidity is low

(θ1 = 0.2) for any a. The right panel of Figure 9 plots the histogram of simulated equilibrium

outcome a for two cases, θ1 = 0.8 and 0.2. We observe that the two histograms start similarly near

a = 0, but the histogram with the lower liquidity is exponentially truncated at the greater a and

has the longer tail than the one with the higher liquidity.
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Figure 9: Left: µ as a function of a in Equation 17 for different realizations of liquidity θ. Right:

simulated histograms of a for high and low realizations of θ

5.2 Risk Aversion

Risk aversion affects the herding intensity through a different channel. To see this, the expression

for the Poisson mean of the number of traders induced to sell by trader a (Equation 26) can be

rewritten as:

µ(a) =
H ′(x̄)

H(x̄)

dx̄(a)

da
(N − a). (27)

While market illiquidity affects µ(a) through the hazard rate H ′(x̄)/H(x̄) (shown in the previous

subsection), risk aversion affects µ(a) through the level shift in the threshold for a given a. To see

why, note that a risk averse agent maximizes the certainty equivalent thereby setting the expected

return equal to the risk premium (rather than equal zero). As a result, the threshold condition

(13) modifies as follows:

g − r − ρσr
β

= δ(x̄(a), a)A(x̄(a), a)N−1−a
a−1∏
k=0

B(x̄(k), a), (28)

where ρ is the coefficient of risk aversion and σr denotes the volatility of returns of a particular

stock. Intuitively, the agents’ threshold value of signal for swtiching to selling is lower when risk

aversion, ρ, in the ulitilty function is higher or when stock returns exhibited greater historical

volatility, σr.
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5.3 Empirical Specification

For the empirical implementation, we use Bayesian MCMC to fit Borel-Tanner distribution to the

data treating the distribution parameter µ itself as a function of a stock j’s realized illiquidity,

1/θ1(j), returns volatility, σr(j), and risk aversion, ρ. We rely on the measure of Amihud (2002)

to proxy for a stock’s realized illiquidity, 1/θ1: each quarter we calculate the average daily ratio

of stock j’s absolute return to its dollar trading volume. We then normalize the measure by the

average market illiquidity (over all S&P 500 stocks) during that quarter to take out time variations

in overall market liquidity. We proxy for historical volatility of each stock, σr(j), using the quarterly

standard deviation of a stock’s daily returns. We use VIX to proxy for risk aversion, ρ.

We sample from the following hierarchical model using Metropolis-Hastings (MH) algorithm:2324

Pr(α(j, k)) = µ1e
−(µj,kα(j,k)+µ1)(µj,kα(j, k) + µ1)α(j,k)−1/α(j, k)! (29)

and

µj,k = γ0 + γ11/θ1(j) + γ2σr(j) + γ3V IX + εj,k. (30)

We pick trivial hyper-parameters for the priors:

γi ∼ N(0, 1), ; i = 0, 1 (31)

µ1 ∼ N(0, 1) (32)

τε ∼ Γ(αε, βε), (33)

where N(·) and Γ(·) denote Normal and Gamma distributions. We account for additional

variability in µj,k via a random effects term, εj,k, whose precision is measured by τε.
25 We are

interested in obtaining the coefficient on 1/θ1(j), σr(j), and ρ.26

23The estimation was conducted with WinBUGS software following the Bayesian modeling framework outlined in

Lunn, Thomas, Best, and Spiegelhalter (2000).
24See Chib and Greenberg (1995) for a comprehensive reference on Metropolis-Hastings algorithm. One major

advantage of MH method is that, unlike Gibbs sampling, it does not require a conjugate prior for each distribution

parameter, but samples from a proportional probability distribution to the density to be calculated.
25We use a diffuse Γ(0.001, 0.001)priorfortheprecisionofτε of the random effects.
26The inference of coefficient significance and correlations rest on the assumption of unbiasedness of the estimates.

