
 

  BIS Working Papers 
No 322 

 

 Interbank tiering and 
money center banks 
Ben Craig and Goetz von Peter  
 

 

Monetary and Economic Department 

October 2010 

  

 
 
 
 
 
 
JEL classification: G21, L14, D85, C63. 
 
Keywords: Interbank markets, intermediation, networks, tiering, 
core and periphery, market structure  

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIS Working Papers are written by members of the Monetary and Economic Department of 
the Bank for International Settlements, and from time to time by other economists, and are 
published by the Bank. The papers are on subjects of topical interest and are technical in 
character. The views expressed in them are those of their authors and not necessarily the 
views of the BIS. 

 

 

 

 

Copies of publications are available from: 

Bank for International Settlements 
Communications 
CH-4002 Basel, Switzerland 
 
E-mail: publications@bis.org 

Fax: +41 61 280 9100 and +41 61 280 8100 

This publication is available on the BIS website (www.bis.org). 

 

 

© Bank for International Settlements 2010. All rights reserved. Brief excerpts may be 
reproduced or translated provided the source is stated. 

 

 

ISSN 1020-0959 (print) 

ISBN 1682-7678 (online) 

 
 

http://www.bis.org/


Interbank tiering and money center banks

Ben Craig� Goetz von Petery

October 1, 2010

Abstract

This paper provides evidence that interbank markets are tiered rather than �at, in the
sense that most banks do not lend to each other directly but through money center
banks acting as intermediaries. We capture the concept of tiering by developing a core-
periphery model, and devise a procedure for �tting the model to real-world networks.
Using Bundesbank data on bilateral interbank exposures among 1800 banks, we �nd
strong evidence of tiering in the German banking system. Econometrically, bank-speci�c
features, such as balance sheet size, predict how banks position themselves in the interbank
market. This link provides a promising avenue for understanding the formation of �nancial
networks.

JEL: G21, L14, D85, C63.
Keywords: Interbank markets, intermediation, networks, tiering, core and periphery, mar-
ket structure.
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Introduction

This paper proposes the view that interbank markets are tiered, operating in a hierarchical

fashion where lower-tier banks deal with each other primarily through money center banks. It

may seem peculiar to focus on intermediation between banks; intermediation is traditionally

regarded as the activity banks perform on behalf of non-banks, such as depositors and �rms

(Gurley and Shaw (1956), Diamond (1984)). The notion that banks build yet another layer of

intermediation between themselves goes largely unnoticed in the banking literature. Yet such

hierarchical structures appear to be common in �nancial markets well beyond banking.

The interbank market is often modeled in the literature as a centralized exchange in which

banks smooth liquidity shocks (e.g. Ho and Saunders (1985), Bhattacharya and Gale (1987),

or Freixas and Holthausen (2005)). In reality, the interbank market is decentralized: deals

are struck bilaterally between pairs of banks, not against a central counterparty (Stigum and

Crescenzi (2007)). This de�ning feature of over-the-counter markets is known to give rise to

intermediaries (Du¢ e et al. (2005)). While some recent models recognize the bilateral nature

of the interbank market (e.g. Allen and Gale (2000), Freixas et al. (2000), and Leitner (2005)),

the presence of intermediaries, and hence the tiered character of this market, has not been

analyzed in any rigorous way. Yet the need to understand market structure was highlighted by

the �nancial crisis and by macroprudential concepts such as "too-connected-to-fail".

This paper de�nes interbank tiering and provides a network characterization founded on in-

termediation. The interbank market is tiered when some banks intermediate between banks

that do not extend credit among themselves. We capture this market structure by formulating

a core-periphery model and devise a procedure for �tting the model to real-world networks.

This can be thought of as running a regression, but instead of estimating a parameter that

achieves the best linear �t, one determines the optimal set of core banks that achieves the best

structural match between the observed network and a tiered structure of the same dimension.

We show that our procedure delivers a core which is a strict subset of intermediaries, excluding

those banks that play no essential role in holding together the interbank market. It also yields

a measure of distance that aggregates the structural inconsistencies between the observed net-

work and the nearest tiering model. We use this statistic to test formally whether the extent of

tiering observed in the interbank market is signi�cantly greater than what emerges in networks

formed by random processes.

Our empirical work relies on comprehensive Bundesbank statistics, which we use to construct

the network of bilateral interbank positions between more than 2000 banks. While most banks

simultaneously borrow and lend in the interbank market, we �nd that the optimal core com-

prises only 2.7% of such intermediaries. Tiering thus delivers a strong re�nement of the concept

of intermediation. Throughout the available time span (1999Q1�2007Q4), the size and com-
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position of the optimal core remain stable. This supports the view that we have identi�ed

a truly structural feature, one that has hitherto only been described in qualitative terms us-

ing aggregate data (Ehrmann and Worms (2004), Upper and Worms (2004)). Moreover, we

show that the extent of tiering observed in the German interbank market cannot be replicated

by standard random processes of network formation. The German interbank network �ts the

core-periphery model eight times better than Erdös-Rényi random graphs and about two times

better than scale-free networks of the same dimension and density.

If tiering is not the result of random processes but of purposeful behavior, there must be

economic reasons why the banking system organizes itself around a core of money center banks.

The �nal part of the paper explores this idea by testing whether balance sheet variables predict

which kind of banks form the core. The probit regressions con�rm that (only) large banks tend

to belong to the core, even though economies of scale and scope play a limited role. Other

bank-speci�c variables, such as systemic importance, similarly predict reliably the way a bank

chooses to position itself in the interbank network. We also show that the core of the banking

system can be predicted by means of a regression that uses only balance sheet variables, which

is helpful since most countries do not collect bilateral interbank data.

Our work makes several contributions. First, based on comprehensive statistics on the German

banking system, we show that the interbank market looks very di¤erent from what banking

theory imagines. The market is not a centralized exchange, but a sparse network, centered

around a tight set of core banks, which intermediate between numerous smaller banks in the

periphery. This raises the question of why �nancial intermediaries build yet another layer of

intermediation between themselves. Moreover, the persistence of this hierarchical structure

calls into question the common assumption that random liquidity shocks are a su¢ cient basis

for explaining interbank activity.

Second, we make novel use of network concepts that might be of broader interest in the area of

industrial organization. Our approach allows us to measure how far a decentralized market is

from a particular benchmark structure. To make a structural quality of interest amenable to

quantitative treatment, we formulate a procedure �based on blockmodeling techniques �for

�tting a theoretical structure to an observed network. We solve this combinatorial problem by

a fast optimization algorithm and devise a new method of hypothesis testing that tests whether

the structural quality under study can be expected to arise randomly. The procedure �ts any

observed network and can be adapted to other theoretical market structures. Our choice of a

speci�c core-periphery structure is based on economic reasoning and delivers a re�nement of

intermediation. This constrasts with other papers that often report network measures unrelated

to any concepts in banking and �nance.

Finally, the econometric part of the paper bridges two largely distinct literatures on individual

banks and on network formation. In line with the view that di¤erent kinds of banks build
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systematically di¤erent patterns of linkages, we �nd that bank balance sheets reliably predict

which banks position themselves in the core and which remain in the periphery. In other words,

the observed network structure is the result of purposeful behavior, which is driven by factors

that are re�ected in bank balance sheets. This link could be of practical use for central banks

and regulators wishing to study their domestic interbank networks, for it provides a structured

alternative to the entropy method usually employed when no bilateral data are available. More

generally, this link �between banking-speci�c features and network structure �is a promising

avenue for a better understanding of the formation of �nancial networks.

1 Tiering in the interbank market

This section provides a network characterization of the concept of interbank tiering. It then

develops a procedure for �tting the model to real-world networks and implements it through

a fast algorithm. The concepts are illustrated by a simple example, and the procedure and

hypothesis tests are applied to the large German interbank market. But �rst we motivate and

de�ne interbank tiering.

Note that in de�ning tiering in terms of interbank credit relations, we focus on a meaningful

economic choice. Interbank activity is based on relationships (Cocco et al. (2009)). In order

to lend, a bank typically has to run creditworthiness checks (e.g. Broecker (1990)), the cost of

which will limit the number of counterparties. As such, a credit exposure is more likely to re�ect

an economic relationship than many other transactions, such as the submission of a payment.

The payments literature uses the term tiering in related sense, to describe access to payment and

settlement systems (CPSS (2003), Kahn and Roberds (2009)): in some systems, only few banks

are direct members, and other banks have to transact through members to settle payments with

each other (e.g. CHAPS in the United Kingdom).1 However, the routing of payments (on behalf

of customers) di¤ers from the extension of credit between banks. Exposures, unlike payments,

do not cease to exist after they have been made, so the structure of the resulting network is of

greater relevance for �nancial stability.

1.1 From intermediation to tiering

Banks may rely on intermediaries for a variety of functions. One is liquidity distribution, the

process of channeling funds from surplus banks to de�cit banks (e.g. Niehans and Hewson

(1976), Bruche and Suarez (2010)). Another is risk management: banks may place interbank

deposits for purposes of diversi�cation, risk-sharing, and insurance (e.g. Allen and Gale (2000),

1This literature focuses on the determinants of membership (Kahn and Roberds (2009) and Galbiati and
Giansante (2009)). In practice, this involves legal and technological factors as much as economic considerations.
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Leitner (2005)). Banks may also take and place funds in di¤erent maturities to alter their

maturity pro�le (e.g. Diamond (1991), Hellwig (1994)). For these and other functions (includ-

ing custodian or settlement services), banks rely on intermediaries in ways that give rise to

interbank credit exposures.

