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Abstract

During the financial crisis of 2007/08 the level and volatility of interest rate spreads

increased dramatically. This paper examines how the choice of the target interest rate for

monetary policy affects the volatility of inflation, the output gap and the yield curve. We

consider three monetary policy operating procedures with different target interest rates: a

one-month market rate, a three-month market rate and an essentially riskless one-month repo

rate. The implementation tool is the one-month repo rate for all three operating procedures.

In a highly stylised model, we find that using a money market rate as a target rate generally

yields lower variability of the macroeconomic variables. This holds under discretion as well

as under commitment both in times of financial calm or turmoil. Whether the one month or

three month rate procedure performs best depends on the maturity of the specific rate that

enters the IS curve.
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1 Introduction

Monetary policy operating procedures vary from one country to another. In particular, there

are major differences regarding the target interest rate used to formulate monetary policy. Some

central banks have as operational target a short-term market interest rate while others use the

rate they charge financial institutions for the provision of short-term funds — typically a repo

rate. Since short-term interest rates in a given currency tend to move closely in line with each

other during normal times, these differences have attracted little attention in the literature.1 In

the financial crisis of 2007/08, however, the level and volatility of interest rate spreads increased

dramatically, raising the issue of how alternative monetary policy procedures impact on the

economy. In this paper, we examine how the choice of monetary operating procedure affects the

volatilities of the inflation rate, the output gap and the term structure of market rates.

The model is standard in that it consists of a hybrid New Keynesian Phillips curve and a

consumption Euler equation. The novelty is the consideration of three possible interest rates for

monetary policy: a one-month repo rate, a one-month money market rate and a three-month

money market rate. Policy may be formulated with either of these rates as target rate, but is

always implemented with the one-period repo rate. The market rates are modelled to depend

on the expected future path of the repo rate, a term premium and a risk premium. Since risk

premia are largely driven by markets’ perception of default risk, we assume that these premia are

linked to economic conditions and let them depend endogenously on the expected future path

of the output gap. Following the literature, we let the one-month money market rate impact

on the output gap in the IS curve in the baseline model, but we also consider a variant of the

model where the average of short and longer-term money market rates matters.

We compare the three monetary operating procedures by examining optimal policy reaction

functions, impulse responses and simulated volatilities of inflation, the output gap and the yield

curve. This is done first for a baseline calibration, using parameters chosen to mirror pre-crisis

conditions, and then for an alternative set of parameters which reflects the financial turmoil.

Results are presented for both, policy under commitment and under discretion. Finally, we

consider how the results change if an average interest rate that is constructed from market rates

of maturities lasting from one to twelve months matters for economic activity.

The results suggest that under commitment, the three operating procedures give similar

1Exceptions are Bindseil [5] and Borio [6]. Borio and Nelson [7] discuss monetary operations during the

financial crisis.
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results in terms of macroeconomic volatility in tranquil times. Under discretion, market-based

procedures yield a more stable macroeconomy. In times of financial turmoil, targeting the short-

term market interest rate is advantageous both under commitment and discretion. If we depart

from the baseline model and assume that also longer-term market rates matter for the output

gap, the different procedures yield equal volatility if policy is set under commitment. Under

discretion, the approach where monetary policy is formulated it terms of a longer-term market

rate seem most promising.

This paper adds to a growing literature that models the linkages between financial market

interest rates, risk premia and the macroeconomy. Goodfriend and McCallum [20] assume an

interbank policy interest rate, a risk-free rate, and collateralised and uncollateralised market

rates in an economy with a banking sector and discuss the responses of these interest rates to

shocks. Cúrdia and Woodford [9] model the spread between borrowing and lending rates and

show that monetary policy provides better results if the central bank reacts to movements in the

credit spread. The reason is that the rate relevant for economic activity is not the policy rate

itself but an interest rate that depends on the credit spread.2 Eijffinger, Schaling and Verhagen

[12], Fendel [17], Lansing and Trehan [27] and Svensson [37] present optimal policy rules for

a short-term interest rate in models where a longer-term rate, which obeys the expectations

hypothesis, matters for the output gap. Conversely, Kulish [26] and McGough, Rudebusch and

Williams [30] let the shorter-term market rate enter the IS curve and analyse different reaction

functions for the longer-term interest rate, which, however are not derived optimally. Gerlach-

Kristen and Rudolf [19], finally, compare the performance of Taylor rules for both a short and

a longer-term interest rate when the latter matters for economic activity.

The paper is organised as follows. Section 2 gives a brief description of policy rates and

market interest rates in the US, the UK and Switzerland over the period 2005-2008. Section 3

introduces the model. Section 4 discusses optimal policy for the three operating procedures and

the resulting volatilities for inflation, the output gap and the yield curve. Section 5 concludes.

2Martin and Milas [29] examine the spread between the monetary policy rate and an economically relevant

borrowing rate and discuss how monetary policy in the UK responded to movements in market rates.
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2 Interest rates during the 2007/08 financial crisis

The analysis in this paper is loosely modelled on the monetary policy operating procedures of

three central banks: the Bank of England, the Federal Reserve and the Swiss National Bank.3

The operating procedures of these central banks differ little with respect to the implementation

tool: all use repo rates with very similar short-term maturities.4 However, the three banks

express their monetary policy intentions in terms of a target for interest rates which differ quite

substantially.