Figure 14 and Figure 15 show Bayesian MCMC diagnostic plots for µ1 and coefficients γ0 through γ3, with Figure 14

based on the baseline estimation where only illiquidity effect is considered. The left panels of Figure 14 and Figure
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Table 12 shows the estimation results. The top panel shows the results for the reduced speci-

fication with illiquidity as the only control, while the bottom panel shows the results including a

stock’s volatility and the VIX. The economic magnitudes of the coefficients are difficult to inter-

pret, but the positive and statistically significant coefficient on 1/θ1(j) is consistent with model

predictions: greater illiquidity of a stock is associated with a greater degree of herding, higher µ.

The coefficient on σr(j) is also positive and significant (bottom panel), indicating that some frac-

tion of the tail probability of large sell-outs of a stock is attributable to a stock average volatility

during the quarter rather than illiquidity, possibly due to risk aversion. However, the coefficient

on the VIX is negative, contrary to the risk aversion hypothesis. One possible explanation for

the perverse coefficient on the VIX has to do with the time period under consideration: 2003:Q1

through 2006:Q1 is characterized by low overall financial market volatility and persistently low

levels of overall risk aversion. Thus, as Figure 8 shows, to the extent that µ was rising during this

period, the persistently low levels of VIX readings would in the end result in either zero or negative

association between the two series. Furthermore, since VIX does not vary in the cross-section, it

also effectively captures the time effect, further distorting the inference. Overall, the hypothesis

of the central role of market illiquidity for herding is not rejected by the data while the results

regarding risk aversion are mixed.

6 Conclusion

We considered a herding model in which each trader receives imperfect information about the

market’s ability to supply liquidity and chooses whether or not to sell the security based on her

private information as well as the actions of others. Because of feedback effects, the equilibrium

15 plot the density of the samples. Symmetric bell curves indicate a good mixture and that a normal approximation

to the standard errors is reasonable. The center panel shows the autocorrelation plots of the estimates, with γ0

exhibiting a somewhat high persistence in the baseline specification depicted in Figure 14. The right panel shows a

visual test for endogeneity via a scatter plot between sampled slope coefficients and the random effects component,

τε, which is bounded at zero from below. The scatter plots show a random spread consistent with exogeneity of the

controls. Once the vector of controls is expanded to include σr and the VIX (coefficients γ2 and γ3 respectively), the

persistence in the estimate of γ0 is reduced. The sampled coefficients on the VIX (γ3), however, exhibit very high

persistence along with skewed density plot and correlation with the random effects terms (Figure 15) indicating that

the estimate of γ3 may be biased. Finally, Figure 16 shows Metropolis acceptance rates with acceptance rates broadly

in the range of the commonly accepted level of 0.234 random walk MH algorithm. We discard the first 11,000 using

the subsequent 89,000 for inference.
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is stochastic and the “aggregate action” is characterized by a distribution exhibiting exponential

decay embedding occasional “explosive” sell-outs. We obtain such “fat tail” distributions without

imposing major parametric assumptions on exogenous variables. It suffices that the signals about

the true state are informative in the sense of satisfying the MLRP.

The stochastic herding approach provides one plausible data generating mechanism for large

adjustments in institutional equity holdings during our sample period. The distribution implied by

the model matches the empirical distribution of the number of institutional investment managers

selling off their shares each quarter before the peak of the SP 500 index in 2007. Moreover, in line

with market-timing considerations, the distribution parameter reflecting the degree of herding is

increasing in a stock’s illiquidity, past volatility, as well as rises sharply prior to massive adjustments

that began in earnest in 2006:Q2. The transition to the sell-out phase itself is consistent with the

emergence of perfect strategic complementarity, which is predicted by the model when the fraction

of herding agents reaches a critical level.
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*

A Proof of Proposition 1

We first transform δ(x̄, a) as follows. By completing the square on θ we obtain:

e
− (xi−θ)

2

2σ2
e e

− (θ−θ0)2

2σ2
0 = e

− (θ−µθ(xi))
2

2σ2
θ ξ(xi) (34)

where,

µθ(xi) ≡
xi/σ

2
e + θ0/σ

2
0

1/σ2
e + 1/σ2

0

(35)

