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Abstract 

An operational macroprudential approach to financial stability requires tools that attribute 
system-wide risk to individual institutions. Making use of constructs from game theory, we 
propose an attribution methodology that has a number of appealing features: it can be used 
in conjunction with popular risk measures, it provides measures of institutions’ systemic 
importance that add up exactly to the measure of system-wide risk and it easily 
accommodates uncertainty about the validity of the risk model. We apply this methodology to 
a number of constructed examples and illustrate the interactions between drivers of systemic 
importance: size, the institution’s risk profile and strength of exposures to common risk 
factors. We also demonstrate how the methodology can be used for the calibration of 
macroprudential capital rules. 
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Introduction 

A key policy lesson from the recent financial crisis has been the need to put greater 
emphasis on a systemic approach to financial stability. Problems with portfolios of sub-prime 
mortgages developed into a systemic crisis that engulfed financial institutions and markets 
across the world, triggering a severe economic recession. The failure of individual institutions 
helped propagate the shocks across the system. As a result, building better defences against 
systemic risk has emerged as a policy priority, as has the objective of strengthening the 
macroprudential orientation of financial stability frameworks.3  

An operational macroprudential policy framework requires a gauge of the systemic 
importance of individual institutions. The reason is that key aspects of the instruments 
available to policymakers are determined at the firm level. This is true of tools to mitigate ex 
ante the risk of systemic disruptions, such as regulatory minimum capital and liquidity 
requirements, and of ex post supervisory interventions to contain the systemic externalities 
from distress in specific institutions. The decision of US authorities to take the unprecedented 
step of offering emergency financial support to AIG provides a case in point. The decision 
was motivated by concerns about the repercussions of the failure of this institution on its 
extensive list of counterparties in the credit derivatives market. In other words, it was a 
concern about the systemic importance of the institution that guided the intervention.  

Measuring systemic importance by attributing system-wide risk to individual institutions is 
akin to a problem already tackled by game theorists. In his search of a solution to 
cooperative games, Lloyd Shapley (1953) developed an attribution methodology that carries 
his name: Shapley value. The portion of the overall value (e.g. output) that this methodology 
attributes to each player in a game equals the average of this player’s marginal contributions 
to the value created by all possible subsets of players. This results in a fair allocation of value 
in the sense that the value created jointly by two players is split equally between them. 

In order to measure individual institutions’ systemic importance, this paper transposes the 
Shapley value methodology to the field of risk attribution. In addition to its fairness property – 
whereby the incremental risk created by the interaction of two institutions is split equally 
between them – the methodology possesses a number of other desirable features. It is 
simple, yet efficient in the sense that the shares of systemic risk attributed to individual 
institutions add up exactly to the total. It is flexible since the sufficient conditions for its 
application are so weak that it can be applied to any measure of risk that treats the system 
as a portfolio of institutions. It also encompasses all attribution procedures that have been 
studied in different contexts in the literature. Finally, it can deal with model and parameter 
uncertainty as it can easily combine information from different risk models and address 
estimation noise in order to produce robust assessments of systemic importance.  

Besides introducing the Shapley value to the field of systemic risk, the paper makes three 
main contributions. The first contribution relates to the analysis of different drivers of 
systemic importance. We apply the Shapley value methodology in a number of stylised 
settings in order to highlight the role that an institution’s size, risk profile and strength of 
exposure to a common risk factor play in shaping the institution’s contribution to system-wide 
risk. Quite intuitively, greater size, probability of default (PD) and exposure to systematic risk 
raise the systemic importance of an institution, with the impact of one driver being reinforced 
by that of others.4 A more subtle finding of the analysis is that, all else constant (ie once PDs 

                                                 

 

3  See BIS (2009), G20 (2009), De Larosiere (2009), FSB (2009). The main distinction between the macro- and 
microprudential perspectives is that the former focuses on the financial system as a whole, whereas the latter 
focuses on individual institutions. See Crockett (2000), Knight (2006), and Borio (2003 and 2009) for an 
elaboration of the macroprudential approach and progress in its implementation. 