De�nition 1: Interbank intermediation. An interbank intermediary is a bank acting both
as lender and borrower in the interbank market.

This is the standard concept of �nancial intermediation, applied more narrowly to the banking

market. The set of interbank intermediaries can be identi�ed from existing banking data as

the subset of banks recording both claims and liabilities vis-à-vis other banks on their balance

sheet. Our concept of interbank tiering describes the interbank structure that arises when some

banks intermediate between banks that do not extend credit among themselves.

De�nition 2: Interbank tiering. Some banks (the top tier) lend to each other and inter-
mediate between other banks, which participate in the interbank market only via these top-tier

banks.

An interbank market is tiered when it is organized in layers, which we call tiers to evoke the

hierarchical nature of the concept �in contrast with a "�at" structure without intermediaries.

This can be expressed in terms of bilateral relations between top-tier and lower-tier banks:8>>>>>>>>><>>>>>>>>>:

1. Top-tier banks lend to each other,

2. lower-tier banks do not lend to each other,

3. top-tier banks lend to (some) lower-tier banks, and

4. top-tier banks borrow from (some) lower-tier banks.

(1)

This formulation conveys several important points. Tiering is a structural property of the

system, not a property of any individual bank. Furthermore, tiering is a network concept: the

banks in the system are partitioned into two sets based on their bilateral relations with each

other. At the same time, unlike other network concepts, tiering is founded on an economic

concept that is central to banking and �nance, intermediation. In fact, tiering is a re�nement

of intermediation: top-tier banks are special intermediaries that play a central role in holding

together the interbank market.

Before developing a formal characterization, we provide a simple illustration of interbank tiering.

4



Example. Consider the left panel of Figure 1 (the other panels will be discussed later).
Banks fD;F;Hg are either lenders or borrowers, not both. The set of intermediaries thus
consists of the remaining banks fA;B;C;E;Gg. Bank C, for instance, intermediates from
lender F to borrower H. It takes a chain of banks (involving A and C) to intermediate from
D to H. The top tier consists of a strict subset of intermediaries, namely fA;B;Cg shown
in solid color, while the remaining banks constitute the lower tier. For this partition of banks,
the relations within and between the two sets exactly match the relations listed in (1). Banks
E and G are intermediaries, but they belong to the lower tier because they are not su¢ ciently
connected with other banks to qualify for the top tier (where they would violate the relations
1, 3 and 4). This re�ects the fact that these two banks play no role in connecting lower-tier
banks to the interbank market.

[Figure 1: Stylized example of an interbank market]

This example illustrates a perfectly tiered interbank structure. In reality, the presence of tiering

will be a matter of degree. Much of what follows serves to develop methods that formalize how

to think about the distance between real-world networks and perfectly tiered structures.

1.2 Network characterization of tiering

This section develops a structural representation for our de�nition of interbank tiering. This

will serve as a benchmark model against which empirical interbank market structures can be

assessed. A network consists of a set of nodes that are connected by links. Taking each bank as

a node, the interbank positions between them constitute the network, which can be represented

as a square matrix of dimension n equal to the number of banks in the system. The typical

element (i; j) of this matrix represents a gross interbank claim, the value of credit extended by

bank i to bank j. Row i thus shows bank i�s bilateral interbank claims, and column i shows the

same bank�s interbank liabilities to each of the banks in the system. The diagonal elements (i; i)

are zero when treating banks as consolidated entities (with intragroup exposures netted out).

O¤-diagonal elements are positive, or zero in the absence of a bilateral position. Real-world

interbank data typically give rise to directed, sparse and valued networks.2 Since the concept

of tiering is about the structure of linkages, we code the presence or absence of a link by 1 or 0,

as is common practice in network analysis. Thus, non-symmetric binary matrices will be used

to represent the model and the empirical interbank network in our application.

2The networks are directed, because a claim of bank i on j (an asset of i) is not the same as a claim of j
on i (a liability of i). They are sparse as only a small share of the n(n� 1) potential bilateral links are used at
any point in time. Finally, interbank networks are valued because interbank positions are reported in monetary
values, as opposed to 1 or 0 indicating the presence or absence of a claim.
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We characterize a perfectly tiered structure in the shape of a network. The bilateral relations

(1) consistent with our de�nition of tiering are mapped into a matrix, M , with top-tier banks

ordered �rst. For reasons that will become clear shortly, we shall call the set of top-tier banks

"the core" (C), and the set of lower-tier banks "the periphery" (P ). The nodes within each tier

are equivalent with respect to the nature of their linkages with other nodes. Hence it su¢ ces

to specify the generic relations within and between the two tiers as a blockmodel,3

M =

0B@ CC CP

PC PP

1CA :
The block denoted by CC ("core to core") speci�es how top-tier banks relate to other core

banks: when they all lend to each other, as speci�ed in (1), CC is a block of ones (ignoring

the zero diagonal). Likewise, periphery banks not lending to each other makes PP a square

matrix of zeros. Core banks lending to some banks in the periphery means that CP must be

"row regular", meaning that it contains at least one link in every row. Similarly, when all core

banks borrow from at least one periphery bank, PC is a "column regular" matrix with at least

one 1 in every column.

Our de�nition of tiering therefore translates into the choice and location of speci�c block types.

(Other theories would require di¤erent block types, but our procedure for estimating the implied

market structure would still apply.) The blockmodel of tiering consists of a complete block

(denoted 1) and a zero block (0) on the diagonal, which speci�es relations within the tiers, and

two o¤-diagonal blocks specifying relations between the tiers: CP must be row-regular (RR),

and PC column-regular (CR).4

M =

0B@ 1 RR

CR 0

1CA : (2)

This model speci�es only the market structure �the size ofM and its blocks remains open, be-

cause the number and identity of banks allocated to each tier will be determined endogenously.

If c banks end up in the core, then the block CP , for instance, will be a matrix of dimension

c�(n�c). One easily veri�es that our simple example of tiering (Figure 1, left panel) conforms

3Blockmodels are theoretical reductions of networks and have a long tradition in the analysis of social roles
(Wasserman and Faust (1994)).

4These terms come from the literature on generalized blockmodeling (Doreian et al. (2005)). A column-
regular block, CR, has each column (but not necessarily each row) covered by at least one 1; the RR block has
each row covered by at least one 1.

6



with the blockmodel M (with n = 8; c = 3),

0B@ 1 RR

CR 0

1CA =

0BBBBBBBBBBBBBBBBBBBBBBBB@

0 1 1 0 1 0 0 0

1 0 1 0 0 0 1 0

1 1 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCA

:

Our network characterization of tiering is a re�nement of the general core-periphery model in

sociology. In social network analysis, this label is attached to any network with a dense cohesive

core and a sparse periphery (Borgatti and Everett (1999)), as re�ected in the diagonal blocks

1 and 0 in (2). However, the core-periphery model in this literature does not specify how the

core and periphery are related to each other; the blocks on the o¤-diagonal could be of any

type and are often ignored in the analysis (as recommended by Borgatti and Everett (1999)).

In building on intermediation, our model of tiering does specify how the core and periphery

should be related: core banks borrow from, and lend to, at least one bank in the periphery; they

intermediate between banks in the periphery and thereby hold together the entire interbank

market.

This particular focus on how the core and periphery are related is based on an economic

rationale that seems appropriate for the interbank market. Core banks are in the market at

all times and incur interbank positions with important counterparties in the normal course of

business (hence CC = 1). Periphery banks, on the other hand, might only lend, or borrow, or

might not participate in the interbank market at all when they have no de�cits or risks to cover

at that moment. It would be too restrictive to require that every bank in the periphery has

to be connected;5 but the periphery as a whole should certainly be linked to the core, or else

there would not be a single cohesive interbank market.6 The choice of row- and column-regular

blocks on the o¤-diagonal of M �nds the right balance by placing strong restrictions only on

core banks: every core bank must be connected to at least one bank in the periphery, but the

5This would be the result of de�ning CP and PC as complete (1) or regular blocks. A regular block has
at least one 1 in every row and column, implying that every periphery bank lends to, and borrows from, some
bank in the core (which would make all banks in the system intermediaries).

6This degenerate case of an unconnected periphery is permitted in the weak core-periphery model (with CP
and PC zero blocks) discussed by Borgatti and Everett (1999)).
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converse need not hold.

1.3 Testing for structure

We now focus on how to determine the extent to which an observed real-world network exhibits

tiering. How does one test for the entire structure in a network? Visual inspection is instructive

but inconclusive for large networks, and traditional network statistics do not relate to any

underlying model, tiered or otherwise. Our approach is to compare the network of interest

with the model in terms of a measure of distance that aggregates the structural inconsistencies

between them. If the observed network and the best-�tting tiering model remain at great

distance from each other, then the network does not have a tiered structure.

We formulate a procedure for �tting the model M to an observed network N . This can be

thought of as running a regression, but instead of estimating the parameter � that achieves the

best linear �t, one determines the optimal set of core banks that achieves the best structural

match between N and M , a perfectly tiered structure. We show that the solution has the

desirable property that the core is a strict subset of all intermediaries. Finding this solution

is a large-scale problem in combinatorial optimization for which we develop a fast algorithm.