σ2
θ ≡ (1/σ2

e + 1/σ2
0)−1 (36)

ξ(xi) ≡ e
µθ(xi)

2

2σ2
θ

− x2
i

2σ2
e
− θ20

2σ2
0 . (37)

Then we have:

δ(xi, a) =

∫ α
e
− (xi−θ)

2

2σ2
e e

− (θ−θ0)2

2σ2
0 dθ∫

α e
− (xi−θ)2

2σ2
e e

− (θ−θ0)2

2σ2
0 dθ

=
Φ(α;xi)

1− Φ(α;xi)
(38)

where Φ(·;xi) denotes the cumulative distribution function for a normal distribution with mean

µθ(xi) and variance σ2
θ . A and B are rewritten as:

A(x̄, a) =

∫
x̄

∫ α
e
− (xi−θ)

2

2σ2
e e

− (θ−θ0)2

2σ2
0 dθdxi∫

x̄

∫
α e
− (xi−θ)2

2σ2
e e

− (θ−θ0)2

2σ2
0 dθdxi

Pr(θ ≥ α)

Pr(θ < α)

=

∫
x̄ Φ(α;xi)ξ(xi)dxi∫

x̄(1− Φ(α;xi))ξ(xi)dxi

Pr(θ ≥ α)

Pr(θ < α)
(39)

B(x̄(k), a) =

∫ x̄(k) ∫ α
e
− (xi−θ)

2

2σ2
e e

− (θ−θ0)2

2σ2
0 dθdxi∫ x̄(k) ∫

α e
− (xi−θ)2

2σ2
e e

− (θ−θ0)2

2σ2
0 dθdxi

Pr(θ ≥ α)

Pr(θ < α)

=

∫ x̄(k)
Φ(α;xi)ξ(xi)dxi∫ x̄(k)

(1− Φ(α;xi))ξ(xi)dxi

Pr(θ ≥ α)

Pr(θ < α)
(40)

By taking logarithm of (13) for a and a+ 1 and subtracting each side, we obtain:

0 = log δ(x̄(a+ 1), a+ 1)− log δ(x̄(a), a) + (N − 1− a)(logA(x̄(a+ 1), a+ 1)− logA(x̄(a), a))

+

a−1∑
k=0

(logB(x̄(k), a+ 1)− logB(x̄(k), a)) + logB(x̄(a), a+ 1)− logA(x̄(a+ 1), a+ 1) (41)
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The second argument a in δ and B affects the functions through α = a/N as in (38,40), and

thus the direct effects of a on δ and B are of order 1/N . Also, as we show shortly, the difference

x̄(a + 1) − x̄(a) is of order 1/N , and so are the effects of a on δ and B through x̄. Hence, the

difference terms in (41) on log δ and logB are of order 1/N and tends to zero as N goes to infinity.

The difference term in logA is broken down as:

logA(x̄(a+ 1), a+ 1)− logA(x̄(a), a)

1/N
∼N→∞

∂ logA(x̄(a), a)

∂x̄

x̄(a+ 1)− x̄(a)

1/N
+
∂ logA(x̄(a), a)/∂a

1/N
(42)

Thus, as N →∞ for a fixed finite a, we have:

(N − 1− a) (x̄(a+ 1)− x̄(a))→ logB(x̄, a)− logA(x̄, a) + ∂ logA(x̄(a), a)/∂a

−∂ logA(x̄, a)/∂x̄
(43)

The right hand side is of order N0, and hence it is shown that x̄(a+ 1)− x̄(a) is of order 1/N .

Next, we show that the right-hand side of (43) is positive. When a is increased by one, one

trader switches sides from A to B, and this increases the right hand side of (13) because A < B.

This effect appears as logB(x̄, a)− logA(x̄, a) in (43).

