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Measuring the systemic importance of interconnected banks1 

Mathias Drehmann and Nikola Tarashev2 

Abstract 

We develop a measure of systemic importance that accounts for the extent to which a bank 
propagates shocks across the banking system and is vulnerable to propagated shocks. 
Based on Shapley values, this measure gauges the contribution of interconnected banks to 
systemic risk, in contrast to other measures proposed in the literature. An empirical 
implementation of our measure reveals that systemic importance depends materially on the 
bank’s role in the interbank network, both as a borrower and as a lender. We also find 
substantial differences between alternative measures, which implies that prudential 
authorities should be careful in choosing the underlying approach. 
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1 Introduction 

A commonly held view is that interconnectedness is a key driver of systemic importance. 
Surprisingly, the literature has produced few concrete insights that underpin this view, even 
though it may shape regulatory requirements for systemically important institutions. In this 
paper, we provide a conceptual framework for analysing the relationship between 
interconnectedness and systemic importance and investigate this relationship empirically.  

We explore two different approaches to measuring systemic importance: one related to 
banks’ participation in systemic events and another one to their contribution to systemic risk. 
Even though the two approaches decompose the same quantum of system-wide risk, they 
allocate it differently across banks. In this sense, they adopt different concepts of systemic 
importance. 

The first approach has been popularised by a number of recent articles that measure 
systemic importance as the expected losses generated by a bank in systemic events. These 
events are characterised by system-wide aggregate losses exceeding a critical level, thus 
leading to disruptions in the real economy. Since this approach equates systemic importance 
with the expected participation of individual banks in systemic events, we label it the 
participation approach (PA). 

A bank’s participation in systemic events is conceptually different from its contribution to 
systemic risk. For example, a bank that has small positions vis-à-vis non-banks will impose 
only small direct losses on the real economy and, thus, will participate little in systemic 
events. The same bank, however, might have large positions on the interbank market. It can 
thus contribute materially to systemic risk by transmitting distress from one bank to another. 

The contribution approach (CA), which is rooted in the Shapley value methodology, targets 
directly banks’ contribution to systemic risk. This methodology was first proposed by Shapley 
(1953) for the allocation of the value created in cooperative games across individual players. 
Tarashev et al (2010) showed how Shapley values can be used to measure systemic 
importance when banks are not connected in an interbank network. 

In order to measure banks’ contribution to systemic risk in the presence of an interbank 
network, it is necessary to modify CA. Namely, it is necessary to account explicitly for the fact 
that a bank contributes to systemic risk not only via its exposure to exogenous shocks but 
also by propagating such shocks through the system and by being itself vulnerable to 
propagated shocks. We propose to do this in a generalized contribution approach (GCA), 
which is the key methodological innovation of our paper. 

Our empirical analysis of stylised banking systems and a system of 20 large globally active 
banks leads to two main conclusions. First, the structure of the interbank network and banks’ 
role in this network are quantitatively important drivers of the systemic importance of 
individual banks. Taking the interbank network into account raises the measured levels of 
systemic importance. And the rise is greater for banks with greater interbank market activity. 
Importantly, systemic importance is influenced by direct but also by indirect interbank 
linkages, which are captured only by a holistic approach to the system. 

Second, the choice of a particular approach to measuring systemic importance matters not 
only from a conceptual but also from an empirical point of view. Particularly pronounced in 
the presence of interbank linkages, this finding underscores how important it is that 
prudential authorities choose the approach that is in line with their concept of systemic 
importance. Concretely, PA assigns a higher (lower) degree of systemic importance to an 
interbank lender (borrower) than GCA. The reason for this is that PA attributes the risk 
associated with an interbank transaction entirely to the lending counterparty, ie the 
counterparty that bears this risk and can eventually transfer it onto its creditors in a systemic 
event. By contrast, GCA splits this risk equally between the two counterparties. In this way, 
GCA captures the idea that the systemic importance of an interconnected bank depends not 
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only on the risk it imposes directly on the real economy, but also on the risk it imposes on 
other banks in the system. 

The rest of the paper is organised as follows. In Section 2, we review briefly the related 
literature. Then, we present the analytic setup in Section 3: the measure of systemic risk, the 
Shapley value methodology, and alternative applications of this methodology. In Section 4, 
we describe empirical implementation of the analytic setup. In Section 5, we analyse stylised 
systems that help us build intuition for how the interbank network structure affects systemic 
risk and the systemic importance of individual banks. In Section 6, we use this intuition to 
analyse a system of 20 large banks. We conclude with Section 7. 

2. Literature review 

This paper bridges the literature on banks’ systemic importance and that on interbank 
networks. A measure of systemic importance, proposed by Huang et al (2010), Acharya et al 
(2009) and Brownlees and Engle (2010), has recently gained in popularity.3 These papers 
first compute the system-wide loss distribution and define a set of systemic events, which are 
states of the world that occur with a small probability but in which aggregate losses exceed a 
critical threshold. The systemic importance of a particular bank is then set equal to the 
expected losses it generates, conditional on systemic events. In other words, systemic 
importance is measured as the expected participation of individual institutions in systemic 
events. We thus will refer to this approach as the participation approach. The measure 
corresponding to this approach can be interpreted as the actuarially fair premium that each 
institution should pay to a (hypothetical) provider of insurance against system-wide losses in 
a systemic event. 

In order to capture a different concept of systemic importance – the contribution of 
institutions to systemic risk – Tarashev et al (2010) propose an approach based on Shapley 
values. A bank contributes to systemic risk not only through losses that it imposes on non-
banks but also by affecting the probability and severity of the losses generated by other 
banks in systemic events. And in contrast to the participation approach, the contribution 
approach proposed by Tarashev et al (2010) captures this idea directly. It does so by 
focusing on each subsystem – or subgroup of banks that belong to the entire system – and 
calculating the difference between the risk of this subsystem with and without a particular 
bank. Averaging such marginal risk contributions across all possible subsystems delivers the 
systemic importance of the bank under the contribution approach. 

In their empirical application Tarashev et al (2010) highlight that bank size, institution-specific 
probabilities of default and exposures to common risk factors interact in a non-linear fashion 
to determine the systemic importance of financial institutions. In a related paper, Staum 
(2010) uses Shapley values to design a deposit insurance scheme in the presence of fire-
sale externalities and mergers. The insights of these papers are however incomplete 
because, just like Acharya et al (2009) and Huang et al (2010), they do not consider explicitly 
the interbank network structure as a driver of systemic importance. 

                                                 
3  Another strand of the literature gauges systemic importance by the impact that the failure of (or distress at) 

one bank has on the rest of the system. An often cited measure from this literature is CoVaR, which has been 
popularised by Adrian and Brunnermeier (2008). In this paper, we abstract from this and related measures as 
they do not attempt to allocate systemic risk to individual institutions and, thus, are not additive across 
institutions. That said, such measures can be easily implemented in the empirical framework we develop 
below. This is illustrated by Drehmann and Tarashev (2011). 
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By now, there is a large literature – surveyed recently by Upper (2011) and Allen and Babus 
(2009) – on how linkages in an interbank network influence systemic risk. A number of the 
theoretical and empirical findings of this literature, as well as some of the methodological 
challenges faced by it, re-emerge in our analysis below. An example is the finding, first 
shown by Allen and Gale (2000), that the interbank network determines the extent of 
contagion in the system and, thus, has a first-order impact on system-wide risk. 

The large size of the interbank network literature notwithstanding, we are aware of only two 
papers that measure the systemic importance of interconnected institutions. In the first one, 
Gauthier et al (2009) use the approach of Tarashev et al (2010) in a system of five Canadian 
banks. But as we show below, this approach does not handle correctly the risk that banks 
impose on each other through interbank linkages. As a result, the approach needs to be 
modified materially in order to truly capture the extent to which interconnected banks 
contribute to systemic risk. In the second paper, Liu and Staum (2010) do tackle challenges 
related to the measurement of systemic importance in the presence of an interbank network. 
The approach they propose is different from the one we adopt below, requires complex linear 
programming techniques and is applied in extremely stylized settings. 