We then evaluate the degree of tiering in the observed network by testing the goodness of �t

against the distribution obtained from �tting random networks for which tiering is not expected

to emerge.

Fitting the model to a network

The tiering model M serves as the benchmark for assessing the extent of tiering inherent in an

observed interbank network N . These two objects have to be made comparable. The observed

network N is a square matrix of dimension n equal to the number of banks, with Nij = 1 if

bank i lends to bank j 6= i, and Nij = 0 otherwise. The model M , on the other hand, is a

generic structure that embodies the relations in (1) for any dimension. The �tting procedure

involves two steps: �rst, we de�ne a measure of distance between the network and the model

M of the same dimension, using (2) as the matching criterion; then, we solve for the optimal

(distance-minimizing) partition of banks into core and periphery. Working with the optimal

�t takes care of the problem that tiering is a qualitative concept that does not depend on the

exact size of the core (or periphery) as long as there are two tiers.

The measure of distance we adopt, following the generalized blockmodeling approach of Doreian

et al. (2005), is a total error score. It aggregates the number of inconsistencies between

the observed network and the chosen model. Consider an arbitrary partition where c banks

are considered for the core, leaving (n� c) banks in the periphery. Denote the set of core
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banks by C; ordering core banks �rst (and rearranging N by permutation accordingly) makes

C = f1; 2; :::; cg: This partition divides the observed matrix N into four blocks, and the model

M predicts how each block should look in a perfectly tiered network of the same dimension. In

particular, the top tier CC should be a complete block 1 of size c2, so any missing link (outside

the diagonal) presents an inconsistency with the model (2), as one core bank has no exposure to

another. Likewise, any observed link within the periphery (PP ) constitutes an error relative to

M , as periphery banks should not transact directly with each other in a perfectly tiered market.

Errors in the o¤-diagonal blocks penalize zero rows (columns), because these are inconsistent

with row-regularity (column-regularity, respectively): a zero row in CP indicates that a core

bank fails to lend to any of the (n� c) banks in the periphery, violating a de�ning feature of
core banks. Similarly, a zero column in PC shows that the corresponding core bank does not

borrow at all from the periphery, producing as many errors as there are banks in the periphery

(n� c). The aggregate errors in each of these blocks are thus given by the following sums,

E =

0B@ c (c� 1)�
P

i2C
P

j2C Nij (n� c)
P

i2C max
n
0; 1�

P
j =2C Nij

o
(n� c)

P
j2C max

�
0; 1�

P
i=2C Nij

	 P
i=2C
P

j =2C Nij

1CA : (3)
The total error score aggregates the errors across the four blocks.7 We normalize the error score

by the total number of links in the observed network,

e =
E11 + E22 + (E12 + E21)P

i

P
j Nij

: (4)

The total error score is our measure of distance; it is a function since every possible partition

into two tiers is associated with a particular value of e. Denote this function by e(C), where C

stands for the set of banks under consideration for the core. The optimal core, C�, is the set(s)

of banks that produces the smallest distance to the model M of the same dimension,

C� = argmin e(C)

= fC 2 � j e(C) � e(c) 8c 2 �g ; (5)

where � denotes all strict and non-empty subsets of the population f1; 2; :::; ng. Intuitively,
the expression (5) determines the number and identity of banks in N that are core banks in

the sense of the interbank tiering model. The following example illustrates in a simple way

how structural inconsistencies between N and M are measured by the distance function and

minimized by the optimal core.

7The aggregation of errors can be adapted to cases in which one type of error is more consequential than
another. E.g. multiplying (E12 +E21) by a parameter below unity deemphasizes the relation between core and
periphery; multiplying E11 by a number above unity will yield a solution with a smaller, tightly connected core.
As no theoretical priors on intermediation suggest otherwise, we use the equally weighted aggregation of errors,
in line with the overall dimension of the network.
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Example. Consider Figure 1, where the left panel shows our earlier example of a tiered
structure (M). The other panels depict examples of networks that are not perfectly tiered
(N). In the middle panel, suppose we knew that banks fA;B;Cg are good candidates for
the core. If so, however, we observe that one core bank (B) does not lend to another core
bank C, and periphery bank D lends directly to another (H). Accordingly, the matrix (3)
yields one error in each of the diagonal blocks CC and PP . As no other partition attains a
lower error score, fA;B;Cg remains the optimal core, as it minimizes the total error score to
e(C�) = 2=13.

Suppose we conjecture that fA;B;Cg also forms the core of the network in the right panel.
We observe that one putative core bank does not lend to the periphery at all; this immediately
generates 5 �tting errors in block CP for C�s failure to lend to any of the 5 banks in the
periphery. Moving C to the periphery instead causes a single error (its continued link with
periphery bank F ), in addition to the existing error (D lending to H). The distance between
the network and the model can thus be reduced by placing bank C in the periphery, i.e. by
considering a tiering model with only two nodes in the core (and six in the periphery). The
optimal �t yields two errors in the (enlarged) periphery, none in the (reduced) core fA;Bg,
and none again in the o¤-diagonal blocks, for a total score of e(C�) = 2=12. The new core
excludes bank C, which obviously remains an intermediary, illustrating that the core comprises
only those intermediaries that intermediate between banks in the periphery, as required by
De�nition 2.

Real-world network are far more complex than this example suggests, with structures that may

be arbitrarily far removed from that of a tiered market. This makes it essential to understand

the properties of the optimal �t and to develop an e¢ cient procedure for arriving at this

solution. We now show that the solution preserves the main features illustrated in this simple

example.

Properties of the solution

The procedure of minimizing the distance between modelM and networkN delivers the optimal

partition of banks into core and periphery. Based on our de�nition of distance (3)-(4), the

solution has the following properties:

Proposition 1:

(a) The presence of intermediaries is necessary and su¢ cient for a core-periphery structure:
(i) A network without intermediaries has no core.
(ii) A network with intermediaries has a core (and a periphery under one weak condition).

(b) The core is a (strict) subset of the set of intermediaries:
(i) All core banks are intermediaries, but
(ii) Intermediaries are not part of the core if they do not lend to, or do not borrow from,
the periphery.
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Proof: see Appendix A. The �rst property relates to existence and shows that the distance-

minimizing procedure can identify a core-periphery structure in virtually all networks. The

su¢ cient condition for a core is the presence of at least one intermediary. A periphery always

exists under the weak (and su¢ cient) condition that the network contains either unattached

banks, or one missing bilateral link. This is intuitive, since an interbank market in which every

bank lends to all other banks, as in Allen and Gale (2000), cannot be regarded as tiered but must

be viewed as "�at", since banks are all equal in their connection patterns. The core-periphery

model can be �tted under conditions that are satis�ed by all realistic interbank networks.

The second property shows that our concept of tiering delivers a useful re�nement on the

concept of intermediation: the core is a strict subset of all intermediaries. Core banks are

special intermediaries that connect banks in the periphery. While this property is, of course,

in line with our de�nition of tiering (and thus embodied in M), the result states that this

property carries over one-for-one to the solution when �tting M to an observed network N .

This is remarkable, because one would expect any statistical �tting procedure on a large network

to produce some errors in every block of (3). However, the o¤-diagonal blocks governing the

relations between core and periphery have error scores of exactly zero. Consequently, the error

score (4) at the optimum takes the simple form

e(C�) =
E11 + E22P
i

P
j Nij

: (6)

We have encountered these properties of the solution in the example above, where o¤-diagonal

errors were zero and the optimal core fA;Bg was a strict subset of all intermediaries fA;B;C;E;Gg.
The traditional core-periphery model, which disregards o¤-diagonal blocks (Borgatti and Everett

(1999)), would have retained bank C in the core (in Figure 1, right panel), even though C no

longer intermediates between banks in the periphery.

Implementation

Fitting the model to a real-world network is a large-scale problem in combinatorial optimiza-

tion. Only for very small networks can the solution be found by exhaustive search. In our

example with 8 banks, for instance, computing the total error scores for each of the 28 = 256

possible partitions con�rms that fA;Bg is indeed the (unique) solution that minimizes the error
function. This brute-force approach becomes infeasible for larger networks. A medium-sized

banking system of some 250 banks already requires on the order of 1078 possible subsets (2n)

to be evaluated for determining the optimal core. The problem of �nding an optimal subset

�which our paper shares with Kirman et al. (2007) and Ballester et al. (2010) �is NP-hard.

The computational complexity of such problems rises exponentially with n, so that they can-

not be solved by exhaustive search. The goal of �tting the model to realistic networks, such
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as the German interbank market with close to 2000 active banks, calls for a more pragmatic

procedure.

Our implementation thus relies on a sequential optimization algorithm, which follows closely the

switching logic employed in our proof of Proposition 1. An initial random partition is evaluated

and improved upon by moving banks between the core and periphery until the total error score

(4) can no longer be reduced. The greedy version of our algorithm follows the steepest descent,

switching from one tier to another the bank that contributes most to the error score at each

iteration. To avoid running into local optima, a second algorithm employs simulated annealing,

which allows for a degree of randomness when moving banks, which declines monotonically as

the optimum is being approached. One way to test whether the procedure returns a global

optimum is by inspecting the associated E, since we know from Proposition 1 that a genuine

solution necessarily comes with a diagonal error matrix. Appendix B describes the robustness

checks we performed to ascertain that the procedure converges on a global optimum. The

main programming challenge consisted of reducing the algorithm�s polynomial running time

from order n3 to n1. This made the algorithm su¢ ciently fast for the repeated applications

necessary for hypothesis testing.