Next, we show that A(x̄, a) increases in a for a fixed x̄. We start by showing that G(x̄, a) is

increasing in the second argument:

∂G(x̄, a)

∂a
=

∂

∂a

(
Pr(xj > x̄, θ < a/N)

Pr(θ < a/N)

)
(44)

=
Pr(xj > x̄, θ = a/N) Pr(θ < a/N)− Pr(xj > x̄, θ < a/N) Pr(θ = a/N)

Pr(θ < a/N)2
(45)

=
Pr(θ = a/N)

Pr(θ < a/N)

(
Pr(xj > x̄, θ = a/N)

Pr(θ = a/N)
− Pr(xj > x̄, θ < a/N)

Pr(θ < a/N)

)
(46)

=
Pr(θ = a/N)

Pr(θ < a/N)
(Pr(xj > x̄ | θ = a/N)− Pr(xj > x̄ | θ < a/N)) (47)

> 0 (48)

where “Pr” denotes likelihood functions. The last inequality holds by the property (14). We show

likewise that F (x̄, a) is decreasing in a. Since A(x̄, a) = G(x̄, a)/F (x̄, a), we obtain that A is

increasing in a.

Finally, we show that ∂A/∂x̄ < 0. Define F1 and G1 as the derivatives of F and G with respect

to the first argument x̄, respectively. Then:

∂A(x̄, a)

∂x̄
=
F1(x̄, a)

F (x̄, a)

(
G1(x̄, a)

F1(x̄, a)
−A

)
. (49)

G1/F1 can be rewritten as:
G1(x̄, a)

F1(x̄, a)
=

Φ(α; x̄)

1− Φ(α; x̄)

Pr(θ ≥ α)

Pr(θ < α)
(50)
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Then,
A

G1/F1
=

∫
x̄

Φ(α;xi)

Φ(α; x̄)
ξ(xi)dxi

/∫
x̄

1− Φ(α;xi)

1− Φ(α; x̄)
ξ(xi)dxi < 1 (51)

where the inequality obtains by that Φ(α;xi) < Φ(α; x̄) for any xi > x̄. Noting that F1 < 0, we

obtain from (49) that ∂A(x̄, a)/∂x̄ < 0.
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Table 3: Descriptive Statistics: N(j, k)

Quarter Obs. Mean Std. Dev. Skewness Kurtosis Min. Max.

2003q1 1842 114.2921 149.1265 2.559299 11.37729 10 1046

2003q2 1882 114.1265 150.8741 2.613972 11.82006 10 1105

2003q3 1856 115.715 150.2376 2.560607 11.42463 10 1069

2003q4 1846 118.792 157.0115 2.541808 11.26566 10 1130

2004q1 1878 121.2758 159.8353 2.527476 11.15328 10 1157

2004q2 1878 122.1081 161.6158 2.501442 10.95575 10 1150

2004q3 1859 119.2883 160.4453 2.509865 11.01269 10 1123

2004q4 1833 125.7239 168.1973 2.471413 10.65422 10 1145

2005q1 1546 136.6177 179.9863 2.328704 9.529656 10 1161

2005q2 1537 138.2492 184.3018 2.320885 9.460284 10 1187

2005q3 1562 133.0205 179.1581 2.332849 9.483129 10 1141

2005q4 1535 140.6098 186.0956 2.315662 9.374518 10 1170

2006q1 1543 142.4543 191.4796 2.259286 8.978757 10 1195

2006q2 1792 133.4492 182.3782 2.403041 10.02165 10 1205

2006q3 1788 133.9636 180.7052 2.45352 10.33914 10 1199

2006q4 1749 140.0743 177.5046 2.464914 10.48713 10 1197

2007q1 1720 143.0715 181.7965 2.401363 10.01951 10 1220

2007q2 1741 146.2211 181.5936 2.361122 9.723414 10 1222

2007q3 1738 141.2819 174.153 2.425098 10.18531 10 1179

2007q4 1689 148.2587 175.7674 2.368556 9.921134 10 1179

2008q1 1697 144.0595 171.5843 2.405454 10.21005 10 1197

Notes: The Table shows the summary statistics for stock-investor-type groups, N(j, k), where j indicates an

S&P500 stock and k indicates institutional investor type. Only groups with 10 traders or more are included in

the sample.
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Table 4: Descriptive Statistics: a(j, k)

Quarter Obs. Mean Std. Dev. Skewness Kurtosis Min. Max.