The Bank of England formulates monetary policy in terms of Bank rate, i.e. the repo rate

at which the Bank is willing, against eligible collateral, to lend funds to commercial banks. The

typical maturity of these repo transactions, which are essentially risk free, is one week. The

Federal Reserve’s operational target is the federal funds rate, i.e. the rate at which commercial

banks lend uncollateralised overnight funds to one another. Thus, the US target rate is a

market rate at the very short end of the maturity spectrum which incorporates default and

other risks. Before the financial crisis, the Federal Reserve influenced the level of the federal

funds rate through repo transactions with overnight and two-week maturity. The Swiss National

Bank, finally, announces monetary policy in terms of a target range of typically one percentage

point for the three-month CHF libor, which is a rate for uncollateralised three-month funds on

the London interbank market. The Swiss National Bank implements its policy using repos of

typically one-week maturity.5

To illustrate the effect of monetary policy operating procedures on interest rates, Figure

1 shows interest rates for the US, the UK and Switzerland over the period January 2005 to

January 2009. Interest rates moved closely together before the onset of the crisis in August

2007. The volatility of the spreads then increased and peaked in September and October 2008

after the collapse of Lehman Brothers. It is notable that the three-month libors were more

3The European Central Bank is not considered in this study since the policy rate is the minimum bid rate,

which before October 2008 often deviated from the actual price paid by the commercial banks for central bank

funds in the variable rate tenders (after the collapse of Lehman Brothers, the ECB adopted fixed-rate tenders).

Modelling such a framework is beyond the scope of this paper.
4The Federal Reserve moreover buys and sells securities as part of its open market operations. In the crisis,

additional instruments such as the Term Auction Facility were introduced.
5 In a similar setup, the Bank of Canada had a target for the three-month Treasury bill rate until January

1996 (Borio [6]). Regarding the implementation of monetary policy in Switzerland, see Jordan and Kugler [23]

and Jordan, Ranaldo and Söderlind [24].
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Figure 1: Interest rates, January 2005 to January 2009
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volatile than the one-week libors for GBP and USD, but that the opposite is true for CHF. This

is because the Swiss National Bank stabilised the three-month libor by adjusting its short-term

repo rates. These repo rate adjustments were translated into movements at the very short end

of the yield curve, which consequently was more volatile for CHF than for GBP and USD. The

choice of target rate for monetary policy appears to determine which part of the yield curve is

stabilised and which maturities adjust to risk shocks, a phenomenon Flemming [18] referred to

as "pivoting". This choice in turn might impact on the volatility of the macroeconomy.

3 The model

To study how the choice of monetary operating procedure impacts on macroeconomic volatility,

we consider an extended version of the canonical New Keynesian model (see e.g. Woodford

[42]). We first describe the economy and then discuss the monetary policy problem, which

consists of deriving the optimal reaction function for the repo rate, which is the central bank’s

implementation tool.

3.1 The economy

The model economy consists of a hybrid New Keynesian Phillips curve, a consumption Euler

equation and a set of equations describing the dynamics of the term structure of interest rates.

The hybrid New Keynesian Phillips curve is given by

 = +1 + (1− )−1 +  + , (1)

where  is the inflation rate,  the output gap,  a parameter reflecting the degree of forward-

lookingness in the price-setting behaviour of firms, and  a composite parameter capturing the

discount rate and the frequency of price adjustments. The exogenous inflationary shock, , is

assumed to follow an AR(1) process,

 = −1 +  (2)

with 0    1 and  ∼ (0 1).

The log-linearised consumption Euler equation is given by

 = +1 + (1− )−1 − (1 −+1 − 1) + , (3)
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where 1 denotes the annualised nominal money market interest rate with maturity of one

period, 1 the equilibrium one-period real market rate, and  an exogenous demand shock

which evolves according to

 = −1 +  (4)

with 0    1 and  ∼ (0 1). Thus, we assume that economic activity depends on the

short-term market rate. This assumption is common in the literature. Empirical arguments

why economic activity depends mainly on short-term rates include the fact that banks funds

themselves mostly at that horizon and that mortgages often are priced off short-term money

market rates. That said, policymakers often argue that long-term rather than short-term interest

rates impact on economic activity (see e.g. Bernanke [4] and Rudebusch, Sack and Swanson [34]).

We therefore consider as a robustness test in Section 4.3 an alternative IS curve in which the

average real interest rate matters. In particular,

 = +1 + (1− )−1 − ( −+1 − ) + , (5)

where  is the average of the money market rates  with maturities  = 1 to 12 months,

 =
1

12

12X
=1

, (6)

and average inflation is defined accordingly,

+1 =
1

12

12X
=1

+1, (7)

with  the annualised inflation rate over the next  months. Since we model interest rate only

out to a horizon of twelve months, this alternative IS curve should be seen as an illustration

rather than a realistic description of the role of longer-term rates in the economy. Nevertheless,

as Section 4.3 below shows, even within these limitations there are palpable changes in the

results.6

The novel part of the model is that the central bank does not directly control the market

rate entering the IS curve, but the repo rate . The short-term money market rate 1 deviates

from the repo rate by a risk premium 1, so that

1 =  + 1. (8)

6We do not consider an IS curve with only a longer-term rate entering since this raises indeterminacy problems

in the 3MR procedure, which we discuss in Section 3.2 below. The reason for this is that if the one-month rate

does not enter the IS, it is not pinned down anymore (in the RR and the 1MR procedures, the smoothing objective

discussed below achieves this).
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This risk premium reflects counterparty risk that arises in a market transaction but does not

figure in transactions with the central bank.7 We concentrate on default risk, which we see as

being dependent on the state of the business cycle. In particular, we assume that the default

risk on a loan increases when the output gap is expected to fall.8 Thus, the expected output gap

at the end of the credit contract matters for the risk premium of the one-period money market

interest rate, and we write

1 = 1 − +1 + 1, (9)

where 1 captures the constant component of the default risk and  denotes the impact of

economic activity. The innovation in equation (9) follows an AR(1) process,

1 = 1−1 + 11,

with 1 ∼  (0 1). Longer-term money market interest rates are given by the expectations

hypothesis. The -period interest rate  is defined as

 =   +  +
1




−1X
=0

+, (10)

where   denotes a constant term premium and  the -period risk premium.
9 The latter, in

turn, depends on the expected future path of the output gap,

 =  − 
1




X
=1

+ + , (11)

with

 = −1 + , (12)

where the risk innovations  ∼  (0 1) are correlated across maturities.10

7Michaud and Upper [31] offer a detailed discussion of the evolution of risk premia during the financial crisis.