Hypothesis test against random networks

Having shown how to �t the model, we address the issue of signi�cance: how can one evaluate

the extent to which the observed network exhibits tiering? The closer the network resembles

a tiered structure, the lower will be the error score (6). For a formal test, one must compare

the distance between the network and the model to some benchmark. Selecting a benchmark,

however, is not straightforward since we are assessing a qualitative feature relating to market

structure. Moreover, it would be questionable � as in econometrics � to change, without a

theoretical basis, the underlying model only to improve the statistical �t. It is easy to reduce

the total error score by choice of a weaker model, for instance by replacing the complete block 1

in (2) by a (more accommodative) regular block.8 Such an ad hoc change in the structure would

undermine the theoretical arguments advanced in Section 1.2, which led to this particular model.

We therefore adopt a di¤erent strategy for evaluating signi�cance.9

8Model selection remains an underexplored area in blockmodeling. Doreian et al. (2005) provide no clear
guidance, although they rightly caution against selecting among block types to minimize the number of structural
inconsistencies.

9Our approach of comparing a network to a speci�c model contrasts with the maximum likelihood method
developed by Copic et al. (2009), which �nds the partition with the highest probability of producing the
observed network. (Wetherilt et al. (2009) apply this method to the 13 banks observed in the UK large-value
payment system CHAPS.) In contrast to our approach of �tting an underlying model, their method speci�es
the likeliest community structure, de�ned as groups of nodes more likely to connect within than across groups.
However, community structure di¤ers from our core-periphery notion: periphery banks are in the lower tier
precisely because they are unlikely to connect to each other.

12



In a �rst step, we assess whether a tiering model is worth �tting at all. Recall that our measure

of distance (4)-(6) normalizes the aggregate error by the total number of links in the observed

network, ��Nij. This is also the maximum error under the alternative hypothesis that the

network comprises only a periphery. The minimum distance e(C�) can therefore be used in

a basic test, similar in spirit to an F-test of joint signi�cance which tests whether it is worth

including regressors at all.10 If e(C�) � 1, then there is no value in �tting a tiering model:

doing so generates more structural inconsistencies than does a "�at" model with a periphery

alone. In that case there is no evidence of a core standing out as a separate tier.11 We require

that e(C�) attain a value well below unity to proceed.

In the second step, our strategy is to vary the data rather than the model: we test the total error

score against the Monte Carlo distribution function from a data-generating process in which

tiering is not expected to emerge. In particular, the error e(C�) associated with the observed

network N is tested against the error distribution obtained by �tting simulated networks where

links are formed by exogenous statistical processes. The standard classes are random graphs

introduced by Erdös and Rényi and scale-free networks popularized by Albert and Barabási

and widely observed in the natural sciences (Newman et al. (2006)):

� A random graph is obtained by connecting any two nodes with a �xed and independent

probability p. Any realization of such a network also has an expected density of p. A

node can be expected to have a degree, or number of links, of p(n� 1) on each side in the
case of a directed network. The expected degree distribution around this characteristic

value is Binomial, converging to Poisson for large n.

� A scale-free network, on the other hand, has no characteristic scale: nodes with a lower
degree are proportionately more likely than nodes with k times that degree, for any k.

The degree distribution thus follows a power law. One statistical process giving rise

to scale-free networks is known as preferential attachment, whereby new nodes attach

to existing nodes with a probability proportional to the latters�degrees. This formation

process tends to produce a few highly connected hubs, suggesting that scale-free networks

match interbank networks more closely than do random graphs.

Random and scale-free models are not hierarchical in nature (Ravasz and Barabási (2003)).

The purely statistical nature of these network formation processes is at odds with the idea that

banks, by purposeful economic choice, organize themselves around a core of intermediaries,

giving rise to interbank tiering. We therefore generate 1000 random networks of the same

10This test requires no distribution, since the observed network comprises the full population (not only a
sample) of nodes.
11The other side of the test (a "�at" model with only a core) can be disregarded, except in the unusual case

where the density of the observed network exceeds 50%.
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dimension and density as the observed network N , and �t the model M to every realization.

This allows us to trace out an empirical distribution function Fe for the error score in an

environment where tiering occurs only by chance. We say that N exhibits a signi�cant degree

of tiering if the associated test statistic e(C�) is closer to zero than the bottom percentile of

the distribution function found for random networks,

Reject H0 if: e(C�) < Fe(0:01):

This signi�cance test can be conducted separately for each class of random networks, Erdös-

Rényi and scale-free. It can also be understood as rejecting the hypothesis that networks formed

by standard random processes would produce the extent of tiering observed in N . As tiering is

not expected to arise in such networks, it must be the result of incentives of banks for linking

to each other in this particular way. Following our application, we explore this direction in the

�nal section.

2 Application to the German banking system

2.1 Constructing the interbank network

We employ a set of comprehensive banking statistics known as the �Gross- und Millionenkredit-

statistik� (statistics on large loans and concentrated exposures). The data are compiled by the

Evidenzzentrale der Deutschen Bundesbank. According to the Banking Act of 1998, �nancial

institutions located in Germany must report on a quarterly basis each counterparty to whom

they have extended credit in the amount of at least e1.5 million or 10% of their liable capital.

If either threshold is exceeded at any time during the quarter, the lender reports outstanding

claims (of any maturity) as they stand at the end of the quarter. From these reports, the Bun-

desbank assembles the central credit register, which is employed by reporting institutions for

monitoring borrower indebtedness and by the authorities for monitoring individual exposures

and the overall �nancial system.

The nature of these data presents several advantages. Claims are reported with a full counter-

party breakdown vis-à-vis thousands of banks and �rms. The bilateral positions are therefore

directly observed and need not be estimated as in many other studies.12 This makes it legiti-

mate to apply network methods. Second, positions are quoted in monetary values (in millions

of euros), indicating both the presence and strength of bilateral links. As the concept of tiering

12Bilateral interbank positions often have to be either reconstructed from payment �ows (e.g. Fur�ne (2003),
Bech and Atalay (2010), and Wetherilt et al. (2009)), or estimated from balance sheet data using entropy
methods (Upper and Worms (2004), Boss et al. (2004)). Mistrulli (2007) documents the resulting bias when
estimating contagion (see Degryse et al. (2009) for a survey). More importantly for our purposes, the entropy
method spreads linkages so evenly that essential qualitative features of the network structure would disappear.
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is about the structure of linkages, however, the monetary values are used here only to indicate

the presence of a credit exposure. Third, the data are available on a quarterly basis since

1999Q1, which allows us to observe the structure of the network over time.

We gathered all reported bilateral positions between banks to construct the interbank network.

To capture relations between legal entities (rather than internal markets), we consolidated banks

by ownership at the level of the Konzern (bank holding company), thereby purging intragroup

positions. We also excluded cross-border linkages in order obtain a self-contained network

(since further linkages of counterparties abroad remain unobserved). The resulting network

is represented as a square matrix N with 4.76 million cells containing the bilateral interbank

exposures among 2182 banks (including subsidiaries of foreign banks) located in Germany.

Some basic statistics convey a �rst impression. The German banking system is one of the

largest in the world, with assets totaling e7.6 trillion ($11 trillion) at the end of 2007. Re-

�ecting the key role of the interbank market, consolidated domestic interbank positions sum to

e1.056 trillion, making up a sizeable share of banks�balance sheets. Even after Konzern-level

consolidation, the number of active banks in the interbank market varies between 1760 to 1802

for our sample period. This set comprises, on average, 40 private credit banks (Kreditbanken),

400 savings banks (Sparkassen), 1150 credit unions (Kreditgenossenschaften), and 200 special

purpose banks. Yet the network is sparse, with a density on the order of 0.41% of possible

links (0.61% when excluding banks with no interbank borrowing or lending).13 This sparsity

suggests the presence of a discernible structure. The German banking system thus represents

a network of interest not only in its own right, but also a¤ords an opportunity to test whether

a network of this size can be characterized with a simple core-periphery structure.

2.2 Fitting the core-periphery model

We now �t the tiered structureM to the German interbank network. The �rst results focus on

a representative mid-sample quarter, 2003 Q2, in which 1802 banks (out of 2182) participated

in the interbank market, 1671 as intermediaries, 67 as lenders only, and 64 as borrowers only.

The fact that a large share (76.6%) of banks both lend and borrow is not unique to the German

interbank market (e.g. 66% of banks in the Portuguese interbank market do so, see Cocco et

al. (2009)). Using the procedure developed above, the optimal core was found to include 45

banks.14 This is indeed a strict subset, comprising only 2.7% of intermediaries. As expected

from Proposition 1, the core includes only those intermediaries that borrow from, and lend to,

the periphery (the lower tier). The core excludes all those banks that appear as intermediaries in

the data but play no essential role in the market. Many banks simply transform their maturity

13Further network measures for the German interbank market are reported in Craig, Fecht, and von Borstel
(2010).
14The optimal �t was robust across algorithms, as described in Appendix B.
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pro�le by taking and placing funds in di¤erent maturities, often with a single counterparty in

the core (see also Ehrmann and Worms (2004)).