2003q1 1842 2.024973 2.913459 3.562305 31.30286 0 44

2003q2 1882 2.001063 2.899889 2.022484 7.914702 0 24

2003q3 1856 2.199353 3.3151 1.87077 6.450509 0 23

2003q4 1846 2.299025 6.832766 26.99445 969.2564 0 252

2004q1 1878 2.78967 8.817813 32.14487 1240.28 0 347

2004q2 1878 2.457934 3.83505 3.523452 22.88747 0 40

2004q3 1859 2.257127 3.583172 3.511261 22.64714 0 37

2004q4 1833 2.240589 5.00605 10.326 202.7108 0 123

2005q1 1546 2.982536 3.905065 4.128196 37.58728 0 57

2005q2 1537 2.688354 4.341368 3.362496 20.00555 0 43

2005q3 1562 2.744558 4.306713 3.373875 20.45202 0 42

2005q4 1535 3.730945 5.142803 2.502752 12.18058 0 47

2006q1 1543 4.04731 6.772548 4.319921 42.25052 0 105

2006q2 1792 103.9738 160.4168 2.646657 11.52395 0 1100

2006q3 1788 115.1141 159.1397 2.650348 11.76884 0 1114

2006q4 1749 112.6781 150.5121 2.685956 12.0627 0 1057

2007q1 1720 116.8035 152.82 2.664223 11.87025 0 1080

2007q2 1741 3.036186 5.233333 7.706638 123.9169 0 112

2007q3 1738 3.659379 4.685157 3.009861 24.03532 0 63

2007q4 1689 3.117229 4.644519 3.760667 30.52305 0 57

2008q1 1697 3.727166 4.535413 2.734147 18.2615 0 55

Notes: The table shows summary statistics of a(j, k). Each quarter a(j, k) out of N(j, k) institutions in each

group liquidate their holdings. Institutional managers dumping more than 80% of their holdings are counted into

a(j, k).
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Table 5: Descriptive Statistics: a(j, k)/N(j, k)

Quarter Obs. Mean Std. Dev. Skewness Kurtosis Min. Max.

2003q1 1203 0.0338277 0.0310166 2.800426 15.11922 0.0025974 0.2941177

2003q2 1090 0.03389 0.0274069 2.059337 8.368169 0.0026738 0.1904762

2003q3 985 0.032096 0.0296491 9.969194 182.9449 0.003861 0.6363636

2003q4 1088 0.0376633 0.0497596 8.49001 113.6885 0.000993 0.8113208

2004q1 1425 0.0398577 0.0462501 8.97107 134.2808 0.0027548 0.8202247

2004q2 1222 0.0392724 0.0350081 2.468958 13.05533 0.0023364 0.3636364

2004q3 1133 0.0378985 0.0329231 2.518009 14.81435 0.0027855 0.3571429

2004q4 961 0.0327997 0.0442431 8.801352 119.9139 0.0022422 0.7741935

2005q1 1308 0.0402617 0.031572 2.004466 8.523765 0.0023697 0.2666667

2005q2 947 0.0338203 0.0264428 2.175285 10.57713 0.0032626 0.2222222

2005q3 1088 0.034929 0.0301894 2.71143 14.75573 0.0022075 0.3043478

2005q4 1218 0.0407605 0.0281401 2.353076 13.41352 0.0033898 0.3

2006q1 1012 0.0416007 0.0283892 1.99926 8.37819 0.0035971 0.2

2006q2 1540 0.8455544 0.0936507 -1.105954 7.453066 0.137931 1

2006q3 1761 0.8789349 0.0704131 -1.133229 9.861254 0.1538462 1

2006q4 1731 0.7858961 0.0887199 -2.067533 13.76107 0.0185185 0.9473684

2007q1 1711 0.8308253 0.0812513 -3.080854 28.49091 0.0054054 1

2007q2 1180 0.0320758 0.0273514 2.807056 13.82265 0.0031315 0.2285714

2007q3 1253 0.0402934 0.0286195 1.766037 6.964115 0.0023256 0.2075472

2007q4 1110 0.030142 0.0215736 1.83541 7.408579 0.004329 0.1428571

2008q1 1280 0.0378383 0.0261516 1.951667 8.835462 0.0044643 0.2307692

Notes: The table shows quarterly summary statistics for the fraction of institutional investment managers dumping