4  Throughout the paper there is a distinction between the terms systemic (or system-wide) risk and systematic 
(or common) risk. The former refers to the risk that problems will arise that will impede the ability of the 
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and systematic-factor exposures are controlled for), the ratio of one institution’s systemic 
importance to a smaller institution’s systemic importance is larger than the ratio of the 
respective sizes. This is a general result that we derive in the form of a theorem, drawing on 
the Shapley methodology. It implies that prudential penalties for systemic importance should 
increase faster than size. The result also demonstrates the usefulness of the Shapley value 
from a methodological perspective. By casting the attribution problem in terms of a set of 
marginal contributions, the Shapley value makes it possible to analyse the impact of 
individual drivers of risk in a tractable way. 

A second contribution of the paper is to illustrate, in a stylised setting, the implications of 
different policy interventions that target financial stability. The three interventions we consider 
impose capital requirements at the level of individual institutions and share one objective: a 
particular level of risk at the level of the overall system. The first intervention attains this 
objective while equalising the riskiness of individual institutions. The second intervention 
attains the same level of systemic risk but equalises the systemic importance of individual 
institutions (controlling for their size). Finally, the third intervention minimises aggregate 
capital holdings, given the target level of systemic risk. An interesting result is that, when 
institutions differ only with respect to their exposures to a common risk factor, the capital 
charges that equalise the levels of systemic importance across institutions are: (i) associated 
with a lower level of aggregate capital than the charges that equalise individual riskiness; (ii) 
quite close to the charges that deliver a (constrained) minimum level of aggregate capital. 

As a third contribution, the paper analyses, within a common framework, two alternative 
attribution procedures. The two procedures, which have been studied separately in the 
literature, are special applications of the Shapley value methodology. We show that one of 
the procedures captures the contribution of individual institutions to systemic risk, whereas 
the other one reflects institutions’ participation in systemic events. In gauging systemic 
importance, the first procedure combines the risk that an institution generates on its own with 
the incremental risk generated by this institution in any possible subset of the system. The 
procedure thus captures the impact of the institution on system-wide risk, i.e. on the 
likelihood and severity of systemic events. It is, therefore, suited for the calibration of 
macroprudential tools that are designed to limit this impact. By contrast, the second 
procedure calculates the expected share of an institution in the overall cost of systemic 
events, taking such events as given. This makes it the procedure to use in deriving 
actuarially fair premia for insurance against systemic events. 

The objective of the paper is not to propose a measure of systemic risk but to present a 
methodology of attributing this risk, however it is measured, to individual institutions. For the 
purposes of our numerical analysis and only as an illustration, we use a specific model of 
system-wide losses and specific metrics that we apply within this model in order to gauge 
systemic risk. The metrics we choose – value-at-risk (VaR) and expected shortfall (ES) – 
essentially measure risk as the (expected) loss on the aggregate exposure to the institutions 
in a system, conditional on certain tail events. We argue that ES is an intuitively appealing 
approach to measuring systemic risk but we also analyse VaR as an alternative. Most results 
of the analysis do not depend on our choice of a model and risk metrics. A notable exception 
is the result on the relationship between size and systemic importance, which is independent 
of the chosen model but is derived only in the context of ES. 

The rest of this paper is organized as follows. Section 1 reviews existing methods for the 
measurement of systemic risk and the attribution of this risk to individual institutions. Section 
2 develops a stylised model of systemic risk and then specifies two alternative metrics for 

                                                                                                                                                      

financial system to function. The latter refers to the commonality in risk exposures of financial institutions (in 
the same spirit as the “market” is analysed in the CAPM). This means that systemic risk can have systematic 
and idiosyncratic components. 
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this risk. The section also presents and studies alternative attribution procedures that deliver 
different measures of institutions’ systemic importance. Sections 3 and 4 analyse, 
respectively, how different aspects of the system affect its overall risk and the systemic 
importance of individual institutions. Finally, Section 5 provides examples of how the 
attribution of systemic risk can be used in prudential policy tools. 