This �nding con�rms that the core is a strong re�nement of the concept of intermediation. The

core here is much smaller than what is sometimes called the core in other network studies.15

By building on intermediation, our model of tiering leads to a tighter core, comprising only 2%

of banks in the network (see Figure 2). Yet the interbank market would not be a single market

without this core. The exact size of the core, however, is less important than its existence in the

�rst place; the core would contain fewer banks, for instance, if one attached a higher penalty

on errors within the CC block than on those in other blocks.

[Figure 2: Tiering as a re�nement of intermediation]

The total error score (4) of the optimal �t came to 12.2% of network links. This is an average

of 1.3 errors per bank, compared to an average of 11 links per active bank. Normalizing

instead by the dimension of the network (= n(n� 1)) shows that only 0.074% of all cells prove
inconsistent with the model M . The total number of errors reached its minimum at 2406,

comprising 683 errors (missing interbank links) within the core. The density of the core is still

66%, more than 100 times greater than the overall density of the network. The error matrix (3)

inevitably features no errors in the o¤-diagonal blocks, consistent with the theoretical properties

derived in Proposition 1. The majority of errors (1723) therefore occur because there are direct

transactions taking place among banks in the periphery.

[Figure 3: Structural stability over time]

We track the evolution of the network on a quarterly basis from 1999Q1 through 2007Q4. The

structure we identi�ed is highly persistent. First, the size of the core and the associated error

score are stable over time (see Figure 3). The exception is the apparent break in series in

2006Q3, where a number of mergers reduced the size from 44-46 banks prior to this date, to

35-37 banks thereafter.16 Importantly, the composition of banks within the core also remains

15For Broder et al. (2000), the core of the worldwide web is the giant strongly connected component (GSCC),
the set of pages that can reach one another through hyperlinks in both directions. Pages that can reach (or can
be reached by) the core make up the giant in-component (or out-component, respectively). Broder et al. (2000)
and subsequent studies thus use the core-periphery notion in a weaker sense of "reachability", regardless of how
many links (and thus intermediaries) it takes for one page to reach another. As a result, their core is a large
subset (28%) of all pages in the sample. Applied to the Fedwire payment network, Soramäki et al. (2007) �nd
the GSCC to comprise nearly 80% of banks in the network.
16A number of mergers among banks in the core occurred, so the new core became a subset of the old core

including the consolidated banks.
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remarkably stable over time. This can be shown by means of the estimated transition matrix,

P (sjs0) =

0BBBBBBBBB@

Core Periphery Exit

Core 0:940 0:049 0:011

Periphery 0:001 0:991 0:008

Exit 0 0 1

1CCCCCCCCCA
: (7)

The element PCore-Periphery represents the frequency with which core banks move to the periphery

over time. The third state (outside the sample) takes care of exits from the banking population.

The fact that the values on the diagonal are close to unity con�rms that banks tend to remain

in the same tier (core or periphery). Estimating a separate transition matrix for each quarter

demonstrates its stability over time (Figure 4).17

[Figure 4: Transition probabilities over time]

These �ndings support the idea that we have identi�ed a truly structural feature of the inter-

bank market. The persistence of this tiered structure poses a challenge to interbank theories

that build on Diamond and Dybvig (1983). If unexpected liquidity shocks were the basis for

interbank activity, should the observed linkages not be as random as the shocks? Should the

observed network not change unpredictably every period? If this were the case, it would make

little sense for central banks and regulatory authorities to run interbank simulations gauging

future contagion risks. The stability of the observed interbank structure suggests otherwise.

Robustness

Before evaluating the statistical signi�cance of tiering, it is important to address potential

caveats. One concern relates to the way the banking statistics are collected: could the report-

ing threshold (e1.5 million or 10% of liable capital) bias the results? To test this possibility,

we performed a censoring test whereby the model was �tted to networks de�ned by succes-

sively higher thresholds (from e1.5 to 100 millions, where only 50% of the value of reported

positions remained in the network). The tiered structure remained una¤ected, and the error

score declined with each iteration. Apparently, much of the direct lending within the periphery

is in smaller denominations, which dropped out as the censoring threshold increased. Indeed,

the value of lending within the periphery accounts for less than 2% of total interbank credit.

Applying this logic in reverse suggests that one would still observe a tiered structure if the

17The said merger activity among core banks makes the �rst row of P become
�
0:63 0:22 0:15

�
for the

single quarter 2006Q3 (see Figure 4).
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reporting threshold were zero, although with more direct lending within in the periphery.

A more important question is whether legal structure and public ownership determine the

network properties of the German banking system. The public savings banks have a special

relationship with their respective Landesbanken, which provide them with borrowing and lend-

ing services (Schlierbach and Püttner (2003)). In a less prescriptive way, credit union banks

also have a special relationship with their central cooperative banks. These pillars, and the

tiering within them, are widely noted features of the German banking system. They are dis-

cussed in the interbank context by Ehrmann and Worms (2004) and Upper and Worms (2004).

However, the observed network is not simply an institutional artifact but is rooted in economic

choices. With few exceptions, banks are free to lend and borrow from other banks throughout

the entire system �the data indeed show many direct linkages between periphery banks across

di¤erent pillars. Moreover, the tiered network structure we identi�ed predates subsequent legal

developments: Guinnane (2002) describes how the regional head institutions arose to provide

much-needed intermediation and payment services to the regionally dispersed credit unions and

savings banks in the 19th century, well before the legal developments of the postwar period.

The view that economic motives, not only institutional factors, give rise to a core-periphery

structure can also be examined by removing various segments, or their respective head insti-

tutions, from the network (Figure 5). First, the two most connected banks (head institutions)

were removed from the network along with all of their links. These two banks together main-

tain so many links that their number exceeds the total links of the next �fteen banks and so

could greatly a¤ect the error score. The estimated core of the reduced network reveals a time

series of cores with essentially the same properties and banks as the original network. Other

con�gurations of bank deletions yielded similar results.

The most drastic experiment was the entire removal of the two pillars most likely to be shaped

by legal factors, the savings banks and credit cooperatives. This was to test whether tiering

would occur in the remaining �and least regulated �segment of the German banking system.

Once again, the presence of a core remains a consistent feature, varying quite smoothly between

22 and 27 during the 36 quarters (Figure 5, solid lines). This is in spite of considerable merger

activity in this segment of the banking industry over the sample period.18

[Figure 5: Robustness checks]

A more general concern could be that our model is not su¢ ciently sophisticated to capture

the structure of the German (or any other) banking system. Our preference for the simple

core-periphery model M is that it builds on intermediation. However, the �tting procedure we

develop can also serve for estimating alternative market structures de�ned by other block types.

18Interestingly, the structural break in 2006Q3 for the entire bank population is now absent; this is an
indication that it occurred within the cooperative and savings bank sectors.

18



To adapt the model to the vertical pillar structure of the German banking system, for instance,

one replaces the row- and column-regular blocks in (2) by row- and column-functional blocks.19

To generalize the model to three tiers, one would extend the model to 9 blocks to include a

semi-periphery. Doing so for the German system would help distinguish regional intermediaries

from the (few) genuine core banks intermediating across the entire country.20

Signi�cance

The core-periphery structure appears robust and stable over time, but is the �t su¢ ciently

tight to conclude that the interbank market is genuinely tiered? The screening test described in

Section 1.3 is easily passed: e(C�) = 0:122 falls well below unity. That small a distance between

the network and the model demonstrates that the tiered structure is a superior benchmark than

the alternative, which comprised only a periphery.

In the second step, we test this score against the error distributions from �tting random net-

works. We generated 1000 Erdös-Rényi random graphs and 1000 scale-free networks of the

same dimension and density as the German interbank network (n = 1802; d = 0:61%). We

then �tted M to each realization, and traced out the distributions Fe against which to assess

the error score of the German network. Figure 6 shows the histograms of the normalized error

scores (4) for each class of random networks separately.21

The error score distributions show that both classes of random networks exhibit tight statistical

properties.22 The Erdös-Rényi random graphs show error scores highly concentrated around

0.983. This is so close to unity that there is really no value in identifying a core in random

networks. Importantly, even the best-�tting realization of 1000 networks produced an error

score of 0.981, more than 8 times that of the German interbank network. The scale-free

networks come much closer.23 This was to be expected, since scale-free networks are known to

produce hubs that characterize many real networks, including interbank markets (Boss et al.

(2004)). Even so, none of the 1000 realizations of scale-free networks produced an error score

of less than 0.204, a distance that remains by a factor of 1.8 larger than that of the German

19A row-functional block (Doreian et al. (2005)) in our context implies that every bank in the periphery
relates to a single bank in the core.
20One indication suggestive of a three-tier system is the simple experiment of �tting the model once more

on the subnetwork among core banks. This delivers an "inner core" of 28 banks with an error of 221 (17% of
links).
21See Appendix B on the robustness checks we used to ascertain that the test distributions re�ect the intrinsic

randomness of networks, rather than stochastic output from an unreliable procedure.
22Scale-free networks consistently produced cores of size 55-57. Random graphs featured cores of size 17 or

18, in 86% and 14% of cases, respectively.
23Interestingly, the Monte Carlo experiments produced binning into four distinct error score classes (red

in Figure 6). We made considerable e¤orts to ensure that these were not local minima, especially for the
clusters around higher error scores (see Appendix B). More work is needed to uncover the reasons behind this
phenomenon.
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network.