their stock within a stock-investor type group (α(j, k) ≡ a(j, k)/N(j, k)).
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Table 7: Kolmogorov-Smirnov test, Poisson distribution of a(j, k) over the entire sample, 2003:Q1

- 2008:Q1

Variable Obs. Test Result p-value Test Stat. Critical Value

a(j, k) 38,353 Reject 0.000 0.769 0.008

Notes: The table shows the results of Kolmogorov-Smirnov goodness of fit test for Poisson

distribution to a(j, k).

Table 8: Test for normality of a(j, k) over the entire sample, 2003:Q1 - 2008:Q1

Variable Obs. Mean Std. Dev. Skewness Kurtosis

a(j, k) 38,353 22.745 79.264 6.368 54.868

Notes: The table shows the estimates of the moments of a(j, k), pointing at a highly non-normal

distribution.

Table 9: Distribution parameter estimates for a(j, k) for the entire sample, 2003:Q1 - 2008:Q1.

Variable Obs. µ1 µ Log Likelihood

a(j, k) 38,353 2.058 0.938 99728.410

(0.006) (0.001)

Notes: The probability density for the hypothesized distribution is Pr(Z = z) =

µ1e
−(µz+µ1)(µz + µ1)z−1/z!
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Table 10: Distribution parameter estimates for a(j, k) for the 2005:Q2 - 2006:Q1 subsample.

Distribution of a(j, k)

Model Benchmark Distributions

Borel-Poisson Trunc. Normal Gamma Exponential

ML estimates

µ1 2.058 mean -97.461 α 1.103 β 4.781

(0.029) (7.152) (0.021) (0.072)

µ 0.570 σ 20.000 β 4.335

(0.007) (0.665) (0.103)

Log Likelihood 11148.789 10040.186 10925.596 10938.238

Vuong’s statistic H1 30.393 21.785 28.140

Obs. 4,265

Notes: The probability density for the hypothesized distribution is Pr(Z = z) =

µ1e
−(µz+µ1)(µz + µ1)z−1/z!. If V > 1.96 then H0 of normal distribution is rejected in favor

of H1 of the model under 5% significance level.
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Table 11: Quarterly distribution parameter estimates for a(j, k).

Quarter Obs. µ1 s.e. µ s.e. Log Likelihood Vuong’s Statistic

2003q1 1203 2.023 (0.053) 0.347 (0.015) 2610.493 31.048
2003q2 1090 2.164 (0.060) 0.374 (0.016) 2479.326 28.628
2003q3 985 2.368 (0.069) 0.429 (0.016) 2412.327 25.413
2003q4 1088 1.963 (0.054) 0.497 (0.014) 2614.313 3.588
2004q1 1425 1.880 (0.045) 0.489 (0.012) 3343.738 –
2004q2 1222 2.046 (0.053) 0.458 (0.014) 2905.715 28.048
2004q3 1133 2.103 (0.057) 0.432 (0.014) 2661.898 28.686
2004q4 1833 2.087 (0.061) 0.512 (0.014) 2392.407 10.572
2005q1 1308 1.984 (0.050) 0.437 (0.013) 3024.613 23.576
2005q2 947 2.155 (0.064) 0.506 (0.015) 2384.011 22.919
2005q3 1088 1.938 (0.054) 0.508 (0.014) 2644.548 24.945
2005q4 1218 2.022 (0.054) 0.570 (0.012) 3170.367 25.764
2006q1 1012 2.234 (0.064) 0.638 (0.012) 2891.608 13.442
2006q2 1540 7.103 (0.138) 0.941 (0.002) 8660.686 -26.826
2006q3 1761 7.527 (0.136) 0.936 (0.002) 9866.110 -27.776
2006q4 1731 7.765 (0.142) 0.932 (0.002) 9696.680 -26.172
2007q1 1711 8.124 (0.149) 0.931 (0.002) 9645.581 -25.912
2007q2 1180 2.181 (0.057) 0.513 (0.013) 2991.997 15.100
2007q3 1253 2.606 (0.065) 0.486 (0.013) 3291.732 25.806
2007q4 1110 2.360 (0.064) 0.503 (0.013) 2867.704 24.548
2008q1 1280 2.619 (0.065) 0.470 (0.013) 3323.552 25.452