1. Related literature 

The related literature can be divided into two streams. The first focuses on measuring total 
system-wide risk when the system is considered as a portfolio of institutions. The second 
stream studies procedures for attributing total system-wide risk to individual institutions. A 
key contribution of our paper is to propose a general attribution methodology that (i) can be 
applied to all of the systemic risk measures developed in the first stream of the literature and 
(ii) subsumes as special cases all previously studied attribution procedures. 

Measuring overall risk: from investment portfolios to financial systems 

The literature has developed several measures of systemic risk. Of particular interest are 
those that treat explicitly the financial system as a portfolio of institutions. Examples include 
the measures used in Geluk et al (2009), Kuritzkes et al (2005), BIS (2008, 2009), Goodhart 
and Segoviano (2008), and IMF (2008, 2009). In the context of the methodology developed 
in this paper, these measures of systemic risk are relevant for two reasons. First, they all 
provide a single metric of systemic risk that encompasses all institutions in the system. 
Second, they can be applied to any subset of institutions in the system. Given these two 
features, the quantum or risk implied by a given measure can be allocated across institutions 
on the basis of the Shapley value methodology. 

Attributing risk 

An attribution method decomposes the aggregate quantum of risk in order to allocate it 
across individual contributors. Even though a number of such methods have been discussed 
in the literature, they have been applied mostly in the context of investment portfolios. As 
pointed out by Acharya and Richardson (2009), however, the close correspondence between 
measures of portfolio risk and measures of systemic risk leads naturally to a correspondence 
between the respective attribution methods. In this section, we discuss attribution methods 
that have been applied to either of the two types of risk measures. 

The most popular method for allocating risk across individual investment exposures 
considers the losses each one of them is expected to generate in an event of general 
distress (Praschnik et al (2001), Hallerbach (2002), Kurth and Tasche (2003) and 
Glasserman (2005)). The method has been recently used by Acharya et al (2009) to obtain 
indirect measures of the systemic importance of financial institutions. It is also used by 
Huang et al (2009) in the context of Asia-Pacific banks. An appealing feature of this method 
is that the portions of risk it attributes to different exposures add up exactly to the chosen 
measure of portfolio risk. A disadvantage is that the method cannot be applied to cases 
where system-wide risk is not measured by reference to a fixed set of events. This would be 
the case when the choice of risk metric is the variance or higher moments of the portfolio (or 
system-wide) loss distribution. We show below that this attribution method is a specific 
application of the Shapley value methodology.  

Koyluoglu and Stoker (2002) decompose the variance of losses on an investment portfolio 
using several approaches, one of which is based on the Shapley value. This, alternative, 
application of the Shapley value averages the contributions of an exposure to the variance of 
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the losses on all sub-portfolios to which this exposure belongs. A key difference between 
Koyluoglu and Stoker (2002) and this paper is that they do not consider a measure of 
systemic distress and do not illustrate how to apply the Shapley methodology in a policy 
context. 

Another decomposition method has been proposed by Gordy and Lütkebohrmert (2007). 
They make use of the asymptotic single risk factor (ASRF) model and a so-called "granularity 
adjustment" (GA). In addition to incorporating a single common risk factor, the ASRF model 
hinges on the assumption that the portfolio is perfectly granular, in the sense that there is a 
large number of exposures and the size of the largest exposure is vanishingly small 
(Gordy (2003)). When the measure of systemic risk is VaR, the GA provides an approximate 
correction for the inaccuracies that arise from violations of the perfect-granularity 
assumption. Developed in the context of portfolio risk, the ASRF-GA method has not been 
previously considered for the attribution of systemic risk. We analyse this method as an 
approximation to a specific application of the Shapley value methodology and, in line with 
Martin and Wilde (2002), we find that it works well when the violation of the perfect-
granularity assumption is not too strong. 