[Figure 6: German Fit against simulated Error Score Densities]

The goodness of �t for the German interbank network thus lies outside any conceivable per-

centile of the error distribution for both classes of random networks. We can therefore reject

the hypothesis that random networks produce the extent of tiering evidenced by the German

banking system. Put di¤erently, the core-periphery model is a much better description of the

German interbank network than of random networks. We conclude that the tiering observed

among German banks does not result from standard random processes. Indeed, the statistical

approach to network formation is ill-suited for social and economic networks, which are the

result of purposeful activity by agents weighing the costs and bene�ts of forming links (Goyal

(2007) and Jackson (2008)). One should therefore expect di¤erent kinds of banks to build

systematically di¤erent patterns of linkages �a direction we explore next.

3 Interbank tiering and money center banks

The concept of tiering captures a structural quality of the interbank market that allocates

banks into a core and a periphery. As is characteristic for network analysis, this allocation is

derived from the pattern of linkages alone: network statistics are calculated disregarding any

other information on individual nodes. But one would expect that a bank�s network position

would be related to bank-speci�c features, such as its size, location, business model, or funding

sources. We regard this unexplored link as a promising bridge between banking theory and

network analysis, essential for a better understanding of the formation of interbank networks.

3.1 What makes a core bank?

In this section, we explore whether individual bank features help explain how banks position

themselves in the interbank market. In particular, what kind of banks make up the core of

the network? To test whether a bank�s membership in the core can be predicted by bank-

speci�c features, we assembled balance sheet variables for the 1802 active banks in the German

interbank network in the mid-sample quarter 2003 Q2, using the monthly banking data collected

by the Bundesbank�s statistics department (monatliche Bilanzstatistik).24 These variables serve

as regressors in a probit regression, where the binary dependent variable is core membership:

24This test is in the spirit of the industrial organization approach to banking (surveyed in Degryse et al.
(2009)), but focuses on overall market structure rather than on individual bank performance.
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bi = 1 if bank i was found to be part of the core in the previous section, and bi = 0 otherwise,

prob(bi = 1) = �(x
0
i�):

The �rst column of Table 1 reports the simplest regression using bank size as the sole explana-

tory variable. The log of total bank assets is highly signi�cant; a marginal increase in size from

the average balance sheet of e230 million raises the probability of belonging to the core by a

sixth of a percent. Indeed, size is a fairly reliable classi�er. The average size of banks in the

core is 51 times that of banks in the periphery. Hence, large banks tend to be in the core, while

small banks are found in the periphery of the interbank network.

This intuitive result is in line with earlier studies on interbank markets. For instance, Cocco et

al. (2009) �nd that small interbank borrowers rely more on relationships, preferably with larger

banks. Interbank markets typically have natural lenders and borrowers (Stigum and Crescenzi

(2007)); in the federal funds market, small banks tend to turn over surplus funds to large banks

that distribute or invest the funds (Ho and Saunders (1985), Allen and Saunders (1986), Bech

and Atalay (2010)). Further back in US monetary history, small rural banks cleared at money

centers that, in turn, were dealing with each other and with the large New York banks, a process

known as reserve pyramiding (White (1983)). These observations are all consistent with our

view that interbank markets have a tiered structure.

[Table 1: Core membership and bank-speci�c variables]

Is the importance of bank size for network position an expression of economies of scale and

scope? This question should be addressed with a de�nition of size that is unrelated to a

bank�s interbank activity. The intermediary function that core banks perform, by borrowing

and lending in the interbank market, of course contributes to their reported balance sheet

size. We thus compute the intrinsic size of a bank as (the logarithm of) total assets excluding

interbank lending. This measure captures all positions relating to the bank�s other business

lines, including that of a¢ liated entities consolidated into its balance sheet. Intrinsic size, when

used alone, delivers a poor �t and the coe¢ cient �although signi�cant �is too small to identify

core banks at the default threshold (column 1b). The variable remains signi�cant but adds

little explanatory power when used jointly with others (not reported). Economies of scale and

scope per se seem to play a limited role in explaining a bank�s position in the interbank market.

This may re�ect a degree of specialization among banks: some very large universal banks focus

their other business to a greater extent on capital markets and on international activity, which

lies beyond the observed (domestic) network.

The single most e¤ective regressor will be one that takes network data into account. Column

2a shows that a bank�s connectedness predicts quite reliably whether or not it is in the core,

where we measure connectedness by betweenness centrality, a concept borrowed from sociology
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(Freeman (1979)). Betweenness is the probability with which a node lies on the shortest path

between any two unconnected nodes. The probit regression makes clear that connectedness

predicts core membership better than does bank size. This is not surprising when one recog-

nizes tiering as a "group version" of betweenness: the core comprises the banks that jointly

intermediate between the periphery, so a bank that helps to link pairs of unconnected banks

also contributes to the core performing this role for the market as a whole. More intriguing is

the presence of outliers: for reasons of specialization, some very large banks were found to be

far less connected than their size and presence in the core would suggest. This touches on the

open question of whether "too-big-to-fail" or "too-connected-to-fail" is the relevant criterion

for �nancial stability.

To examine this link directly, we estimate each bank�s systemic importance using the approach

taken in the interbank contagion literature. Systemic importance is measured by the damage

a bank�s failure in�icts upon the rest of the system (e.g. Upper and Worms (2004)). Such

simulations often require a loss-given-default (LGD) which is generally unknown. Craig, Fecht,

and von Borstel (2010) proceed to solve for the LGD that would be required for a bank�s failure

to cause a systemic crisis (de�ned as 25% of system assets in default). The variable systemic

importance used in regression 2b is the inverse of this value, because more important banks

bring down the system already at smaller LGDs. Systemic importance is highly correlated with

a bank�s network position: it is extremely unlikely that a systemically important bank would

not be in the core, as indicated by the low rate of false core predictions, Prob(cjP). But the
moderate �t also suggests that a bank�s position in the network is something that goes beyond

its systemic importance.

In practice, a major problem for central banks and regulators is that the bilateral interbank

exposures for conducting network analysis and assessing systemic risk are unavailable in most

countries. Is it possible to identify the core of the interbank market with a regression that uses

only individual balance sheet variables? Columns 3 (and 1) present probit regressions excluding

those regressors for which network data are required (those shaded in Table 1). Interbank

liabilities help predict core membership quite well, although total bank size performed a little

better, in part due to economies of scale and scope (column 3a). However, the prediction can

be further improved by focusing on the size of interbank intermediation activity. The variable

intermediation measures the volume each bank intermediates, by taking the minimum between

its borrowing and lending in the interbank market. (It would be zero for banks that only

borrow or lend, regardless of the volume.) Column 3b shows that this variable predicts core

membership nearly as reliably as connectedness, and better than systemic importance, without

requiring the bilateral data necessary for these two regressors.

Finally, we include the aforementioned variables jointly to examine their respective explanatory

power. In regression 4a, it is clear that each regressor remains signi�cant in concert with the
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others: bank size, betweenness, and systemic importance all contribute signi�cantly to explain-

ing which banks form the core. Each variable adds a facet to core membership that is related

to �but distinct from �the other two. The �nal regression, 4b, indicates that the explanatory

power of systemic importance falls (to 8% signi�cance) when interbank intermediation and be-

tweenness are included together, suggesting that a bank�s interbank position and the volume

it intermediates in the interbank market jointly contain most of the information embodied in

systemic importance.

All in all, the results of Table 1 show that network position is predictable by bank-speci�c

features. Banks are in the core because they are well-connected, both when measured by

connectedness (betweenness centrality) and in terms of contagion (systemic importance); they

are also in the core due to their ability to carry out large transactions, as measured by their

balance sheet size or by the volume of interbank intermediation they perform. None of these

concepts by itself fully explains core membership, but each adds to the qualities that make up

a core bank.

A bank in the core of a tiered interbank market can therefore be regarded as a money center

bank. This term is generally associated with large banks that dominate wholesale activity in

money markets; in addition to running traditional banking operations, money center banks

provide clearing and correspondent banking services, and act as dealers in a broad range of

markets, including government securities, FX, derivatives, and o¤shore markets (Stigum and

Crescenzi (2007)). As money market makers, they do interdealer business among themselves,

inside the spread they quote to other, more peripheral banks. As such, money center banks

are those intermediaries occupying the special network position we identify as the core. In

this network sense, money center banks play a central role among banks, in dealing among

themselves and tying in the periphery.

3.2 Concluding remarks: bridging two literatures

In relating network position to bank-speci�c features, our paper bridges two literatures. The

banking literature, elegantly summarized by Freixas and Rochet (2008), examines individual

bank incentives with no concern for how banks position themselves in a larger network. The

literature on network formation, on the other hand, often relies on random processes from sta-

tistical mechanics (e.g. Newman et al. (2006)). Even recent game-theoretic models of strategic

network formation (Goyal (2007) and Jackson (2008) provide excellent surveys) disregard the

features of individual nodes. In our view, this severely limits what such models can predict

in the way of network formation. For instance, in some network formation games the pure

star emerges as the unique equilibrium architecture (Bala and Goyal (2000), Goyal and Vega-

Redondo (2007), Hojman and Szeidl (2008)); but since these theories cannot predict which
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node will form the center of the network, they must be regarded, in a sense, as indeterminate.