Using daily data, they find that liquidity matters at high frequencies, while default risk appears to impact at

lower frequencies.
8Fama and French [16] show that default spreads between risky and essentially riskless bonds are high if

business conditions are weak, and Campbell, Lo and MacKinlay [8] argue that risk aversion is time-varying either

because of habit formation or agents’ heterogeneity. Affine models of the term structure document the empirical

relationship between the yield curve and the state of the business cycle as well as inflation (see Ang and Piazzesi

[2], Dewachter and Lyrio [11], Hördahl, Tristani and Vestin [22], Kozicki and Tinsley [25] and Piazzesi and Swanson

[32]). Emiris [14] studies the term structure of interest rates in a DSGE model and finds that premia are related

to shocks to consumption and investment, thus providing a theoretical link between market interest rates and the

business cycle.
9As an alternative to the expectations hypothesis, Amisano and Tristani [1], Atkeson and Kehoe [3] and Emiris

[14] derive expressions for longer-term interest rates in micro-based models with frictions.
10Svensson [36] discusses the links between different types of premia across different maturities.

7



Finally, we assume that the central bank and the private sector form rational expectations

and have access to the same information about the economy.

3.2 The monetary policy problem

We assume that the central bank’s period loss function is given by

 =
1

2
 0Λ, (13)

and the intertemporal loss function by

£0 = 0

∞X
=0

(1− ), (14)

where  is a vector of goal variables,  the discount factor and Λ the matrix of goal weights that

differ between operating procedures. Under the first of our three monetary operating procedures,

policy is formulated with the repo rate . Thus, the target rate of monetary policy and the

implementation tool coincide. We refer to this approach as the repo rate operating procedure

(RR procedure). Alternatively, policy can seek to steer as target rate the one-period money

market rate 1. This is labeled the one-month money market rate (1MR) procedure. Under

the three-month money market rate (3MR) procedure, finally, policy targets the three-period

money market rate 3.

The central bank minimises variations in inflation and in the output gap under all three

operating procedures. Moreover, the central bank is assumed to smooth the target rate, i.e.

, 1 or 3, depending on the procedure. This assumption is supported by the observation

that monetary policy tends to be changed gradually with no obvious attempts being made to

smooth movements of interest rates at other maturities.11 The set of all potential goal variables

in equation (13) then is

 =
h
  ∆ ∆1 ∆3

i0
,

where the off-diagonal elements of Λ are zero for all operating procedures. The diagonal is

given by
h
   0 0

i
under the RR procedure, by

h
  0  0

i
under the

1MR procedure and by
h
  0 0 

i
under the 3MR procedure, where  is the weight

attached to the goal of stabilising inflation,  the weight attached to output gap stabilisation and

11On interest rate smoothing, see e.g. Ellis and Lowe [13], English, Nelson and Sack [15], Goodhart [21] and

Rudebusch [33].
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 the weight attached to target rate smoothing. Thus, the only difference between procedures

is the specific target rate smoothed.

To determine the optimal reaction function for the central bank’s repo rate, we minimise the

loss function with respect to the repo rate , subject to the structure of the economy as given

by equations (1) to (12). The appendix discusses the state space representation of the model

and the optimisation under commitment and discretion in detail.

Before proceeding further, a technical difficulty in computing optimal policies for the market

rate-based procedures (1MR/3MR) should be noted. Under these procedures, policymakers

smooth either 1 or 3, which includes a risk premium that is a function of the expected future

path of the output gap.12 That path, in turn, depends on monetary policy and thus on the

current repo rate , which is the variable the optimisation is solved for. In other words, defining

the loss function for the 1MR/3MR procedure presupposes the knowledge of the optimal reaction

function for  that minimises this loss function. We tackle the problem by guessing an initial

reaction function and iterating until convergence.

4 Results

In this section, we first compare the three operating procedures in a baseline specification, assum-

ing that monetary policy is conducted either under commitment and in a timeless perspective

(see Svensson and Woodford [39] and Woodford [42]) or under discretion (see Söderlind [35]).

We compute the optimal repo rate reaction functions, the impulse response functions and the

average volatilities of inflation, the output gap and the yield curve. We then discuss how the

results change during financial turmoil, i.e. when risk shocks are larger and more correlated.

Finally, we consider the variant of the model with the average of the money market rates of

horizons one to twelve months in the IS curve.

4.1 Baseline case

The periodicity of the model is assumed to be monthly. The baseline calibration sets the

coefficients in the Phillips curve, the consumption Euler equation and the corresponding shock

12We assume that the expected output gap depends in the same way from expected other variables as the

current output gap depends on their current values.
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processes to  =  = 08,  = 02,  = 05,  =  = 09,  = 05 and  =  = 01.
13

Central bank preferences are specified by the weights put in the period loss function on inflation

stabilisation, output gap stabilisation and target rate smoothing, which we set to  =  = 1

and  = 05, and by the discount factor  = 0999. For the risk premia, we set 1 =  = 01,

 = 025,  = 001 and  = 0001 for  6= . Finally, the constant term premia are modelled

as   =
√
 − 110, a functional form that matches US pre-crisis data rather well. Given these

parameters, we minimise the loss function and obtain the optimal reaction function for the repo

rate.

Optimal repo rate reaction functions: Table 1 shows the optimal repo rules for the three

operating procedures for commitment (upper panel) and discretion (lower panel). Under com-

mitment, the RR procedure calls for essentially no response of the repo rate to past inflation

(-0005) and the past output gap (0084), but a stronger reaction to innovations in the Phillips

curve (0388) and in the IS curve (0983). There is considerable repo rate smoothing (0463) and

a negative response of the repo rate to shocks in the one-month risk premium (-0339), implying

that monetary policy partially absorbs such shocks. Thus, if the risk premium rises, the repo

rate is lowered so that the increase in the one-month market rate is smaller than that in 1.