3. Systemic risk and systemic importance 

In this section, we lay out the analytic framework. First, we present the system and the notion 
of risk we use throughout the paper. Second, we define our measure of system-wide risk: 
expected shortfall. Third, we outline the Shapley value methodology as a general tool for 
attributing system-wide risk to individual institutions. Finally, we specify two alternative 
attribution procedures, which are special cases of the Shapley value methodology. 

3.1 System-wide risk 

Let the system be a set N  comprised of  banks, indexed by n  ni ,,2,1  . On the asset 
side of these banks’ stylised balance sheets, there are claims on non-banks and other banks 
in the system. On the liability side, there are debt securities held by other banks or non-
banks, as well as equity held by non-banks. The value of the bank’s assets undergoes 
stochastic shocks that translate into changes of its equity. Once assets fall below debt 
liabilities, equity is zero and the bank defaults. In this case, debt holders incur credit losses. 

Throughout the paper, we adopt the perspective of a prudential authority, who is only 
concerned about credit losses vis-à-vis the rest of the economy. Thus, we consider only the 
risk associated with losses incurred by the non-bank creditors of the n banks. Concretely, we 
denote by  the stochastic loss incurred by the non-bank creditors of bank i in system N

iL N . 
That said, we consider the risk faced by bank creditors and equity holders indirectly, as it 
affects the risk of non-bank creditors. 

Not accounting for equity risk directly is reasonable from a public policy perspective because 
a core function of equity is to absorb losses. That said, we make the strong assumption that 
a positive equity value, no matter how small, allows the bank to function normally and does 
not imply any systemic repercussions. Clearly, shocks to equity are important from a bank’s 
own risk management perspective, even if they are not a concern to a prudential authority.  

In addition, our system-wide perspective implies that we cannot consider losses on interbank 
exposures directly. Since the interbank liabilities of one bank are the interbank assets of 
another, losses to the interbank creditors of one bank are ultimately incurred by the equity 
holders or non-bank creditors of one or more other banks in the system. As a result, 
including interbank losses in the definition of  would have involved double counting at the 
level of the overall system. 

N

iL
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3.2 Measuring risk in the system 

We adopt a popular measure of tail risk: expected shortfall (ES). At an intuitive level, ES is 
the expected value of aggregate losses above a certain level. When applied to any 
subsystem, ie a subset of the overall system, ES can be stated more formally as follows: 
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where q is some, typically high, quantile of the distribution of aggregate losses in the 
system.4 In turn,  subNe  is the set of loss configurations that deliver aggregate losses equal 
to or greater than q. When the focus is on the whole system, this set of loss configurations, 
 Ne , is referred to as systemic events. 

3.3 Shapley values 

Used as measures of systemic importance, Shapley values are portions of system-wide risk 
that are attributed to individual institutions. And because Shapley values are additive, the 
sum of these portions across the banks in the system equals exactly the level of system-wide 
risk. In the next subsection, we outline the Shapley value methodology in its general form, 
which can be applied to a wide variety of settings and under very weak conditions. Then, we 
outline two specific applications of the methodology when system-wide risk is measured via 
ES. Even though they decompose the same quantum of system-wide risk, they attribute 
different portions of this risk to the same bank. In this sense, they adopt different concepts of 
the systemic importance of individual banks. 

3.3.1 General specification5 

At the heart of Shapley values is the so-called characteristic function  . In the context of a 
banking system,   maps any subsystem  into a measure of risk. This function 
needs to satisfy two weak conditions. First, it should be defined on each of the 2n 
subsystems of banks.

NN sub 

6 Second, when   is applied to the entire system, it should coincide 
with the chosen measure of system-wide risk. Thus, given equation (1),   NESN   . 

For a given function  , the Shapley value of bank i is a weighted average of the increments 
of risk that this bank generates as it joins any possible subsystem comprised of other banks.  
Denote the risk of subsystem  by NN sub   subN  and the risk in that subsystem without 

bank i by  iN sub  . Then, the formal expression for the Shapley value, ShVi(N), of bank i in 
system N is: 
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In this expression, iN sub   are all the subsystems  that contain bank i,  
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4  Even though it specifies ES in intuitive terms, expression (1) is not precise enough to be applied to general 

stochastic settings. For our numerical analysis, we use the precise definition of Gordy (2003).   
5  This section draws heavily on Mas-Colell et al (1995). Shapley values were first introduced by Shapley (1953). 
6  These subsystems are: Ø, {1}, {2}, {3}, …, {n}, {1,2}, {1,3}, …, {n-1,n}, …, {1,2,3,…,n}. 
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the number of subsystems that contain bank i and are comprised of  banks. In addition, the 
empty set carries no risk: 

sn

  0Ø  . 

For a given characteristic function  , the Shapley values form the unique set of measures of 
systemic importance that satisfy a number of appealing and important properties. We 
mention here two of these – the additivity and fairness properties – while the rest are 
discussed at length in Tarashev et al (2010). The additivity property states that the sum of 
Shapley values equals exactly the aggregate measure of systemic risk. Indeed, it can be 

verified that equation (2) implies that      NESNNShV
n

i
i 




1
. 

In turn, the fairness property states that the increment of the Shapley value of bank i that is 
due to the presence of bank k in the system equals the increment of the Shapley value of 
bank k that is due to the presence of bank i. Formally: 

       iNShVkNShVNShV kii  NShVk  Nki  , all for      (3) 

While the fairness property in expression (3) holds for any underlying characteristic function 
 , the value of the increments on each side of the expression does change with  . In other 
words, the choice of a characteristic function determines the extent to which the Shapley 
value of bank i depends on the risk generated by bank k in the system (left-hand side of (3)). 
And, since banks are treated symmetrically, the particular characteristic function also 
determines the extent to which the Shapley value of bank i reflects the impact of this bank – 
through an interbank link, for example – on the Shapley value of bank k (right-hand side of 
(3)). The fairness property plays a key role in explaining our empirical results. Once we have 
introduced the specific characteristic functions we consider, we will therefore come back to 
this property and concretise it further. 

We implement two different applications of the Shapley value methodology, which deliver two 
different measures of systemic importance when the metric of system-wide risk is ES. The 
differences between the two applications are entirely due to the underlying characteristic 
functions. The first function we consider defines the participation approach, which has been 
quite popular in the literature. The second characteristic function delivers Shapley values that 
gauge the contribution of individual banks to systemic risk. This function generalises the 
contribution approach presented in Tarashev et al (2010) to the case of interconnected 
banks, thus defining the generalised contribution approach. 

A key difference between both approaches emerges in the presence of an interbank network. 
Take an interbank link that raises systemic risk by some increment. As we explain below, the 
participation approach essentially allocates this increment entirely to the interbank lender. 
The contribution approach, by contrast, treats the interbank lender and borrower 
symmetrically and splits the incremental increase in systemic risk equally between them. 
This example shows that the two approaches embed different concepts of systemic 
importance. 

3.3.2 Participation approach (PA) 

As discussed in Section 2, a number of recent papers measure a bank’s systemic 
importance by the expected losses it generates in systemic events.  In the notation of 
equation (1), systemic events, e(N), are states of the world in which aggregate losses 
generated by the banks in the whole system exceed a particular threshold: . Thus, 

the proposed measure of systemic importance can be expressed as: 

, which is the expected participation of bank i in systemic 

events, hence our label participation approach (PA). Note that 
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actuarially fair premium that bank i would have to pay to a scheme that insures non-bank 
creditors against losses in systemic events, e(N). 

Interestingly, PA is a special application of the Shapley value methodology. To see this, let 
us define the characteristic function,  as  PA
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subPA  for any       (4)  NN sub 

Expressions (1) and (4) imply that    NESNPA  , as required. 

The key feature of  is that it keeps two important inputs constant across subsystems. 
First, irrespective of the subsystem, 

PA
subN ,  employs conditioning events that coincide with 

the systemic events 

PA
 Ne , which are determined at the level of the whole system. Second, 

again irrespective of the subsystem,  considers the losses, , that non-bank creditors of 
bank i experience when the whole system is in place. This is despite the fact that the risk of 
bank i depends on its interbank linkages and these change typically with the subsystem. 

PA N
iL

Equation (4) implies that, under , the increment of risk that a bank generates as it joins a 
subsystem is the same across all subsystems, as 

PA
      NeLEiNN N

i
subPAsubPA |  . 