Notes: The table reports quarterly MLE parameter estimates for the probability density of the

hypothesized distribution, Pr(Z = z) = µ1e
−(µz+µ1)(µz + µ1)z−1/z! If V > 1.96 then H0 of

normal distribution is rejected in favor of H1 of the model under 5% significance level.
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Table 12: Illiquidity, Risk Aversion, and the Empirical Proxy for Herding, µ

Dependent parameter: µj,k

node mean sd MC error 2.50% 5.00% 95.00% 97.50%

Constant -6.833 0.400 0.007 -7.661 -7.526 -6.208 -6.093

1/θ1(j) 0.646 0.139 0.001 0.359 0.407 0.863 0.904

µ1 0.037 0.002 0.000 0.034 0.035 0.040 0.041

τε 1.500 0.612 0.035 0.715 0.773 2.732 3.052

Constant -0.270 0.999 0.009 -2.215 -1.924 1.375 1.711

1/θ1(j) 1.273 0.741 0.009 -0.116 0.103 2.546 2.824

σr(j) 2.003 1.006 0.008 0.042 0.335 3.653 3.979

VIX -1.233 0.371 0.008 -2.079 -1.914 -0.718 -0.656

µ1 0.104 0.003 0.000 0.098 0.099 0.109 0.110

τε 0.568 0.470 0.027 0.052 0.065 1.478 1.633

Observations 12,236

Notes: Results of Bayesian MCMC estimation of hierarchical model in Equation (29). Pr(Z =

z) = µ1e
−(µz+µ1)(µz + µ1)z−1/z! with restriction µ = γ0 + γ11/θ1 +2 σr + γ3V IX + ε. Higher

µ indicates higher intensity of the branching process generating the Borel Tanner distribution.

Results based on 89,000 samples after discarding the first 11,000 iterations as “burn-in”. Con-

fidence bounds computed under the normality assumption for the simulated parameter values.

2003:Q1 through 2006:Q1 time sample.
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B Additional Figures

Figure 10: Probability density of the hypothesized distribution Pr(Z = z) = µ1e
−(µz+µ1)(µz +

µ1)z−1/z!. Parameters estimated using 2005:Q2-2006:Q1 data on institutional investor holdings of

S&P 500 stocks: µ1 = 2.060, µ = 0.547.
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Figure 11: Semilog probability plot of a(j, k) and comparison to data simulated using the model

and the two alternatives, Normal and Poisson.
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Figure 12: Semilog probability plot of a(j, k) and comparison to data simulated using the model

and the two alternatives, Normal and Poisson.
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Figure 13: Semilog probability plot of a(j, k) and comparison to data simulated using the model

and the two alternatives, Normal and Poisson.
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Figure 14: Bayesian MCMC diagnostics, baseline controls. Left: density plots; center: ACF plots,

and right: scatter plots against τε for γ0, γ1 and parameter µ1.
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Figure 15: Bayesian MCMC diagnostics, expanded control vector. Left: density plots; center: ACF

plots, and right: scatter plots against τε for γ0, γ1 and parameter µ1.
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Figure 16: Bayesian MCMC diagnostics: metropolis acceptance rates. Top: baseline specification;

bottom: expanded control vector
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