However, the repo rate does not fully absorb the shock, since this would require a sharp response

that conflicts with the goal of smoothing the target rate. Finally, shocks to the three-month

risk premium trigger no repo rate reaction, and the responses to the Lagrange multipliers for

the Phillips and IS curves, −1 and −1, which capture the importance of future interest rate

setting under commitment, are small (-0017 and 0150).

The 1MR procedure yields a similar optimal repo rate reaction function. The main difference

is that innovations in the one-month risk premium are fully absorbed. This implies that risk

shocks at the one-month horizon do not change the one-month money market rate and thus

have no impact on the output gap and inflation. Full absorption is possible under the 1MR

procedure since the short-term money market rate is smoothed, rather than the repo rate.

The 3MR procedure calls for a weaker response to inflation and output gap shocks. In-

novations in the one-month risk premium are partly, and three-month shocks essentially fully,

absorbed. Finally, there is considerable interest rate smoothing with respect to the three-month

13Robustness tests show that the results presented here do not depend qualitatively on the exact parameter

assumptions. It should be noted that, because of the monthly periodicity, the AR coefficients chosen are larger

than in the standard literature, which assumes quarterly periodicity, and the standard errors are smaller.
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Table 1: Optimal reaction functions in the baseline case

Commitment

Procedure −1 −1 −1 1−1 3−1   1 3 −1 −1

RR -0.005 0.084 0.463 0 0 0.388 0.983 -0.339 0 -0.017 0.150

1MR -0.013 0.074 0 0.453 0 0.266 1.003 -1 0 -0.026 0.115

3MR -0.000 0.163 0 0 0.651 0.164 0.699 -0.365 -1.089 -0.013 0.385

Discretion

Procedure −1 −1 −1 1−1 3−1   1 3

RR 0.062 0.131 0.259 0 0 4.124 1.417 -0.528 0

1MR 0.060 0.129 0 0.252 0 3.790 1.432 -1 0

3MR 0.105 0.263 0 0 0.315 3.966 1.287 -0.708 -0.582

Note: Repo rate reaction function coefficients for different operating procedures. RR, 1MR and 3MR

stand for repo rate, one-month and three-month money market rate procedures.

market rate.

Under discretion, the coefficients on inflation and output gap shocks are much larger than

under commitment, and interest rate smoothing is less pronounced. These changes reflect the

stabilisation bias discussed in Dennis and Söderström [10] and Woodford [41]. In an economy

with forward-looking agents, interest rate smoothing under commitment stabilises expectations

and thereby reduces overall macroeconomic volatility. If policy is discretionary, however, policy-

makers do not follow this optimal gradual response and therefore stabilise the output gap more

and inflation less. Compared with commitment, the RR and the 3MR procedures react more

to one-month risk premium shocks. Three-month shocks trigger a smaller response under the

3MR procedure, again because there is less weight attached to variables relating to the future.

Impulse responses: To evaluate how the choice of monetary operating procedure affects

macroeconomic dynamics, we present impulse responses for various shocks under the RR, 1MR

and 3MR procedures. Figure 2 shows the responses under commitment, Figure 3 those under

discretion. The first two columns illustrate the impact of a one-standard-deviation shock to

inflation and the output gap, respectively, and the last column shows the effect of a shock to

the one-month risk premium.
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Figure 2: Impulse response functions under commitment
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Figure 3: Impulse response functions under discretion
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For the case of commitment, the first two plots in the last column of Figure 2 indicate that

a risk shock affects inflation and the output gap most under the RR procedure, followed by

the 3MR approach. The reason for this is that the cut in the repo rate in response to a risk

shock is under these procedures not sufficient to absorb the shock completely. The rise in the

risk premium thus implies an increase in the one-month market rate. By contrast, absorption is

complete under the 1MR procedure and as a result, the one-month market rate, inflation and

the output gap are essentially unaffected. The three-month market rate declines strongly on

impact because of the reduction in the repo rate.

The impulse responses to an inflationary shock are almost identical for all three procedures,

reflecting the broad similarities between their optimal reaction functions. A positive inflation

shock is undone slowly by tighter monetary policy, which causes the output gap to turn negative.

Because of the fall in output, default risk increases and the market rates rise, thus further

depressing output before the variables return to equilibrium. A positive output gap shock,

finally, drives the repo rate up, and inflation and subsequently the output gap turn negative

for some time. Under the 3MR procedure, the repo rate is raised most strongly, so that the

responses of inflation and the output gap to the shock are smaller and faster. The market rates

rise in response to an output gap shock under all operating procedures due to the tightening of

the repo rate.

For the case of discretion, Figure 3 shows similar responses to an inflation shock. Output

gap shocks trigger a more aggressive initial repo rate response because of the stabilisation bias

and a faster subsequent reduction of that rate. This makes the output gap return to equilibrium

quickly but leads to a temporary build-up in inflation. Similarly, the output gap is stabilised

fast after a risk premium shock, at the expense of temporarily higher inflation.

Macroeconomic and interest rate volatility: To compare the monetary operating proce-

dures in terms of welfare we next compute the volatility of the inflation rate, the output gap

and the yield curve. For that purpose we perform stochastic simulations. We generate 10 000

draws for each monetary operating procedure. The upper panel of Figure 4 presents the results

for commitment, the lower panel for discretion. The left plots show the simulated volatilities

for the macroeconomic variables, while volatilities of the market interest rates with maturity

 = 1  12 months are shown in the right plots. In interpreting these volatilities, it is important

to remember that the results are biased in favour of the short-term money market rate. This
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Figure 4: Volatilities in the baseline case
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bias arises because of the assumption that this rate matters in the IS curve.

Under commitment, the variability of the macroeconomic variables and the yield curve are

virtually identical for the three monetary operating procedures. Under discretion, macroeco-

nomic volatility is higher because monetary policy does not attempt to impact on expectations.