Since a Shapley value is a weighted average of such increments, it follows that: 

      Ne|LE;NShV;NShV N
i

PAsub
i

PA
i            (5) NN all and Ni all for subsub 

which is the expected participation of bank i in systemic events (see above). 

The first equality in equation (5) means that, under , the Shapley value of a bank remains 
the same even if it is evaluated for a subsystem of banks. This leads to the following 
expression of the fairness property. For each 

PA

Nki , : 

        0;;;;  PA
k

PA
k

PA
i

PA
i iNShVNShVkNShVNShV      (6) 

To see what this means more concretely, consider a case in which bank i has a credit 
exposure to bank k. Also assume that this interbank link creates risk for the non-bank 
creditors of bank i because of contagion from bank k to i. By the second equality in equation 
(6), however,  fails to associate this risk (even partly) with the interbank borrower, bank k. 
As a result, Shapley values under  attribute the entire risk created by the interbank link to 
the lender, bank i. 

PA
PA

3.3.3 Generalised contribution approach (GCA) 

It is possible to move away from PA and closer to the original idea behind the Shapley value 
methodology. In the light of Section 3.3.1, this means that we should measure the risk that a 
bank generates on its own as well as this bank’s contributions to the risk in each subsystem 
of other banks. In terms of the general specification in equation (2), this suggests that, when 
we evaluate the risk of a subsystem from which bank i is excluded, we cannot simply 
consider the risk that this bank generates when the entire system is in place. We thus resort 
to the characteristic function of the second, generalised contribution approach (GCA): 
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At the level of the entire system N,  and  coincide, as GCA PA     NESNN PAGCA    . But 
the allocation of this system-wide risk differs between the two approaches for two important 
reasons. First,  allows the stochastic losses incurred by the non-bank creditors of bank i 

to depend on the subsystem considered: . Of course, such dependence is redundant if 
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subN

i
L

6 
 
 



 

there are no interbank links and a bank can fail only because of shocks coming from outside 
the system. This is the setting in which Tarashev et al (2010) propose their contribution 
approach. However, when there is an interbank network, the absence of some banks from a 
particular subsystem implies the absence of some interbank links and, ultimately, the 
absence of some sources of risk for the banks in the subsystem. This implies that bank-
specific losses do depend on which other banks are in the subsystem, as reflected in . 
Gauthier et al (2010) abstract from this issue and, as a result, fail to equate the removal of a 
bank from a (sub)system with the removal of the entire risk that this bank generates. In 
Annex 1, we formulate their approach with our notation and show that it produces measures 
of systemic importance that can differ materially from those implied by GCA.  

GCA

To capture the dependence of bank-level losses on the subsystem, we implement GCA as 
follows. First, we assume that banks inside any given subsystem replace their exposures to 
banks outside this subsystem with a risk-free asset. Second, we make a similar assumption 
on the liability side: banks inside any given subsystem replace their liabilities to banks 
outside this subsystem by borrowing from outside the system. Thus, excluding a bank from a 
(sub)system removes the entire risk that bank generates in this (sub)system. 

The second difference between  and  is due to the fact that  incorporates 
conditioning events, 

GCA PA GCA
 subNe , that change with the subsystem. Thus, in contrast to ,  

measures risk as the expected shortfall in each subsystem: 

PA GCA
  )subGCA ESN  ( subN . This leads 

to the following special case of the general Shapley value formula in (2):  
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The two distinctive features of  lead to a insightful fairness property of Shapley values 
under GCA. This comes to the fore if the simultaneous presence of two banks 

GCA
ki N,  

raises systemic risk (which occurs when these banks have strictly positive sizes and PDs 
and positively correlated assets).  then assigns a higher Shapley value to either bank in 
the entire system than in a system excluding the other bank. Moreover, the increment of 
systemic risk that is caused by the joint presence of the two banks is split into equal halves, 
which GCA attributes to each of these banks. Or formally: 

GCA

        0;;;;  GCA
k

GCA
k

GCA
i

GCA
i iNShVNShVkNShVNShV       (9) 

The strict inequality indicates that, in contrast to ,  does convey the extent to which 
one bank affects the riskiness of another. And in order to see a concrete implication of this, 
we again consider the case in which bank i has a credit exposure to bank k. Equation (9) 
implies that  captures the contribution of this interbank link to systemic risk and splits it 
equally between banks i and k. By extension, a Shapley value under GCA  attributes the risk 
created by an interbank link equally to the interbank lender and the interbank borrower.  

PA GCA

GCA


4 Empirical implementation  

The methodology outlined so far can be applied to any probability distribution of losses, as 
long as it is well-defined for each subsystem. To specify a particular distribution, we start with 
the following expression for of the stochastic losses associated with bank i in sub :  N

iii

subN
i ILGDsL   (10) 

In this expression, LGDi, or loss given default loss, is the share of non-banks’ credit exposure 
to bank i that is lost if this bank defaults. In turn, si denotes the size of bank i. In line with the 
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discussion in Section 3.1, si equals the debt liabilities of bank i to non-banks, which we 
normalise by the aggregate level of non-bank liabilities in the system. This in turn implies that 
all our measures of systemic risk and banks’ importance are also expressed per unit of 
aggregate system size. Finally, Ii = 1 if bank i defaults and Ii = 0 otherwise. As stated above, a 
bank defaults if and only if its total assets are lower than its non-equity liabilities.  

We distinguish two types of bank defaults. First, a fundamental default is triggered solely by 
adverse shocks to a bank’s claims on nonbanks, which we refer to as “exogenous shocks”. 
Exogenous shocks, Xi, are driven by common and idiosyncratic factors. We assume that the 
factors are mutually independent normal variables, denoted by Mj and Zi, respectively: 

i
2
iii Z1MX        for all  (11)  ni ,,2,1  

We refer to the probability of a fundamental default as the fundamental PD. Higher common 
factor loadings,  1,0i , lead to a higher probability of joint fundamental defaults.  

Second, a contagion default occurs if a bank has survived the shocks to its nonbank assets 
but is pushed into default by the default of one (or more) of its bank obligors in subsystem 

. We call the probability of such a default contagion PD. Thus, the overall PD of a 
bank equals its fundamental PD plus its contagion PD. 

NN sub 

When banks fail, positions are not netted. We assume that there are bankruptcy costs, which 
reduce the value at default of a bank’s debt liabilities, vis-à-vis both non-banks and other 
banks, by a fraction α.7 We also assume that nonbank creditors are senior to bank creditors.8 

This setup defines the probability distribution of system-wide losses for our empirical 
analysis.  In order to build intuition for the role of the interbank network as a driver of banks’ 
systemic importance, we first analyse hypothetical and highly stylised systems. We then 
consider networks based on actual data for 20 large internationally active banks. The two 
types of banking systems differ in terms of the calibrated parameters, such as bank size and 
PD (which we discuss in detail below), but are similar in terms of the simulation procedure. 

We implement the simulation procedure in the following steps. In the light of equation (11), 
we start by drawing a set of exogenous shocks (to claims on non-banks), which determines 
whether one or several banks experience a fundamental default. Then, we account for 
contagion defaults via the “clearing algorithm” of Eisenberg and Noe (2001). In line with the 
discussion in Section 3.3, we apply this algorithm only once in the case of the PA (i.e. when 
the network of the entire system is in place) and 2n times (i.e. for each subsystem in a 
system of n banks) in the case of GCA. To construct a probability distribution of losses, we 
draw one million sets of exogenous shocks. For the calculation of ES, we set q to the 99th 
percentile of this distribution. Finally, we set bankruptcy costs to α = 20%.9 

                                                 
7  Bankruptcy costs are likely to affect non-bank and bank creditors differently. This can be easily implemented 

in the model without changing the main insights of the paper.  
8  Nonbank creditors are senior to banks in several countries, such as Germany (see Upper, 2009). 
9  The insights of the paper do not depend on the choice of α, as long as bankruptcy costs are not extreme. For 

a sample of failed US banks, James (1990) estimates that losses on bank assets amount to around 30% on 
average. This contains direct losses as well as loss of charter value and at least 10 percentage points of 
administrative and legal expenses. 
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5 Hypothetical Networks 

In this section, we first outline the design of hypothetical and highly stylised interbank 
networks. Then, we study how these networks affect the systemic importance of individual 
banks under the generalised contribution approach. Finally, we compare the implications of 
GCA and PA in the stylized settings. 