Our �ndings suggests that bank-speci�c features help explain how banks position themselves in

the interbank market, as evidenced by the regression results. Balance sheet variables also help

predict interbank relations in other studies (Cocco et al. (2009)), with implications for overall

market structure. As tiering is not random but behavioral, there are economic reasons why the

banking system organizes itself around a core of money center banks. The strong correlation

with size suggests the presence of �xed costs, possibly with economies of scale and scope. To

better understand �nancial networks, we argue that the way forward should focus more on the

features of the nodes that make up the network. In the context of banking, this provides clues

for theoretical modeling e¤orts as to how di¤erent banks choose to make network connections.

A class of recent banking models does take into account the fact that interbank markets operate

as networks rather than centralized exchanges. Allen and Gale (2000) propose a framework in

which banks of di¤erent regions (or sectors) face opposite liquidity shocks. This provides an

incentive for banks to insure each other ex ante, which can be done through interbank deposits.

(In a related model, Leitner (2005) demonstrates that interbank deposits help induce banks to

bail each other out.) Similarly, Babus (2009) shows that it is optimal for banks to exchange

deposits with all banks facing opposite liquidity shocks.25 However, this approach predicts

dense networks, contrary to the core-periphery structure we detected for the German interbank

network. That core-periphery structure is also highly persistent, which clashes with the view

that random liquidity shocks are the basis for understanding interbank activity. Moreover, the

interbank market in these models is essentially �at �there is no role for intermediation. Banks

are identical ex ante, including in the way they connect to each other. There is no reason in

these models why banks, the main intermediaries in the economy, would build yet another layer

of intermediation between them.

To explain the tiered structures we explored in this paper, a model would require some asym-

metry or specialization. Two existing models do so by assumption. In the two-tier bank model

of Qi (2008), the "correspondent" bank is assumed to be di¤erent: its ability to borrow cost-

lessly makes other banks use it as a liquidity pool, much like a central bank. However, the

central bank is not the only interbank intermediary, as is apparent from the German interbank

network. Freixas et al. (2000) provide an example of such a case, obtained by assuming that

all travelers pass through a single location.26 The bank located there receives and extends lines

vis-à-vis banks in all other locations (which are not connected to each other). Though both set-

tings are constructed rather than derived, they lead to pure star networks with a single money

center bank at the core. The core-periphery network is a generalization of the star network

25It is unclear whether this theory predicts a network of interbank deposits. Other instruments are available
for implementing risk-sharing, including insurance contracts, derivatives, and credit lines.
26Consumers of di¤erent regions face uncertainty about where to consume. Interbank credit lines between

banks in these regions help economize on reserves, so travelers need not move any goods or cash.
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with several interconnected centers. To better understand the formation of such networks, it

would therefore seem promising to start out from a model featuring a variety of diverse banking

�rms.
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Appendix

Appendix A: Proofs

Part a) To show that the presence of intermediaries is necessary, consider a network N of

dimension n in which the are no intermediaries in the sense of De�nition 1. Banks are either

lenders (� in number), or borrowers (� in number), or neither of the two (n � � � � � 0).

We �rst show that the latter group, the unattached banks, must be in the periphery, because

each unattached bank causes fewer errors in (3) relative to the model (2) when allocated to

the periphery. To see this, suppose there is an unattached bank among the c banks in the

core. This causes exactly 2(c � 1) errors in the CC block, and (n � c) errors in each of the
blocks CP and PC of (3). The same bank placed in the periphery would cause no errors in

CC (nor in PP ), but could add up to 2(c� 1) errors for expanding the CP and PC blocks (if
all remaining core banks are not linked to the periphery). Switching the unattached bank from

core to periphery thus leads to a net reduction in the total number of errors of at least 2(n� c),
which is always positive (and zero if the periphery is empty). The move thus weakly dominates

for the �rst unattached, and strictly dominates for each subsequent unattached bank and every

combination of unattached banks. Therefore, it is optimal to allocate all unattached banks to

the periphery.

We proceed to show that the same argument holds for the remaining core banks, which must

be either lenders or borrowers (not both). Suppose that �C lenders and �C borrowers are in the

core (so that �C + �C = c, with 0 � �C � �, 0 � �C � �). Without loss of generality, reorder
the nodes in each tier such that the lenders appear �rst, followed by the borrowers and the

unattached. This divides each of the four blocks as shown in (8). The absence of intermediaries

implies many zero blocks, since lenders borrow from noone, borrowers lend to noone, and the

remaining banks are unattached. The nonzero entries show dimensions of sub-blocks that may

be nonzero.

0 �C�C

0 0

0 �C�P 0

0 0 0

0 �P�C

0 0

0 0

0 �P�P 0

0 0 0

0 0 0

(8)

Now, the number of errors of this (arbitrary) allocation can be reduced as long as there are banks

left in the core. Applying (3) to (8) shows that the CC block generates at least �C (�C � 1) +
�C (�C � 1)+�C�C errors, the number of zero entries in the top left block, and more if the sub-
block �C�C is not complete with ones. The CP block (top right) comprises at least �C(n��C�
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�C) errors, where the term in brackets is the dimension of the periphery (of which �P � ���C
are borrowers). Likewise, the PC block counts at least �C(n � �C � �C) errors, and more if
the sub-block �P�C is not column-regular as required by (2). This allocation thus produces,

for these three blocks, at least

(n� 1) (�C + �C) + �C�C (9)

errors, plus the number of nonzeros in the sub-block �P�P , denoted by #(�P�P ). If all banks

were placed in the periphery instead, the errors would equal the number of nonzeros, which

cannot exceed ��: Expanding �� (using � � �C + �P ) shows that (9) exceeds #(��) provided

�C [(n� 1)� �P ] + �C [(n� 1)� �P ] > 0: (10)

The terms in square brackets are always positive when there is one or more unattached banks

in the network (implying (n� 1) > � + �); in that case, the error score can always be reduced
by placing all banks in the periphery, i.e. until �C = �C = 0. If there are no unattached banks,

the same conclusion holds for all but one peculiar network for which the net gain in (10) would

be zero.27 Since moving all banks to the periphery is strictly dominant for all networks (and

weakly dominant for one peculiar network), the absence of intermediaries implies an empty

core.

To show su¢ ciency, i.e. that a network containing intermediaries gives rise to a non-empty core,

assume to the contrary that the core is empty and at least one bank, say bank i, intermediates.

Since all banks are in the periphery, the presence of i contributes at least two errors to PP .

Allowing bank i to form a core by itself removes both errors without producing any new errors

in the three new blocks of (3). By the same argument, adding more intermediaries to N can

expand, but cannot reduce, the size of the core. Thus the presence of intermediaries produces

a core.

What remains to be checked is that the periphery does not vanish. The core is potentially

largest when all banks lend to each other: placing n � 1 banks in the core will minimize the
error score to zero. The same score can be also attained by moving all n banks to the core,

which would leave no periphery. However, one missing bilateral link is su¢ cient (not necessary)

to guarantee that a periphery always exists. Suppose banks i and j are not connected to each

other (Nij = Nji = 0). The two zeros contribute two errors in CC if both banks remain in the

core. Moving i or j jointly to the periphery yields a net gain: the two zeros are now in the PP

block where they do not count as errors, and the CP and PC blocks that this move created

27If a single bank lends to all other banks in the system (�P = n� 1, and �C = 0), then the total error score
is una¤ected by whether that lender is in the core or the periphery. (The same holds for the single-borrower
case, where �P = n� 1, and �C = 0.)
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cannot contain more errors than they did as part of the CC block.28A single missing link is

therefore su¢ cient to sustain a periphery even when all other banks lend to each other.

Part b) The proof that all core banks are intermediaries is by contradiction. Suppose a bank
that does not intermediate is in the core. We show that the distance-minimizing procedure will

place this bank in the periphery. A bank that does not intermediate has no outgoing interbank

links, or no incoming links, or no links at all. We need to consider only one case, that of zero

out�degree.29 First compute how many errors this bank, say i, causes as a member of the core.

The core consists of c banks including i, and we use (3) to aggregate errors in the four blocks

delineated by the single lines in the matrix below. Links with core banks never cause errors, so

we can focus on the missing links. By not lending at all, bank i contributes at least (c�1) errors
to CC, plus (n� c) errors to CP for violating row-regularity in that block. This contribution
to the error score, n � 1, is a minimum value: it is higher if bank i does not borrow from all

other core banks, or if it does not borrow from the periphery.

CC 0 CP

1

0 0 0 0 0

0

PC 1 PP

Moving bank i to the periphery will permit a net reduction in the number of errors. This

move changes the four blocks as indicated by the double lines in the matrix. The CC block

shrinks, transferring its column i to CP and row i to PC, respectively; and PP expands, taking

column i from PC and row i from CP , respectively. The �rst transfer removes all the errors

that i had caused in CC and may add new errors to CP and PC that are strictly fewer in

number than those saved CC. (There is one possible exception where the net gain reaches zero.

This occurs only if none of the remaining core banks borrow from any periphery banks (c� 1
errors), and either some core banks do not lend to the periphery or bank i borrows from all

core banks.) The second transfer also delivers a net improvement: the (n� c) errors formerly
in CP no longer count as errors when moved to PP , but column i now in PP may add errors

if it contains ones; the net reduction in errors is again strictly positive, except in the one case

28If each core bank is connected to at least one bank among i and j, the new CP and PC blocks will contain
no errors at all. If some core banks are attached to neither i nor j, then the corresponding rows in CP (columns
in PC) will contain as many errors as was the case when these rows (columns) were part of the CC block. This
continues to hold even if all core banks are unconnected to this pair of banks (then i and j are unattached and
best put in the periphery, as shown above). Moving i and j to the periphery saves at least two errors in each
case.
29The case of zero in�degree is symmetric. That unattached banks go to the periphery was shown in part a).
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where bank i happens to borrow from all (n� c) banks in the periphery.