Also, the stabilisation bias for the output gap relative to inflation is clearly visible. Macro-

economic volatility is lowest under the 3MR and 1MR procedures. It seems thus that using a

policy target that refers to a market rate is preferable to a repo rate target. The yield curve is

more volatile than under commitment, reflecting the stronger response of policy to shocks. The

variability at the short end of the term structure is comparatively low because it is optimal to

limit the volatility of the one-month market rate since it enters the IS curve.

Overall, the baseline results suggest that it does not matter much which monetary operating

procedure is chosen in times of financial calm if policymakers can commit themselves. This

might explain why different approaches are observed in practice. If policy is set in a discretionary

fashion, volatilities are lower if a money market rate, rather than the repo rate, is chosen as

target rate. We next ask how these results change in times of heightened financial risk.

4.2 Financial turmoil

In this section, we study how an increase in the variance and the correlation of the risk shocks

similar to that in the financial crisis of 2007/08 affect the results. In particular, we assume an

autocorrelation of the risk premium shocks of  = 09 (instead of  = 05) and multiply the

standard errors by one hundred.

Arguably, it is more realistic to assume that monetary policy is set in a discretionary manner

in times of crisis. For completeness, we again present also results assuming commitment.

Optimal repo rate reaction functions: Table 2 shows the optimal reaction functions for

the three operating procedures. Both under commitment and discretion, the responses to the

risk premia change for the RR and the 3MR procedure, but not for the 1MR approach. The

reason for this is that we only assume different dynamics for the risk premium, movements of

which the 1MR procedure absorbs fully. For the RR procedure, we now find a stronger response

to changes in 1 because innovations in the one-month market rate are more protracted and

therefore have a larger effect on inflation and the output gap. For the 3MR procedure, by

contrast, we find a weaker response both to changes in 1 and 3. This result is due to the
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fact that the higher autocorrelation of the risk shocks generates the expectation that policy

responds for several periods in the same direction after an initial innovation. This expectation

causes ceteris paribus a large movement in longer-term market rates, which policymakers under

the 3MR procedure however would like to smooth. Therefore, a smaller response to risk shocks

becomes desirable as  rises.

Table 2: Optimal reaction functions during financial turmoil

Commitment

Procedure −1 −1 −1 1−1 3−1   1 3 −1 −1

RR -0.005 0.084 0.463 0 0 0.388 0.983 -0.491 0 -0.017 0.150

1MR -0.013 0.074 0 0.453 0 0.266 1.003 -1 0 -0.026 0.115

3MR -0.000 0.163 0 0 0.651 0.164 0.669 -0.350 -0.720 -0.013 0.385

Discretion

−1 −1 −1 1−1 3−1   1 3

RR 0.062 0.131 0.259 0 0 4.124 1.417 -0.708 0

1MR 0.060 0.129 0 0.252 0 3.790 1.432 -1.000 0

3MR 0.105 0.263 0 0 0.315 3.966 1.287 -0.643 -0.351

Note: Repo rate reaction function coefficients for different operating procedures. RR, 1MR and 3MR

stand for repo rate, one-month and three-month money market rate procedures.

Macroeconomic and interest rate volatility: The volatilities under commitment are dis-

played in the upper panel in Figure 5. Comparing them with those from the baseline calibration

of the model, we find that macroeconomic volatility has increased under the RR and 3MR

procedures but remains essentially unchanged under the 1MR approach. This is again due to

the fact that risk shocks are fully undone by the 1MR procedure. Macroeconomic volatility is

largest under the 3MR approach since this procedure absorbs risk premium shocks least. The

yield curve volatility in the upper right panel is higher for all procedures due to the larger risk

shocks at all horizons. For the 3MR procedure, the aim of smoothing the three-month rate is

now visible as a kink in the yield curve volatility at that horizon.

Under discretion, arguably the more realistic assumption for times of financial turmoil, we

find in the lower part of Figure 5 a clear increase in macroeconomic volatility under the RR
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Figure 5: Volatilities during financial turmoil
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procedure and a smaller rise for the 3MR approach. The yield curve volatility is larger, with the

smallest increase under the 3MR procedure. Smoothing a longer-term rate seems to dampen

movements along the yield curve when there are large shocks affecting money market rates.

The larger volatility generated under 3MR procedure reflects the fact that the one-month

market rate enters the IS curve and biases the results in favour of the 1MR procedure. This

assumption is based on the standard linearised New Keynesian model of aggregate output un-

derlying this analysis. Central bankers however often argue that economic activity depends on

longer term interest rates and thus that special factors affecting the spread between short term

and long term rates will also impact on output. Therefore, we repeat the simulations performed

so far under the assumption that a basket of interest rates with maturities lasting from one to

twelve months are relevant in the IS curve.

4.3 Average interest rate in the IS curve

To examine how the results depend on the choice of the interest rate in the IS curve, we replace

the original IS curve (3) in the system with the alternative equation (5) and thus let an un-

weighted average of the market interest rates with horizons from one to twelve months determine

economic activity. Appendix B spells out in detail the adjustments in the model setup.

Optimal repo rate reaction functions: Since now market rates at all horizons impact on

the output gap, central banks adjust their repo rate to shocks at any of these horizons. Table

3 shows the optimal reaction functions for the three procedures. The coefficients are broadly

similar to the baseline case, though one striking difference is that the degree of interest rate

smoothing increases considerably both under commitment and under discretion. The reason for

this is that repo rate changes achieve a higher impact on longer-term rates, which depend on

the future expected path of , if they are expected to be followed by similar adjustments in

the future. This matches the discussions in Goodhart [21] and Woodford [41], who argue that

interest rate smoothing might be a result of policymakers’ attempt to impact on long-term rates.

Macroeconomic and interest rate volatility: Figure 6 shows the simulated volatilities of

inflation, the output gap and the yield curve in times of financial calm and turmoil. In quiet

times the volatilities are very similar no matter which interest rate enters the IS curve.