5.1 Design of hypothetical networks 

We assume that a hypothetical system is comprised of 9 banks and we explore four different 
interbank networks: a system with no interbank connections as well as three different 
network structures. The four setups are portrayed in Graph 1. In each of the three setups 
with interbank connections there is one bank with a central role, henceforth the centre bank. 
In the first two of these networks, four periphery banks either borrow from or lend to the 
centre bank, while the remaining four banks do not participate in the interbank market. The 
last network captures in a stylised fashion the real-life phenomenon in which the centre bank 
intermediates between periphery banks, four of which borrow and four of which lend to it.  

Graph 1 

Hypothetical interbank networks  

No interconnections  Centre bank borrows Centre bank lends  Centre bank intermediates

 

 

Balance sheets in the different systems are shown in Table 1. In all cases, banks have 5 
units of equity and borrow 87 units from nonbanks. This means that they are of the same 
size (recall Section 3.1). Periphery banks have 8 units of interbank liabilities (if they borrow 
from the centre bank) or 8 units of interbank assets (if they lend), which fully determines the 
interbank positions of the centre bank. The resulting share of interbank positions in a 
periphery (centre) bank’s balance sheet is close to the mean (maximum) of the 
corresponding shares in our sample of 20 large banks (see Section 6.1 below). 

We draw exogenous shocks (to non-bank assets) in line with the calibration scheme outlined 
in Section 4. The common factor loading i  is the same across all banks and corresponds to 
the average common factor loading of 0.67 in our data on 20 large banks (see below). In 
addition, shocks are calibrated such that the (fundamental) PD of each bank in the system 
with no interbank linkages is 0.42%, halfway between the median and mean PD estimates 
for the same 20 banks. The fundamental PD of each bank is the same in each of the other 
stylised systems. 
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Table 1 

Balance sheet of hypothetical banks 

    
No interbank 
connections 

Centre bank 
borrows 

Centre bank 
lends 

Centre bank 
intermediates 

  
EQ NBL IBL  IBA TA IBL IBA TA IBL IBA TA IBL  IBA TA 

No IB 
connection 

5 87 0 0 92 0 0 92 0 0 92    

PB lender 5 87    0 8 92 0 0 92 0 8 92 

PB borrower 5 87    0 0 92 8 0 100 8 0 100

CB 5 87    32 0 124 0 32 92 32 32 124

CB as CCP 3 0          32 32 35 

Note: IB: interbank market; PB: periphery bank; CB: centre bank; CCP: central counterparty; EQ: equity; NBL: 
non-bank liabilities;  IBL: interbank liabilities; IBA: interbank assets; TA: total assets.  

5.2 Systemic importance under different network structures 

A priori, the network structure should affect both the absolute and relative levels of systemic 
importance of individual banks. If all banks are ex ante the same, the network that is more 
vulnerable to contagion defaults should lead to higher levels of system-wide ES and thus to 
higher (uniform) Shapley values. In a system of heterogeneous banks, however, it seems 
intuitive that the most interconnected bank – in the stylised examples, the centre bank – has 
the highest Shapley value.  

Table 2 shows the results related to the stylised systems. Not surprisingly, the system 
without an interbank network does not experience contagion defaults and, as a result, has 
the lowest ES. In comparison, ES is higher in the two systems where the centre bank either 
borrows from or lends to the periphery and, thus, contagion defaults are possible. In the first 
case, the centre bank is the only source of contagion risk, whereas in the second it is 
exposed to multiple sources of such risk from the periphery. Since all else is kept the same, 
the multiple sources of contagion risk give rise to a higher “aggregate” probability of 
contagion defaults (0.51% vs. 4 x 0.10%) and, ultimately, to a higher system-wide ES. 
Finally, ES is highest when the centre bank acts as an intermediary between periphery 
banks. In this case there is an additional channel of shock propagation, as the default of one 
(or several) borrowing banks in the periphery can be transmitted, via the default of the centre 
bank, to lending banks in the periphery. 

More interestingly, Table 2 also shows how the network structure and banks’ position in it 
affect their systemic importance. For concreteness, we focus only on GCA Shapley values in 
this subsection (second to last column in the table). As anticipated above, all banks feature 
their lowest Shapley values in the system without an interbank network, when system-wide 
ES is at its lowest. Across the three setups with interbank linkages, the Shapley value of the 
centre bank is always higher than that of any periphery bank. While this is intuitive, it is not 
obvious when looking purely at contagion PDs. The system in which the centre bank only 
borrows from the periphery is a case in point. Here, the centre bank is a source of risk for 
periphery banks but can never default because another bank has defaulted, i.e. its contagion 
PD is zero. Nonetheless, the GCA Shapley value of the centre bank is more than 60% larger 
than the Shapley value of each interbank lender.  

This result is driven by the fairness property of Shapley values. As discussed in Section 
3.3.3, this property implies that, when an interbank link raises systemic risk, GCA splits the 
rise equally between the borrower and the lender. This can be easily seen in the stylised 
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systems, where PDs, correlations and size are constant across banks. For example, 
switching from the system without a network to the system in which the centre bank only 
borrows from the periphery raises the system-wide ES by 0.94 percentage points (from 
4.01% to 4.95%). Attributing this rise equally to borrowers and lenders would mean 
attributing 0.5*0.94 = 0.47 to the centre bank and (0.5*0.94)/4 = 0.1175 to each of the four 
lending periphery banks. This matches almost perfectly the actual increases in Shapley 
values, which are 0.45 (= 0.9-0.45) for the centre bank and 0.11 (= 0.56-0.45) for the 
periphery banks.10 The same intuition holds if the centre bank acts only as an interbank 
lender or if it intermediates. 

 

Table 2 

Results for the hypothetical banking1  

    Shapley Values 

 ES f.PD2 c.PD2  GCA PA 

      

No interconnections 4.01     

All (9 banks)  0.42 0 0.45 0.45 

Centre bank borrows 4.95     

Centre bank  0.42 0 0.90 0.64 

PB lender (4 banks)  0.42 0.10 0.56 0.66 

No IB connection (4 banks)  0.42 0 0.45 0.42 

Centre bank lends 5.16     

Centre bank  0.42 0.51 1.06 1.63 

PB borrower (4 banks)  0.42 0 0.57 0.48 

No IB connection (4 banks)  0.42 0 0.45 0.40 

Centre bank intermediates 7.73     

Centre bank  0.42 0.51 2.06 1.78 

PB lender (4 banks)  0.42 0.29 0.71 1.00 

PB borrower (4 banks)  0.42 0 0.71 0.49 

Centre bank as CCP 4.85     

Centre bank  0 0.19 0.22 0 

PB lender (4 banks)  0.42 0.07 0.58 0.70 

PB borrower (4 banks)  0.42 0 0.58 0.52 

Note: 1  All values are in per cent. ES and Shapley values are expressed per unit of system size. ES pertains to 
the system as a whole. All other values pertain to a bank in the particular group.    2  f.PD and c.PD are 
fundamental and contagious PDs, respectively 

 

When the centre bank intermediates between periphery banks (Table 2, fourth panel), its 
Shapley value is larger than the sum of its Shapley values when it only lends or borrows. The 
reason is that an intermediating centre bank creates indirect links between periphery banks. 
As a result, an adverse shock to an interbank borrower in one part of the system can cause 
the default of an interbank lender in another part. This highlights that the systemic 

                                                 
10  The match is not exact because we calculate the rise in Shapley values by comparing two systems that differ 

in the underlying interbank network and thus are underpinned by different loss distributions. 
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importance of an institution can be correctly measured only when both direct and indirect 
linkages are taken into account in a holistic perspective on the system. 

5.3 Comparing GCA and PA: Borrowers vs. lenders  

PA and GCA can generate materially different Shapley values in the presence of an 
interbank network because of the different underlying concepts of systemic importance. And 
the differences are due to the different treatment by the two approaches of the counterparties 
in interbank links. As explained in Section 3.3.2 above, PA tends to attribute the risk 
generated by an interbank link to the lender. By contrast, GCA treats the two counterparties 
of an interbank link symmetrically and, thus, splits the associated risk equally between them. 
This lowers (raises) the GCA Shapley value of an interbank lender (borrower) relative to the 
corresponding PA value. 