A rather different approach underpins CoVaR, which has been applied by Adrian and 
Brunnermeier (2008) to the market risk of an investment portfolio and suggested as a way to 
measure the systemic importance of institutions. Applied to a financial system, CoVaR would 
gauge the severity of distress in one institution, conditional on distress in another institution 
or in a group of institutions. For example, a CoVaR measure could equal the VaR of losses in 
bank A conditional on the losses in the entire banking system being equal to their VaR level. 
Since CoVaR captures the tail interdependence between losses on bank A and those on the 
banking system, it is a specific measure of the systemic importance of bank A. 

That said, the approach embedded in CoVaR and the one we take in this paper are 
fundamentally different. In this paper, we adopt a top-down approach that gauges systemic 
importance by attributing system-wide risk to individual institutions. By contrast, CoVaR 
focuses directly on individual institutions (or groups of institutions) and does not attempt to 
decompose a measure of system-wide risk. It is a bottom-up approach that does not deliver 
components that add up to the total. In terms of the above example, adding the CoVaRs of 
all the banks in a system will not deliver the system-wide VaR. 

2. Systemic risk and systemic importance 

This section lays out the analytic foundations of the analysis. The first subsection defines two 
popular measures of risk, which the paper focuses on. The second subsection specifies the 
stochastic environment that delivers the probability distribution of losses in the system. Then, 
the third subsection presents the Shapley value methodology as a tool for attributing 
systemic risk to individual institutions. The fourth subsection considers three concrete 
attribution procedures, two of which are particular applications of the Shapley value 
methodology. 

2.1 Two concrete measures of systemic tail risk 

Let a financial system be populated by n institutions (henceforth, “banks”), indexed by 
 ni ,,2,1  , and incur losses only when one or several of these banks default. The loss 

associated with bank i equals 

iiii ILGDsL  , (1) 
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where  stands for the size of the liabilities of bank i,  is the share of bank i liabilities 
lost if it defaults, and  is an indicator variable that equals unity when bank i is in default and 
zero otherwise. 

is iLGD

iI

A measure of systemic risk should incorporate the joint probability distribution of losses, 
 ni LLL ,,, 2  . As stressed in Section 2.3 below, the Shapley value methodology can be 
applied to any such measure as long as it is defined on each subset of  ni LLL ,,, 2  .  

In this paper, we derive numerical results for two popular measures of tail risk: value-at-risk 
(VaR) and expected shortfall (ES). Each of these measures is defined by a different set of tail 
events. VaR at confidence level qVaR equals the level of losses that is exceeded with 
probability (1- qVaR). Thus, the tail events under the VaR measure are those associated with 
the qVaR quantile of the probability distribution of losses. For the numerical exercises below, 
we assume that qVaR=0.999. In turn, ES is the expectation of losses, conditional on them 
being above the qES quantile of their distribution. Thus, a tail event under the ES measure 
materialises if and only if losses exceed this quantile. For the numerical exercises below, we 
assume that qES=0.998.5 When either of the two measures is applied to the overall system, 
the underlying tail events will be referred to as “systemic events”. 

This paper does not take a stand on whether VaR or ES is the appropriate measure of 
systemic tail risk. Being focused on a specific quantile, VaR reveals the smallest loss in the 
tail of the loss distribution but provides no information about the severity of the losses in this 
tail. This issue is addressed by ES, which yields a summary statistic (the mean) of loss 
severity in the tail.6 However, an important drawback of ES is that it is estimated with 
substantial noise in real-world applications that rely on actual data of losses. This drawback 
is substantially smaller in the case of VaR, precisely because its estimation is that of a 
quantile, as opposed to a mean (Heyde et al (2006)). 