During the financial turmoil, the different procedures now perform equally well under com-

mitment in terms of macroeconomic volatility. This contrasts with the baseline results. In
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Table 3: Optimal reaction functions with the average interest rate in the IS curve

Commitment

Procedure −1 −1 −1 1−1 3−1   1 2 3 4

RR -0.005 0.060 0.654 0 0 0.003 0.731 -0.024 -0.024 -0.024 -0.024

1MR -0.015 0.053 0 0.636 0 -0.176 0.778 -0.904 -0.025 -0.025 -0.025

3MR -0.010 0.036 0 0 0.979 -0.338 0.073 -0.004 -0.004 -1.686 -0.004

5 6 7 8 9 10 11 12 −1 −1

RR -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.007 0.095

1MR -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.020 0.069

3MR -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.011 0.097

Discretion

Procedure −1 −1 −1 1−1 3−1   1 2 3 4

RR 0.062 0.115 0.449 0 0 2.809 1.238 -0.048 -0.048 -0.048 -0.048

1MR 0.061 0.118 0 0.436 0 2.555 1.290 -0.808 -0.050 -0.050 -0.050

3MR 0.122 0.284 0 0 0.858 2.791 1.133 -0.069 -0.069 -1.602 -0.069

5 6 7 8 9 10 11 12

RR -0.048 -0.048 -0.048 -0.048 -0.048 -0.048 -0.048 -0.048

1MR -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050

3MR -0.069 -0.069 -0.069 -0.069 -0.069 -0.069 -0.069 -0.069

Note: Repo rate reaction function coefficients for different operating procedures, assuming the IS curve

is given by equation (5) rather than equation (3). RR, 1MR and 3MR stand for repo rate, one-month

and three-month money market rate procedures.
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Figure 6: Volatilities with the average interest rate in the IS curve
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Figure 5, where we assumed that only the one-month repo rate matters in the IS curve, the

1MR procedure, which smooths that rate and thus responds most aggressively to shocks at that

horizon, outperformed the RR and the 3MR approach. Now, smoothing one particular interest

rate does not constitute a clear advantage for any of the models, since no single interest rate

matters for economic activity. That said, the smoothing objectives show up in the volatility of

the yield curve, with little variability in the one-month (three-month) market rates for the 1MR

(3MR) procedure. If there is financial turmoil and if monetary policy is set in a discretionary

way, the 3MR procedure yields the lowest macroeconomic volatility in Figure 6. This finding

again differs from the baseline results, where the 1MR procedure yielded the most stable in-

flation and output gap. The reason for this change is that the 3MR procedure attaches more

weight to the future and therefore implicitly also to the average interest rate that enters the IS

curve. At the same time, this approach yields comparatively little yield curve volatility.

In sum, deciding which interest rate matters in the IS curve has important implications for

the choice of monetary operating procedure. If one assumes that economic activity is driven

by the one-month market rate, using the 1MR procedure seems attractive. If longer-term rates

matter for the output gap as well, the 3MR procedure appears most robust in minimising

macroeconomic volatility.

5 Conclusions

In this paper, we examine how the choice of monetary operating procedure influences the volatil-

ity of inflation, the output gap and the yield curve. Although highly stylised, the three proce-

dures considered are designed to capture key differences between operating frameworks adopted

by the Bank of England, the Federal Reserve and the Swiss National Bank. We use a simple

New Keynesian model where the implementation tool for monetary policy is the short-term repo

rate in all three cases, but the procedures differ in terms of the interest rate targeted by the

central bank.

The results suggest that in normal times volatilities resulting from the use of the three

procedures are similar under commitment. Under discretion, the macroeconomic volatility is

comparatively high if the central bank uses the repo rate as official policy target rate. The

procedures based on market rates provide better results in this case. In times of financial distress,

with large and highly correlated risk premium shocks affecting market rates, the repo rate
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procedure again yields high macroeconomic volatility, both under discretion and commitment.

Under commitment and large financial shocks, the longer-term money market rate procedure

performs poorly in the baseline model. However, this is due to the modelling assumption that

the short-term money market rate enters the IS curve. If we instead let the average market

rate over horizons of one to twelve months impact on the output gap, the longer-term market

rate procedure with its focus on the future becomes attractive. Under discretion, finally, the

market-rate based procedures again yield lower macroeconomic volatility than the repo-rate

based procedure.

To sum up, none of the three operating procedures studied in this paper is superior in

all circumstances. Arguably, this explains why there has not been a convergence to a single

operating approach in practice. That being said, it appears that a procedure in which policy

targets a money market rate performs best in periods of large shocks to the risk premium such

as in the recent past.
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A Optimisation with the one-month market rate in the IS curve

A.1 Commitment

The model can be rewritten in state space form,

+1 = 10 +11 +12 +1 + +1,

+1 = 21 +22 +2

where  is a vector with  = 31 predetermined variables


31×1

= [ −1 −1 −1   1  12 1−1  12−1 1−1 3−1 ]
0
,

 is a 2 × 1-vector of forward-looking variables,  = [   ]
0 in period , the vector  is a

scalar containing the monetary policy implementation rate, , and  is an -vector of white

noise innovations to the AR(1) error processes of inflation, the output gap and the risk premia

of market interest rates,


31×1

= [ 0 0 0 +1 +1 1+1  12 0114 ]
0 .

Next, we expand the vector of predetermined variables

e = [  Ξ−1 ]
0

where Ξ = [ Ξ Ξ ]0 contains the Lagrange multipliers for the Phillips and the IS curve

and rewrite the state space system as

e+1 = e10 + e11 e + e12 + e1 + e+1 (A1)

and

+1 = 21 e +22 +2

The matrices e10, e11, e12, e1, e e 0, , 21, 22 and 2 are given by

e10
33×1

= [ 01×29 1 + 1 3 + 3 0 0 ]0 ,
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e11
33×33

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0  0 0 0 0 0

0 0 0 0 0 0 0 0  0 0 0 0 0

0 0 0 0 0 0 0 0  0 0 0 0 0

0 0 0  0 0 0 0  0 0 0 0 0

0 0 0 0  0 0 0  0 0 0 0 0

0 0 0 0 0  0 0  0 0 0 0 0

0 0 0 0 0 0  0  0 0 0 0 0

0 0 0 0 0 0 0   0 0 0 0 0
...
...
...