The last two columns in Table 2 illustrate this point. In all the stylised systems, an interbank 
borrower (lender) has a higher (lower) Shapley value under GCA than under PA. This does 
not only affect the relative size of Shapley values across approaches but also the rank 
ordering of systemic importance of different banks. For example, if the centre bank only 
borrows from the periphery, PA Shapley values underplay this bank’s role as a propagator of 
shocks and attribute lower systemic importance to it than to interbank lenders in the 
periphery (0.64% vs. 0.66%). By contrast, the centre bank has the highest GCA Shapley 
value in that system (0.9%). This reflects the fact that, by being the only propagator of 
shocks, this bank is the main contributor to systemic risk. 

It is instructive to note that the stylised interbank networks we consider may depress the 
Shapley values of banks that do not participate in the interbank market. Under PA, the 
Shapley value of each bank in the system without interbank linkages is higher (0.45% of the 
system size) than that of banks that do not participate in the interbank market when the 
centre bank lends (0.40%) or borrows (0.42%). To see why, note that the introduction of 
interbank linkages raises the probability of extreme losses because the probability of joint 
defaults of interconnected banks is higher than that of unconnected banks. The impact of 
introducing a network is then twofold: a higher probability of extreme losses in systemic 
events, and greater participation in these events by banks that end up with interbank 
linkages. The flipside is that banks that stay unconnected participate less in the systemic 
events when a network is introduced, which lowers these banks’ PA Shapley values (see 
Section 3.3.2). That said, the introduction of an interbank network does not seem to affect 
the contribution of unconnected banks to systemic risk and their GCA Shapley values remain 
virtually the same.  

5.4 Comparing GCA and PA: Intermediaries  

It is also of interest to examine the relative sizes of the Shapley values that GCA and PA 
attribute to a centre bank that intermediates. Even though both approaches allocate risk 
differently to lenders and borrowers, the results from the previous subsection suggest that 
the two Shapley values could be similar, as the intermediating bank lends and borrows 
exactly the same amounts in the interbank market. However, the system in question 
possesses a feature that was absent from the systems examined above. Namely, the centre 
bank creates indirect exposures between periphery lenders and periphery borrowers. Then, 
by the fairness property in equation (9), part of the risk stemming from these exposures 
raises the GCA Shapley value of the centre bank. By contrast, and in line with the analysis in 
the previous section, PA attributes this risk entirely to periphery lenders. In the end, the PA 
Shapley value of the intermediating bank is lower than the GCA value (1.78% vs. 2.06%). 

The difference between PA and GCA becomes particularly stark, when we assume that the 
centre bank acts as a central counterparty (CCP) and thus only intermediates in the 
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interbank market but neither lends to nor borrows from nonbanks. By the definition in Section 
3.1, the centre bank is then of zero size.11 

Table 2 (bottom panel) reports risk measures for the system and individual banks when the 
centre bank acts as a CCP. Since it does not lend to nonbanks, the centre bank has a 
fundamental PD of zero, which lowers system-wide ES from 7.73% to 4.85%. In addition, 
since it does not borrow from nonbanks, the centre bank does not contribute directly to 
losses by non banks and, thus, does not participate in systemic events. This results in a PA 
Shapley value of zero. But, at an intuitive level, this bank does contribute to systemic risk 
because it creates indirect links between lending and borrowing periphery banks. This 
underpins a positive GCA Shapley value of 0.22%.  

While this is a stylised example, it highlights a key conceptual difference between the 
approach capturing participation in systemic events and that capturing contribution to 
systemic risk. The example also illustrates that there could be substantial quantitative 
differences between the measurements of the systemic importance of individual institutions 
under the two approaches. In turn, this emphasises the need for policy makers to carefully 
choose a measure, which is in line with their concept of systemic importance. 

6 Analysing the systemic importance of 20 large banks 

In this section, we build on the insights of the stylized hypothetical networks in order to 
analyse the systemic importance of 20 large internationally active banks. Before delving into 
the analysis, we first describe our data. 

6.1  Data for the system of 20 large banks 

To calibrate the model for the system of 20 large banks, we rely on two sources. First, we 
obtain balance sheet information from Bankscope. Second, Moody’s KMV provide us with 
the PDs of individual banks and pair-wise correlations of banks’ asset returns. 

All balance sheet data are from end-2009. Table 3 reports that the largest bank in our system 
(bank C) is 3.5 times larger than the smallest (bank G). The table also shows the shares of 
each bank’s interbank assets (IBA = loans and advances to banks) and interbank liabilities 
(IBL = deposits from banks) in the bank’s total assets and liabilities, respectively. Both IBA 
and IBL average approximately 10% across banks.  

However, these shares provide incomplete information about the network of interlinkages 
among the 20 banks. First, total interbank positions of any of these banks include positions 
vis-à-vis banks that we abstract from. Second, part of the actual interbank links stem from 
off-balance sheet positions, which cannot be identified in our data. When interpreting the 
results below, it should be kept in mind that the former implies that we may overstate the 
importance of the network, whereas the latter implies that we may understate it. 

The derivation of the interbank network is further complicated by the lack of publicly available 
information on bilateral interbank exposures. As most of the literature, we address this issue 
by constructing a maximum entropy (ME) matrix of bilateral exposures. An ME matrix 
satisfies two conditions simultaneously. First, the sum of the entries in each row / column 
corresponding to a particular bank equals the aggregate level of this banks’ liabilities / assets 

                                                 
11  The balance sheet of the centre bank acting as CCP is reported in Table 1 (last row).To satisfy the balance 

sheet identity, we assume in this case that the centre bank invests 3 units in a risk-free assets. The balance 
sheets of the periphery banks remain the same as in the network where the centre bank intermediates.  
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vis-à-vis the other banks in the system.12 Second, the interbank assets and liabilities of each 
bank are distributed as uniformly as possible across the other banks in the system.  

 

Table 3 

Descriptive statistics of the 20 large internationally active banks 

 Bank 

 A B C D E F G H I J K L M N O P Q R S T 

Size 5.6 5.5 8.2 5 3.1 6.4 2.3 6.6 6.8 4.9 5.1 4.7 4.8 7.7 4.4 4.1 3.8 3.9 3.5 3.6 

IBA 9.6 13.4 4.3 21 12.6 21.7 20.8 3.1 7.9 3.7 18.6 3.4 3.8 5.4 7.2 6.6 5.8 10.3 8.4 3.2 

IBL 13 20.8 11.4 9.2 17.3 9 25.1 3.1 5.9 7.5 14.2 8.4 4 8.9 8.3 9.5 1.9 5 12.4 2.3 

Note: size: liabilities to nonbanks divided by total non-bank liabilities, in per cent; IBA: interbank assets divided 
by total assets, in per cent; IBL: interbank liabilities divided by total liabilities, in per cent. 

 

The second assumption is clearly ad hoc. Therefore, we also randomly simulate other 
interbank matrixes that are consistent with the observed data.13 In particular, we consider 
225 random perturbations around the ME matrix and choose the one that differs the most (in 
terms of the 2-norm distance) from the ME matrix. Since 287 out of the 380 off-diagonal 
entries of this matrix are equal to zero, we refer to it as a high-concentration (HC) matrix. 
Similar to the hypothetical networks, we also consider the zero matrix, which rules out 
interbank positions. 

We set bank-level PDs to the average value of each bank’s monthly one-year expected 
default frequency (EDF), as estimated by Moody’s KMV for 2006-2009. These PDs average 
0.6% in the cross section, have a median of 0.25% and a standard deviation of 0.8%. 

When working with the correlation matrix of banks’ asset returns, we make two choices. First, 
we treat this matrix as equal to the correlation matrix of the returns on banks’ non-bank 
assets. In principle, the correlation matrix should reflect the fact that the co-movement of 
banks’ asset values would be caused by (i) exogenous common factors affecting assets vis-
à-vis non-banks but also by (ii) interbank linkages. That said, since we model the latter 
linkages as driven exclusively by interbank credit exposures and banks’ PDs are quite low, 
the impact of these linkages on asset-return correlations turns out to be negligible.14 Second, 
we impose a single-common-factor structure on the correlation matrix (see Tarashev and  
 

                                                 
12  In our system of 20 banks the sum of interbank assets is not equal to the sum of interbank liabilities as these 

banks have interbank exposures vis-à-vis banks that we do not consider. In order to work with an internally 
consistent matrix of interbank positions, we create a “sink bank” that absorbs excess amount of interbank 
assets or liabilities. We assume that this bank does not default and abstract from its potential losses on the 
interbank market. 