Combining these error reductions shows that the distance-minimizing procedure will move bank

i to the periphery, contradicting the initial claim that a nonintermediary can be in the core.

(The one exception for which there is weak dominance can occur only if i borrows from all banks,

or some other core banks do not intermediate between periphery banks, a case considered in

what follows.) Thus all core banks are intermediaries.

The converse, that all intermediaries are also core banks, does not hold. Suppose bank i is

in the core but intermediates only among core banks. It is straightforward to show, with the

approach just used, that moving i to the periphery always produces a net reduction of at least

2 (n� c) errors (which had been in CP and PC but no longer count as errors when part of

PP ). Hence, not every intermediary is a core bank.

We generalize this case by showing that a core bank that does not lend to (or does not borrow

from) the periphery will not be in the core. Suppose bank i does not lend to any bank in the

periphery. Its presence in the core contributes (n� c) errors to CP and x � 0 errors to CC for
any missing links with other core banks. Moving bank i to the periphery again leads to a net

reduction in errors. The argument follows exactly the one just advanced for nonintermediaries,

the only di¤erence being that the number of errors involved in the �rst transfer, now x, need not

exceed (c� 1). The result carries through that moving i to the periphery is strictly dominant,
again with one exception where it is weakly dominant. The analogous case of a bank that

does not borrow from the periphery can be shown by symmetry. Therefore, the core excludes

intermediaries that do not lend to (or do not borrow from) the periphery.

Appendix B: Computational methods

As stated, �tting a core-periphery model to a real-world network is a large-scale problem in

combinatorial optimization, which we solve by means of a sequential algorithm. This way, the

search for the optimal core leads to a solution in polynomial time, rather than in exponential

time (2n) required by exhaustive search. Section 1.3 described two versions of the algorithm that

we designed for this task, both running in polynomial time (order n1).30 In our application to

the German network (n = 1802), the algorithm converged in 70 seconds on a standard IntelCore

2 duo processor (2.4GHz).

For NP-hard problems of this dimension, it is not possible to prove that the solution returned

by any procedure is indeed the global optimum. We therefore performed several robustness

checks to dispel doubts. First, we backtested our algorithm against existing blockmodeling

30The MATLAB code is available upon request from the authors.
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routines, and obtained the same solutions for small example networks.31 We also tested that

the algorithm �nds the optimum for cases where the true solution is known: we generated

arti�cial networks (of the same dimension and density as the German system) with a perfectly

tiered structure, for which the minimum error score (4) must be zero, by construction. The

algorithm consistently returned the correct set of core banks with zero errors. Second, we know

from Proposition 1 that any solution returning nonzero elements on the o¤-diagonal of the error

matrix E cannot be an optimum �in practice, the procedure never returned solutions failing

this criterion. However, as this is a necessary (not a su¢ cient) condition, one cannot rely on this

test alone to rule out all local optima. Our third and main robustness check therefore consisted

of repeated application and careful comparison of the results generated by two algorithms (see

section 1.3).

This was straightforward to do for the single application to the German interbank network, and

reliably yielded the solution reported in the text. To prepare the thousands of runs necessary

for hypothesis testing, we compared the error scores calculated with simulated annealing pro-

grams with various "cooling" parameters and many di¤erent initial partitions, with the greedy

algorithms using di¤erent initial conditions. For avoiding local optima it turned out to be help-

ful to start the greedy algorithm su¢ ciently far from an approximate solution to give it time

to converge to the error-minimizing core. The best simulated annealing algorithms gave error

scores very close to a greedy algorithm with initial partitions that assigned a random half of

the banks to the core. The local optima that did occur were easily identi�ed by their extremely

high error score, which would fall to the normal range when �tting the same network again.

The distributions shown in Figure 6, using the greedy algorithm with random initial partitions,

o¤ered consistently the minimum error score, always close to the best solution of any of the

algorithms we tried. We performed robustness checks on the algorithm to make sure that the

initial conditions and parameters were consistent with generating the minimum error scores

for both types of random networks (see Appendix B). The core sizes did not vary between the

algorithms, although the error scores did �uctuate in a narrow range for di¤erent initial con-

ditions. Taken together, these robustness tests assured us that the distributions generated for

the hypothesis tests re�ect the intrinsic randomness of random networks, rather than stochastic

output from an unreliable procedure.32

31The software Pajek (Batagelj et al. (2003)) implements generalized blockmodeling for networks of up to
256 nodes.
32The random networks were generated in Matlab, using the routine of Muchnik et al. (2007) for obtaining

directed scale-free networks.
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Figures and Table 
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Figure 1: Stylized example of an interbank market. The left panel illustrates a perfectly tiered 
interbank structure in a stylized interbank market comprising 8 banks. The arrows represent the 
direction of credit exposure, e.g. bank D lends to A. The middle and right panels depict examples of 
networks that are not perfectly tiered.  

 

 

 

 

 

  

 # banks = 2182 

 # active = 1802 

Figure 2: The core as a refinement of intermediation. This Venn diagram 
illustrates the relationships between various sets of banks in the German 
interbank market. The majority of banks intermediate, yet only a small subset 
of intermediaries qualify as core banks. 
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Figure 3: Structural stability over time. The figure shows the size of the estimated core 
(number of banks, left axis) and the total error score (expressed as a percentage of links 
as in equation (4), right axis) for the German interbank network on a quarterly basis. 
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Figure 4: Transition probabilities over time. This figure shows the transition 
probabilities for each quarter over the sample period (1999 Q1 – 2007 Q4). The lines 
trace out the two top rows in equation (7) over time. For instance, prob(C|P), shown in 
red, represents the frequency with which banks switch from the core to the periphery.  
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Figure 5: Robustness checks. The figure shows the number of banks in the estimated 
core (in blue, left axis) and the total error score (in red, right axis) over time for two 
different experiments. In the first, shown with dashed lines, the two most connected 
banks (head institutions) are removed from the network. In the second experiment, 
shown with solid lines, all saving banks and credit cooperatives (pillars) are removed.  
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Figure 6: German fit against simulated error score densities. This figure compares the 
total error score from fitting the tiering model to the German interbank network (12.2% 
of links, shown as an arrow) to the normalized error scores, as defined as in 
equation (4), from fitting two types of random networks of the same dimension. The red 
bars show the histogram of error scores from fitting 1000 scale-free networks, whereas 
the blue bars represent the histrogram from fitting 1000 Erdös-Rényi random graphs.  



 

 

Table 1:  Core membership and bank-specific variables 

The table reports the results of probit regressions testing whether network position can be predicted by 
individual bank balance sheet variables. The binary variable core membership takes the value 1 for banks that 
were determined to be in the core, and 0 for the remaining banks. It is regressed on a constant and the 
regressors shown in the rows, which rely only on individual bank data (except for the shaded variables, which 
require the network data). The columns show the different regressions, each comprising 1802 observations. 
The cells show the maximum likelihood estimates of the coefficients. The marginal effects are shown in 
parentheses, evaluated at the multivariate point of means. Significance is denoted by *(5%) and **(1%). 

Bank size is the natural logarithm of total assets (in Є thousands plus 1); Intrinsic size excludes interbank claims from 
total assets before taking the logarithm. Interbank liabilities is the logarithm of (interbank liabilities+1). The fit with 
interbank liabilities was slightly better than that with interbank assets (not reported). Intermediation is the 

logarithm of interbank liabilities that a bank in turn lends out on the interbank market, i.e. Ln (min { interbank 

assets, interbankl iabilities } +1). Connectedness is normalized betweenness centrality (Freeman (1979)). Systemic 
importance of an institution is measured here as the (inverse) loss-given-default necessary such that the failure of the 
institution leads to a systemic crisis (a quarter of the banking system in default). The probabilities in the final rows 

are evaluated at the default threshold of 0.5. Prob(c|C) = probability (in %) that a bank predicted to be in the core 

is indeed in the core (=100-Prob(p|C)). Prob(c|P) =  rate of false core predictions. 

Regressors 1a 1b 2a 2b 3a 3b 4a 4b 

Bank size 0.903** 
(0.0014) 

     
0.361** 
(0.0821) 

 

Intrinsic size  
0.149**  
(0.0073) 

      

Interbank liabilities     
0.667** 
(0.0006) 

   

Intermediation      
0.718** 
(0.00014

) 
 

0.455** 
(0.0557) 

Connectedness   
3962** 
(1581) 

  
2931** 
(666) 

3393** 
(415) 

Systemic importance    
4.737** 
(0.1193) 

  
3.292* 
(0.748) 

2.206 
(0.270) 

Pseudo-R2 0.573 0.073 0.654 0.475 0.542 0.579 0.736 0.765 

% correctly classified 98.5% 97.5% 98.8% 98.5% 98.0% 98.7% 99.0% 99.1% 

Prob(c |C) core correct 48.9% 0% 60.0% 42.2% 42.2% 51.1% 68.9% 71.1% 

Prob(c |P) core false 0.17% 0% 0.17% 0.06% 0.57% 0.06% 0.17% 0.23% 
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