...
...

...
...

...
. . .

...
...
...
...
...

0 0 0 0 0 0 0 0   0 0 0 0

0 0 0 0 0 1 0 0  0 0 0 0 0

0 0 0 0 0 0 1 0  0 0 0 0 0

0 0 0 0 0 0 0 1  0 0 0 0 0
...
...
...

...
...

...
...

...
. . .

...
...
...
...
...

0 0 0 0 0 0 0 0  1 0 0 0 0

0 0 0 0 0 1 0 0  0 0 0 0 0

0 0 0 0 0 0 0 1  0 0 0 0 0

0 0 0 0 0 0 0 0  0 0 0 0 0

0 0 0 0 0 0 0 0  0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

029×33

−
1
3

2X
=1


 − 

3

3X
=1




0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(with the elements in the last matrix explained below),

e12
33×2

=

⎡⎣ 1 0 01×31

0 1 01×31

⎤⎦0 ,
e1
33×1

=
h
0 0 1 01×26 1 13 0 0

i0
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e e 0
33×33 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0  0 0 0 0 0 0

0 0 0 0 0 0 0  0 0 0 0 0 0

0 0 0 0 0 0 0  0 0 0 0 0 0

0 0 0 2 0 0 0  0 0 0 0 0 0

0 0 0 0 2 0 0  0 0 0 0 0 0

0 0 0 0 0 21 12  111 112 0 0 0 0

0 0 0 0 0 12 22  211 212 0 0 0 0
...
...
...

...
...

...
...

. . .
...

...
...
...
...
...

0 0 0 0 0 111 211  211 1112 0 0 0 0

0 0 0 0 0 112 212  1112 212 0 0 0 0

0 0 0 0 0 0 0  0 0 0 0 0 0

0 0 0 0 0 0 0  0 0 0 0 0 0

0 0 0 0 0 0 0  0 0 0 0 0 0

0 0 0 0 0 0 0  0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



 =

⎡⎣  0

  + 

⎤⎦ ,
e21 =

⎡⎣ −(1− ) 0 0 −1 0 0 01×27

0 −(1− ) 0 0 −1  01×27

⎤⎦ ,
22 =

⎡⎣ 1 −
0 1

⎤⎦ and 2 =

⎡⎣ 0



⎤⎦ .
Under operating procedures that steer money market rates, the target rate 1 or 3, re-

spectively, contains a risk premium that depends on the expected future path of the output gap.

Since  is a state variable, these expectations are driven by optimal policy, which thus should be

used as an input to the optimisation problem but at the same time is its solution. We solve this

problem by assuming starting values for optimal policy and then iterating until convergence. In

particular, we define the optimal output gap as

 =  e (A2)

and the optimal repo rate as

 =  e. (A3)
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These definitions are used in setting up the matrix e11 above. There, the risk premium for the

one-month rate is given by

1 = 1 − +1 + 1 = 1 −  e + 1

since


e+1 = e,

with  the optimal linear projection matrix defined below. Similarly, the three-month risk

premium is

3 = 3 − 




3X
=1

+ + 3 = 3 − 



3X
=1


 e + ,

The money market rates in equation (A1) above thus are defined as

1 = 1 +  −  e + 1

and

3 = 3 +
1

3
1 +

1

3

2X
=1


 e − 

3

3X
=1


 e + 3,

where the first summation sign captures the expectations hypothesis and relies on

+ = 
 e.

To link the goal variables  =
h
  ∆ ∆1 ∆3

i0
to the other variables in the

model, we define

 = 
h
 Ξ−1   

i0
,

where  = 5 and where  =
h
 

i0
= Ξ are Lagrange multipliers that account for the

dynamics of the forward-looking variables.
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Matrix  is given by


5×38 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0  0  0 0 1 0 0 0 0

0 0 0 0 0 0 0 0  0  0 0 0 1 0 0 0

0 0 −1 0 0 0 0 0  0  0 0 0 0 0 0 1

0 0 0 0 0 1 0 0  0  −1 0 0 0 0 0 1

0 0 0 0 0 0 0 1  0  0 −1 0 0 0 0 13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
03×38

− | 01×5
1
3

2P
=1


 − 

3

3P
=1


| 01×5

⎤⎥⎥⎥⎥⎦

The period loss function in matrix notation is given by

 =
1

2
 0Λ =

1

2

h
 Ξ−1   

i
0Λ

h
 Ξ−1   

i0
=

1

2

h
 Ξ−1   

i

h
 Ξ−1   

i0
.

We solve the model using the dual saddlepoint approach discussed in Marcet and Marimon

[28]. We follow Svensson and Williams [38] and define the dual period loss function as

e =  + Ξ
0
(+1 − e21 e −22 −2)

=  + Ξ
0
(− e21 e −22 −2) +

1
Ξ

0
−1

=  + 0(− e21 e −22 −2) +
1
Ξ

0
−1

(A4)

where the second equality comes from the definition Ξ−1 = 0. Using equation (13), equation

(A4) can be rewritten as

e =  + 0(− e21 e −22 −2) +
1
Ξ

0
−1

= 1
2

h e
e if h e

e i0 , (A5)

where

f = +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 − e021 0

0 0 1
 0 0

0 1


0 0 −022 0

− e21 0 −22 0 −2
0 0 0 −02 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Equation (A5) is the quadratic loss function in the optimal regulator problem. The linear

transition equation for the predetermined variables is given by

e+1 = e11 e + ee + e+1,
with

e =

⎛⎝h e12 0(+)× e1 i+
⎡⎣ 0× 0× 0×

0× I× 0×

⎤⎦⎞⎠ 

where the identity matrix captures Ξ = . The value function  ( e) of the saddlepoint problem

is quadratic,

 ( e) = [(1− ) e 0
 e + ],

where  is a scalar. The Bellman equation can therefore be written as

(1− ) e 0
 e +  = (1− ) max

{}≥0
min

{}≥0

½e + 

∙ e 0
+1 e+1 +



1− 


¸¾
.