13  We use the RAS algorithm to derive the ME solution, which in turn uses the relative entropy matrix as a prior. 
As explained in Upper (2011), this matrix assumes that the exposure of bank i to bank j is xi,j=ai*lj if i≠j and 0 
for i=j, where ai (lj) are the normalised total interbank assets (liabilities). We generate random interbank 
matrices by treating each entry of the prior matrix as a uniform variable distributed between zero and twice its 
initial value. In addition, we randomly restrict off-diagonal entries to be equal to zero. We then apply the RAS 
algorithm to this modified prior and only consider matrices for which the algorithm converges.  

14  While asset-return correlations estimated by Moody’s KMV range between 0.30 and 0.60, network 
interlinkages increase correlations by roughly 0.01. 
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Table 4 

Systemic risk and systemic importance in a system of 20 large banks  

In per cent 

No interbank network ME matrix HC matrix 

ES = 3.2 

median PD = 0.15 

ES = 4.3  

median PD = 0.25 

ES = 4.4  

median PD = 0.30 
   

 

 Shapley 
values 

 
Shapley 

values 
 

Shapley 
values 

Bank 
f.PD 
rank 

c.PD GCA PA c.PD GCA PA c.PD GCA PA 

A 6 0 0.28 0.29 0.05 0.35 0.27 0.05 0.36 0.32 

B 13 0 0.07 0.07 0.14 0.22 0.22 0.08 0.21 0.17 

C 16 0 0.04 0.05 0.06 0.09 0.14 0.05 0.12 0.12 

D 3 0 0.43 0.45 0.11 0.53 0.47 0.17 0.52 0.46 

E 4 0 0.16 0.11 0.18 0.27 0.21 0.14 0.27 0.20 

F 19 0 0.00 0.00 0.14 0.13 0.19 0.16 0.13 0.21 

G 20 0 0.00 0.00 0.12 0.06 0.06 0.05 0.02 0.03 

H 7 0 0.32 0.34 0.07 0.35 0.39 0.11 0.36 0.45 

I 17 0 0.02 0.03 0.06 0.05 0.11 0.06 0.06 0.11 

J 9 0 0.10 0.10 0.07 0.13 0.14 0.11 0.15 0.17 

K 12 0 0.06 0.07 0.09 0.15 0.15 0.22 0.25 0.26 

L 15 0 0.04 0.05 0.05 0.06 0.08 0.03 0.06 0.07 

M 2 0 0.53 0.57 0.05 0.54 0.53 0.03 0.53 0.44 

N 5 0 0.51 0.51 0.07 0.60 0.58 0.07 0.56 0.57 

O 18 0 0.01 0.01 0.04 0.02 0.04 0.04 0.03 0.04 

P 10 0 0.09 0.09 0.09 0.14 0.15 0.04 0.11 0.11 

Q 1 0 0.39 0.36 0.07 0.38 0.32 0.04 0.37 0.32 

R 11 0 0.05 0.04 0.13 0.09 0.12 0.26 0.13 0.19 

S 14 0 0.03 0.03 0.06 0.06 0.07 0.04 0.05 0.05 

T 8 0 0.10 0.07 0.02 0.10 0.07 0.02 0.10 0.08 

Note: f.PD: fundamental PD; c.PD: contagion PD; GCA: generalised contribution approach; PA: participation 
approach; ME: maximum entropy; HC: high concentration. Shapley values are expressed per unit of system 
size. 

 

Zhu (2008)). This structure is not necessary for measuring systemic risk and systemic 
importance but has the important expositional advantage of allowing us to describe the 
commonality of banks’ non-bank exposures via 20 bank-specific common-factor loadings. 
For our numerical results, we start with three correlation matrices – for 2006, 2007 and 2009 
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– which lead to three sets of common-factor loadings.15 Then, we assign to each bank its 
average common-factor loading, corresponding to i  in equation (11). The common factor 
loadings we work with have a mean of 0.67, which corresponds roughly to the average 
correlation of 0.672 = 0.45. 

The final element of our calibration scheme pertains to the exogenous shocks in equation 
(11). We calibrate the mean and variance of these shocks to be such that the frequencies of 
first-round defaults plus the frequencies of contagion defaults, caused by the propagation of 
shocks to non-bank assets through the interbank network under the ME matrix, match 
exactly the PDs we derive from the Moody’s KMV data. Keeping the distribution of the 
shocks fixed allows us to study how different network structures, as implied by the zero or 
the HC matrix, affect banks’ PDs.  

For each of the three interbank networks, Table 4 reports fundamental and contagion PDs. 
As we are not allowed to freely publish bank specific PDs from Moody’s KMV, we only report 
the rank of fundamental PDs (1 = highest and 20 = lowest). The values of these PDs remain 
the same across networks. By contrast, contagion PDs, for which we report actual values, do 
change with the structure of the network.  

6.2 Drivers of systemic importance  

Before we explore the impact of the three different interbank networks, we briefly look at how 
other risk parameters affect a bank’s systemic importance. It turns out that, in the absence of 
an interbank network, the fundamental PD is the main driver of systemic importance in the 
system we consider. To illustrate this, we rank-order the 20 banks according to the values of 
each of the three drivers and according to their Shapley values (Table 5). The orderings of 
fundamental PDs and Shapley values are almost identical. By contrast, the other two drivers 
provide virtually no information about systemic importance. It should be emphasized, 
however, that this is a feature of the particular network we consider, rather than a general 
result (Tarashev et al (2010)). 

 

Table 5 

Shapley values and drivers of systemic importance: no network  

 Bank 

 A B C D E F G H I J K L M N O P Q R S T 

GCA 6 11 14 3 7 19 20 5 17 9 12 15 1 2 18 10 4 13 16 8 

f.PD 6 13 16 3 4 20 19 7 18 9 12 15 2 5 17 10 1 11 14 8 

size 6 7 1 9 19 5 20 4 3 10 8 12 11 2 13 14 16 15 18 17 

CF 15 4 3 17 13 1 6 9 7 10 11 8 16 5 14 2 20 19 12 18 

Note: GCA Shapley values and drivers are ranked from 1 = highest to 20 = lowest within each category. GCA: 
generalised contribution approach; f. PD: fundamental PD; CF: loading on the common risk factor. 

 

                                                 
15  Moody’s KMV does not provide correlations for 2008. 
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6.2.1 The impact of the network 

In this section, we examine how system-wide risk and the systemic importance of individual 
banks change when we replace the zero matrix of interbank exposures with the ME matrix. 
As with the stylised systems, we initially focus on GCA Shapley values only.   

Not surprisingly, the introduction of interbank linkages gives rise to positive contagion PDs, 
raising system-wide ES by 30%, from 3.2% under the zero matrix to 4.3% (Table 4). Since 
the interbank network is a material driver of systemic risk, it elevates the systemic 
importance of almost all the banks in the system (compare left to middle and right-hand 
panels of Table 4). And the impact is strongest on banks that are most active in the interbank 
market. Concretely, banks B, F and K, which feature the highest levels of interbank positions 
(see Table 3), also experience the greatest rises in Shapley values when the zero interbank 
matrix is replaced by the ME matrix. 

At the other extreme is the negative impact of the interbank network on the Shapley values of 
banks M and Q, which have the lowest interbank positions in the system. Featuring the two 
highest PDs, these banks have the highest and fourth highest Shapley values in the absence 
of a network. When a network is introduced, however, the ES of the system rises and the rise 
is underpinned mostly by losses stemming from the joint failures of the highly interconnected 
banks. This squeezes out banks M and Q as participants in systemic events, which 
depresses their PA Shapley values. The impact on GCA Shapley values is more muted. The 
same result, arising for similar reasons, was recorded in Section 5.3 for the case of non-
connected banks in stylised systems. 