Iterating over the resulting Riccati equation yields the optimal solution

e =  e, (A6)

where

 = −(+  e0 e)−1( 0 +  e0 e11),
 = e11 + e

and

 = +  e011 e11 − ( +  e0 e11)0(+  e0 e)−1( 0 +  e0 e11)
with

f =

⎡⎣  

 0 

⎤⎦
partitioned conformably with e and e. The optimal rule  for the repo rate, equation (A3), is
given as the last line in equation (A6) and equation (A2), which captures the dynamics of the

output gap, is the second line of equation (A6).

A.2 Discretion

To derive the optimal repo rules under discretion, we define 10 as the first  elements of e10,
11 as the first  rows and columns of e11, 12 as the first  rows of e12, 21 as the first
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 columns of e21, 1 as the first  elements of e1,  0 as the first  rows and columns ofe e 0 and  as e without the columns referring to Ξ−1 and . We then write the period loss

function as

 =
1

2

⎡⎢⎢⎢⎣






⎤⎥⎥⎥⎦
0



⎡⎢⎢⎢⎣






⎤⎥⎥⎥⎦ (A7)

with

 = 0Λ.

Under discretion, the repo rate  is chosen to minimise equation (A7) subject to⎡⎣ +1

+1

⎤⎦ =
⎡⎣ 10

0

⎤⎦+
⎡⎣ 11 12

21 22

⎤⎦⎡⎣ 



⎤⎦+
⎡⎣ 1

2

⎤⎦  +
⎡⎣ 

0

⎤⎦ +1, (A8)

+1 = +1+1 (A9)

and

+1 = +1+1, (A10)

where +1 and +1 are determined in the optimisation in the next period and are assumed

to be known today. Taking expectations, combining equations (A8) to (A10) and solving for 

yields

 =  + (A11)

with

 = (22 −+112)
−1(+111 −21)

and

 = (22 −+112)
−1(+11 −2).

From this it follows that

+1 = b + b + +1

with b = 11 +12

and b = 1 +12.
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Using equation (A11) in equation (A7) yields

 =
1

2

⎡⎣ 



⎤⎦0 ⎡⎣  

 0
 

⎤⎦⎡⎣ 



⎤⎦ ,
where

 = + +
0


0
 +

0
,

 =  +
0
 + +

0


and

 = +
0
 +

0
 + 0

.

The Bellman equation can be written as

1

2
[(1− ) 0

 + ] = (1− )min


∙
 + 

1

2

µ
 0
+1+1+1 +



1− 


¶¸
.

From the first order condition, we obtain

 = −( +  b0+1 b)
−1( +  b0+1 b)

and

 =  +,

and we denote the corresponding equilibrium functions by  and . Forecasts of  are based

on

+1 = ++1

with

 = b+ b ,
where b and b are the fixed points of the mapping from ( b+1, b+1) to ( b, b). The

equilibrium function  determines the expected future interest rate that enters 11 and  in

the iterations that are performed until the model converges. Expected future output gaps are

determined by .

B Optimisation with the average interest rate in the IS curve

If the IS curve is given by equation (5) rather than (3), we need to adjust matrices , e21 and
2 to
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 =

⎡⎢⎣  0


1
12

12P
=1

1
  + 

1
12

12P
=1

1


⎤⎥⎦ ,
e21 =

⎡⎣ −(1− ) 0 0 −1 0 0 0  0 01×16

0 −(1− ) 0 0 −1 1

12


1

12
 

1

12
 01×16

⎤⎦

+

⎡⎢⎢⎣
0

1

12

12X
=2

1



"


−1X
=1


e+ − ( + )

X
=2


e+

# ⎤⎥⎥⎦
and

2 =

⎡⎣ 0


1
12

P12
=1

1


⎤⎦ .
The elements involving 1

12 derive from the definition of the average real interest rate. The average

nominal interest rate is given by

 =
1
12(1 + 2 + + 12)

= 1
12(1 +  + 2 + 2 +

1
2 [ ++1] + + 12 + 12 +

1
12 [ +

11P
=1

+])

= 1
12(1 +  − +1 + 1

+2 + 2 +
1
2 [ ++1 − +1 − +2] + 2

+

+12 + 12 +
1
12

∙
 +

11P
=1

+ − +1 −
12P
=2

+

¸
+ 12

¶

= 1
12 (1 +  − +1 + 1

+2 + 2 +
1
2

∙
 − +1 + 

1P
=1


e+ − 

2P
=2


e+

¸
+ 2

+

+12 + 12 +
1
12

∙
 − +1 + 

11P
=1


e+ − 

12P
=2


e+

¸
+ 12

¶
= 1

12(1 + 1) +
1
12

12P
=1

1
 [ − +1]

+ 1
12

12P
=2

(
  +  +  +

1


"


−1P
=1

 e − 
P

=2

 e

#)
For the fourth equality, we note that the expected future values of ,  and  are driven by

optimal policy. In particular, we define the inflation rate resulting from the optimisation as

 =  e.
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Computing  along the same lines as the average nominal interest rate above, we obtain

+1 =
1
12(1+1 + 2+1 + + 12+1)

= 1
12(+1 +

1
2 [+1 + +2] + + 1

12

12P
=1

+)

= 1
12

12P
=1

1


"
P

=1

 e

#

Thus, the average real interest rate is

 −+1 =
1

12
(1 + 1) +

1

12

12X
=1

1


[ − +1 −+1]

+
1

12

12X
=2

(
  +  +  +

1



"


−1X
=1

 e − ( + )

X
=2

 e

#)
.
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