As already frequently pointed out, the fairness property implies in this case that the increase 
in ES due to the interbank network should be split equally between borrowers and lenders on 
the interbank market. Thus, the quantum of risk attributed to the group of borrowers / lenders 
should be allocated pro rata across individual banks in each group. This insight can be 
captured by a simple network impact indicator NII: 
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The subscript of ES indicates the network matrix under which the measure is derived; IBL 
and IBA denote interbank liabilities and assets, respectively. 

The first two column in Table 6 shows the results of a simple OLS regression in which NII is 
used as an explanatory variable for the difference between banks’ GCA Shapley values 
under the ME  matrix and those under the zero matrix.16 In both cases, the coefficient of NII 
is positive and highly significant, implying that a bank’s Shapley value is higher when this 
bank participates more in the interbank market, either as a borrower or as a lender. 

The fit of these regressions is high but far from perfect. As suggested by the analysis of the 
stylized systems in Section 5, the fit would have been much better had banks differed only in 
terms of the amount of their interbank lending and borrowing. In the system of 20 banks that 
we are considering, however, banks also differ in terms of their size, riskiness, the riskiness 
of their counterparties in the interbank market and the concentration of their interbank 
positions.  

 

                                                 
16  We use OLS regressions despite the nonlinear impact of different drivers on Shapley values. Our goal is 

simply to check for significant relationships with the expected sign. 
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Table 6 

Regression results 

 GCAME-GCA0 GCAHC-GCA0 GCAME-GCA0 GCAHC-GCA0 GCAME-GCAHC PAHC-GCAHC 

NII 1.21*** 1.32***     

       

LInwk 
(1)

   12.14*** 7.81***  8.16*** 
BInwk 

(1)
   8.36*** 12.32***  -9.38*** 

       

LIME - LIHC      0.15**  

BIME - BIHC     0.42***  

       

R2 0.78 0.71 0.85 0.91 0.66 0.76 

# obs 20 20 20 20 20 20 

Note: All regressions include a constant, which is sometimes significant but is not reported. The regression of 
PAHC-GCAHC also includes f.PD as a control variable, which is significant.    (1)  nwk is either ME for the 
regression of GCAME-GCA0 or HC for the other two regressions. 

 

6.2.2 The impact of alternative network structures 

A priori, the sign of the difference between the system-wide ES under the ME matrix and that 
under the HC matrix is ambiguous. To understand why, first recall that the ME and HC matrix 
distribute the aggregate interbank lending and borrowing of each bank differently across 
potential counterparties. Whereas the ME matrix assumes that banks aim to spread their 
interbank positions as widely as possible, the HC matrix is constructed so that these 
positions are as concentrated as possible. Thus, if two banks are connected under both 
matrices, the shock caused by the default of one bank would tend to be propagated more 
strongly to the other under the HC matrix, as the particular bilateral exposure would tend to 
be  larger. On its own, this would increase the probability of joint defaults under the HC 
matrix relative to that under the ME matrix. In turn, this  would make the difference between 
the respective values of ES positive. On the other hand, each shock is propagated to more 
institutions under the ME than under the HC matrix. On its own, this would have the opposite 
effect on the relative levels of ES. In our particular case, the two effects roughly balance 
each other out, resulting in an ES of 4.30% of the system size under the ME and 4.37% 
under the HC matrix. 

Despite the similar levels of system-wide risk, the two network structures differ materially in 
their implications for the systemic importance of individual banks. For example, the Shapley 
value of bank K is 66% higher when interbank markets are captured by the HC matrix (0.25) 
rather than the ME matrix (0.15) (Table 4, last two last two panels). Largely, this increase is 
largely driven by the substantial rise in the bank’s contagion PD (from 0.09% to 0.2%), which 
in turn is caused by the greater concentration of its interbank exposures under the HC matrix. 
In contrast, the HC matrix concentrates the exposures of bank G to low-PD counterparties, 
which lowers this bank’s overall PD and, ultimately, its Shapley value. 

In line with the results for the hypothetical systems, the impact of the network structure goes 
beyond banks’ PDs. The systemic importance of a bank may change from one network 
structure to another not because of a change in its individual riskiness but because of a 
change in how it affects the riskiness of other banks. This is illustrated by bank C, which 
would experience a 30% rise in its GCA Shapley value (from 0.09% of the system size to 
0.12%), even though its contagion PD would fall from 0.06% to 0.05% if the interbank 
network changed from the ME to the HC matrix. Having the second largest level of interbank 
liabilities, this bank is a key propagator of shocks through the system. In turn, the GCA 
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Shapley value captures the fact that the impact of bank C on the riskiness of other banks is 
stronger in a more concentrated system. 

In order to study the impact of the interbank network on systemic importance more formally, 
we construct two additional indicators.17 The first indicator gauges how the interbank network 
affects the extent to which a bank is a direct source of risk for its non-bank creditors. Given 
that the contagion PD of bank i reflects the impact of the network on this bank’s riskiness and 
that the impact of this bank’s default on non-banks is measured by its size, we construct the 
following lending indicator (LI):  

iinwkinwk sPDcLI *.
,,  , (13) 

where nwk indicates that the network is either defined by the ME or HC matrix. We expect 
that the difference between the Shapley values under the ME and the HC matrices are 
related positively to the difference in the respective lending indicators, LIME,i – LIHC,i .

. 

By borrowing on the interbank market, each bank is also an indirect source of risk for non-
bank creditors. Our second indicator captures the impact of the interbank network structure 
on this type of risk via two components. The first component captures the impact of each 
bank i on the riskiness of each other bank j. Ideally, we should measure this impact by 
assigning a portion of the contagion PD of bank j to bank i. Given that there could be several 
rounds of defaults in the system, this portion is extremely difficult to derive. As a proxy, we 
use the product of the share of bank i in the total interbank lending of bank j and the 
contagion PD of bank j: (IBAj,i /IBAj)*c.PDj. The second component of the indicator reflects 
the fact that the indirect impact of bank i on nonbank creditors would be higher if this bank 
borrows from a bank j that itself borrows heavily from non-banks, ie if bank j has a large size, 
sj. Putting the two components together and summing them across all counterparties of bank 
i, we obtain the following borrowing indicator (BIi):  


 ij

jjnwk

j

nwk

ij

inwk sPDc
IBA

IBA
BI *.* ,

,

, . (14) 

As with the lending indicator, we expect that the difference between the Shapley values 
under the ME matrix and those under the HC matrix are related positively to the difference 
between the borrowing indicators, BIME,i – BIHC,i. 

The third and forth column of Table 6 show that BInwk and LInwk can indeed explain the impact 
of the network structure on the systemic importance of individual banks. Considering only HC 
or ME at a time, the corresponding indicators have positive and highly significant coefficients. 
In addition, the fit of the regression is now better than that when NIInwk is used as an 
explanatory variable. More importantly, the differences LIME,i – LIHC,i and BIME,i – BIHC,i help 
explain the difference between ME and HC Shapley values (fifth column, Table 6). Both 
coefficients are with the expected positive sign, are highly significant and imply a good fit. 

6.2.3 Comparing GCA and PA 

Our analysis of hypothetical networks (above) reveals that the Shapley values under GCA 
and under PA can lead to substantially different conclusions as regards the systemic 
importance of individual institutions. Concretely, PA Shapley values are larger than GCA 

                                                 
17  Even though we construct NIIHC as well, it is roughly equal to NIIME and, thus, cannot help us distinguish the 

implications of the ME matrix from those of the HC matrix. NIIHC and NIIME are roughly equal for two reasons. 
First, the two network structures give rise to similar ES. Second, NII reflects aggregate interbank positions, 
which are the same under both the ME and HC matrix.  
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ones for an interbank lender, and smaller for an interbank borrower. In this section, we obtain 
a similar result for the system of 20 real-world banks.  

We start the comparison between PA and GCA Shapley values by zooming onto two banks 
and the HC matrix. The first one is bank E, which has an average LI in the cross-section but 
the third highest BI. Thus, this bank imposes an average level of risk on its direct nonbank 
creditors. But, being a significant source of contagion in the interbank market, it imposes 
significant risk to other banks. Since only GCA captures the latter characteristic of bank K, it 
leads to a Shapley value that is by one-third higher than the bank’s PA Shapley value (0.27% 
vs. 0.20%). The relationship between GCA and PA Shapley values is reversed for the 
second bank, R, which has the third highest LI and the third lowest BI. Its high LI indicates 
that it is quite vulnerable to risk from the interbank market. This makes bank K participate a 
lot in systemic events, boosting its PA Shapley value. GCA, however, attributes part of this 
risk to banks borrowing from bank R. The upshot is that PA attributes a 50% higher level of 
systemic importance to bank R than GCA: 0.19% of the system size, as opposed to 0.13%. 

To systematize such results across all 20 banks, we focus on the HC matrix and use BI and 
LI as explanatory variables in a regression of the difference between PA and GCA Shapley 
values.18 Table 6 reveals that the two indicators do possess statistically significant 
explanatory power.19 The positive sign of the LI coefficient indicates that, as anticipated, a 
PA Shapley value tends to be higher than the corresponding GCA Shapley value when the 
bank creates systemic risk mainly via its role as a lender on the interbank market. Likewise, 
the negative coefficient of BI confirms that GCA tends to assign a higher Shapley value than 
PA to an interbank borrower. 

                                                

7 Conclusion 

In this paper we provide a framework for analysing the systemic importance of 
interconnected banks.  We explore two approaches to measuring systemic importance, one 
reflecting a bank’s participation in systemic events and the other its contribution to systemic 
risk. Both approaches decompose the same quantum of system-wide risk. But they allocate it 
differently across banks, thus revealing different underlying concepts of systemic importance. 

A key difference between the participation and contribution approach is the way in which they 
allocate risk associated with an interbank transaction. The participation approach assigns 
this risk to the lending counterparty, which is the ultimate absorber of the risk. In contrast, the 
general contribution approach splits the risk equally between the two counterparties. In this 
way, the general contribution approach captures the idea that the systemic importance of an 
interconnected bank depends not only on the risk it imposes directly on the real economy, 
but also on the risk it generates by both borrowing from and lending to other banks.  

Our findings highlight that different approaches can lead to materially different measures of 
systemic importance. This indicates that, when designing regulatory requirements for 
systemically important institutions prudential authorities should be careful in choosing the 
approach that corresponds to their desired concept of systemic importance. 

 
18  The results are qualitatively the same under the ME matrix, but regression coefficients are less significant. 
19  The difference between PA and GCA can, in principle, also be affected by banks’ PD, size and exposure to 

common exogenous risk factors (see Tarashev et al (2010)). Fundamental PDs are included as a control 
variable in the regressions because they exhibit statistically significant explanatory power. The associated 
coefficient is, however, not reported in the table. The other two drivers do not exhibit statistical significance 
and are, therefore, dropped from the regressions. 

20 
 
 



 

References 

Adrian T and M Brunnermeier. 2008. “CoVaR”. Mimeo. 

Allen, F and A Babus 2009. “Networks in finance”, in The network challenge (Eds, 
Kleindorfer, P. and Wind, J.), Wharton School Publishing. 

Allen G and D Gale. 2000. “Financial contagion”, Journal of Political Economy, vol 108, no 1, 
pp 1-33. 

Acharya V, L Pedersen, T Philippon, and M Richardson. 2009. “Measuring Systemic Risk”, 
mimeo, New York University. 

Castro J, D Gomez and J Tejada. 2009. "Polynomial calculation of the Shapley value based 
on sampling", Computers and Operations Research 36: 1726-1730 

Drehmann M and N Tarashev, 2011. “Systemic importance: some simple indicators,” BIS 
Quarterly review, March. 

Eisenberg, L. and T. H. Noe. 2001. “Systemic risk in financial systems”, Management 
Science, 47, 236-249. 

Gauthier C, A Lehar and M Souissi. 2010. “Macroprudential regulation and systemic capital 
requirements”, Working papers 10-4, Bank of Canada. 

Gordy M 2003. “A risk-factor model foundation for ratings based bank capital rules.” Journal 
of Financial Intermediation 12(3). 199-232. 

Huang X, H Zhou and H Zhu. 2010. “Assessing the Systemic Risk of a Heterogeneous 
Portfolio of Banks during the Recent Financial Crisis”, BIS Working Papers, no 296. 

James, C. 1991. "The Losses Realized in Bank Failures", The Journal of Finance, 46, 1223-
1242. 

Liu, M. and J. Staum. 2010. "Systemic Risk Components in a Network Model of Contagion", 
mimeo, Northwestern University. 

Mas-Colell A, A Whinston and J Green. 1995. Microeconomic Theory. Oxford University 
Press. 

Shapley L S. 1953. “A Value for n-person Games”. In Contributions to the Theory of Games, 
volume II, by H Kuhn and A Tucker, editors. Annals of Mathematical Studies v 28, pp 307–
317. Princeton University Press. 

Staum, J. 2010. "Systemic risk components and deposit insurance premia", Northwestern 
University, mimeo. 

Tarashev N and H Zhu. 2008. “Specification and calibration errors in measures of portfolio 
credit risk: The Case of the ASRF model”. International Journal of Central Banking. June. 

Tarashev N, C Borio and K Tsatsaronis. 2010. “Attributing systemic risk to individual 
institutions. Methodology and policy implications,” BIS Working paper, #308. 

Upper, C. 2011. “Simulation methods to assess the danger of contagion in interbank 
markets”, Journal of Financial Stability, forthcoming. 

 

 21
 
 



 

Annex 1: Mechanical contribution approach 

It is possible to design Shapley values that decompose system-wide ES differently from the 
participation approach (PA) and the generalised contribution approach (GCA), presented in 
Section 3.3. Gauthier et al (2010) do so by adopting the following characteristic function: 

   











sub

subNi

N

i

subMCA NeLEN | . (A1) 

This characteristic function has two important features. First, like ,  allows the 
conditioning events, 

GCA MCA
 subNe , to change across subsystems. Second, like ,  

considers only the losses that bank i generates in the entire system, . We refer to this 
approach as the mechanical contribution approach (MCA). 

PA MCA
N
iL

The second feature of  has two implications. First, MCA is computationally more efficient 
than GCA. This is because the former approach requires that the probability distribution of 
losses be calculated only once (for the overall system), whereas the latter requires the 
calculation of a loss distribution for each of the 2n subsystems. Second, MCA does not 
capture fully the true contribution of a bank to systemic risk. The reason is that, by keeping 
losses fixed across subsystems,  cannot equate the removal of a bank from a 
(sub)system with the removal of the entire risk that this bank generates. And this creates a 
potential for material differences between the implications of MCA and those of GCA. 

MCA

MCA

We use the hypothetical networks outlined in Section 5.1 to investigate the differences 
between MCA Shapley values and Shapley values under PA and GCA. The findings, 
reported in Table A1, reveal significant differences between the GCA and MCA Shapley 
values. Concretely, when the centre bank intermediates, the absolute differences between 
the MCA and GCA Shapley values equal on average one-third of GCA Shapley values. And 
the results are similar across all hypothetical systems. That said, MCA Shapley values are 
much better aligned with PA Shapley values. In the light of equations (4), (7) and (A.1), this 

indicates that the assumption about stochastic losses (  vs. ) has a larger impact on 
the implications of characteristic functions than the assumption about conditioning events 
(

N

iL
subN

iL

 Ne  vs.  subNe ).  

 

Table A1  

MCA results for the hypothetical banking systems  

 No CB borrows CB lends CB intermediates CB as CCP 

 All CB PB 
lend 

No CB PB 
borrow

No CB PB 
lend 

PB 
borrow

CB PB 
lend 

PB 
borrow

 
             

GCA 0.45 0.9 0.56 0.45 1.06 0.57 0.45 2.06 0.71 0.71 0.22 0.58 0.58 

PA 0.45 0.64 0.66 0.42 1.63 0.48 0.4 1.78 1 0.49 0 0.7 0.52 

MCA 0.45 0.62 0.64 0.44 1.36 0.51 0.44 1.56 1.02 0.52 0 0.87 0.34 

Note:  All values are in per cent. CB = Centre bank; PB = periphery bank; No = no interbank market linkages. “lend” and 
“borrow” indicate whether periphery banks are interbank lenders or borrowers. All systems are the same as those in Table 2.  
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