2.2 A probability distribution of systemic losses 

We apply the VaR and ES measures to a probability distribution of systemic losses, which 
we define on the basis of the following stochastic environment. In line with the tradition of 
structural credit risk models, we assume that bank i defaults if and only if its assets  fall 
below the default point . Specifically: 

iV

iDP

otherwise 0 and  if only and if   1  iiii IDPVI  (2) 

In addition, it will be assumed that  is driven by one risk factor that is common to all banks, 

, and another risk factor that is specific to bank i, . Concretely:  
iV

M iZ

iiii ZMV 21  
, for all  ni ,,2,1   (3) 

where each risk factor is a standard normal variable and all factors are mutually 
independent.7 The common-factor loadings,  1,0i  for all  ni ,,2,1  , imply that the 
asset correlation between any two banks i and j equals ji   . Common-factor exposures, 

                                                 
5  The adopted difference between the two quantiles qVaR and qES renders the values of VaR and ES measures 

comparable. None of the conclusions in this article hinges on the relative values of qVaR and qES. 
6  A related issue that the so-called “sub-additivity” property is violated by VaR but not by ES (see Hull (2006)). 
7  This assumption circumvents important empirical questions related to the shape of probability distributions of 

asset returns and the associated uncertainty (see, for example, Hull and White (2004) and Tarashev and Zhu 
(2008)). As discussed below, however, such uncertainty can be incorporated in the Shapley value 
methodology that is at the heart of the paper. 
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which explain how shocks external to the system can systematically give rise to joint failures, 
parallel a key building block of portfolio credit risk models. 

We acknowledge that such a setup is likely to miss an important feature of financial systems 
that distinguishes them from investment portfolios. Concretely, banks may be related not only 
via their exposure to common risk factors that are external to the system but also via 
interbank exposures, which propagate shocks within the system and create so-called domino 
effects. Interbank exposures, which imply that the financial system should be considered not 
only as a portfolio but also as a network of intuitions,8 are likely to have a material impact on 
the level of systemic risk and on the systemic importance of individual institutions. We 
abstract from this impact in order to illustrate the Shapley value methodology in a 
parsimonious setting. 

Expressions (1)-(3) define the joint probability distribution of losses,  ni LLL ,,, 2  . Two 
additional assumptions limit the computation burden without influencing the main messages 
of the analysis. First, loss-given-default is set to %55iLGD  for all i. Second, without loss of 

generality, the overall size of the system is normalised to unity, . 1
1




n

i
is

The inputs required for the calculation of any the above measures of systemic risk are the 
size of each institution, its probability of default, the loss given default in each case, and an 
estimate of the likelihood of joint defaults. The likelihood of joint defaults is typically derived 
from the correlation of banks’ asset returns, which can be estimated from equity and debt 
prices (as done, for example, by Moody’s KMV in their GCorr model). This practice, however, 
may change in the future, given evidence from the current crisis that, at a time of stress, the 
degree of interconnectedness in the banking system is largely determined by features of the 
liability side of balance sheets. This issue notwithstanding, any specific data that are relevant 
for the estimation of default correlations may be complemented with information from 
supervisory assessments. 

2.3 The Shapley value approach: a general attribution procedure 

The Shapley value methodology was developed in the context of cooperative games, in 
which the collective effort of a group of players generates a shared “value” (e.g. wealth) for 
the group as a whole.9 Given such a value, the methodology decomposes it in order to 
allocate it across players according to their individual contributions. The share of the 
aggregate value attributed to a particular player is this player’s Shapley value. 

The Shapley value methodology can be applied directly to a financial system. In this context, 
the players are institutions which engage in interrelated risky activities that drive systemic 
risk. In the light of Section 2.1, the “value” of this risk is system-wide VaR or ES. The 
systemic importance of each institution is its Shapley-value. 

This subsection first outlines the Shapley value methodology, stating explicitly the limited 
sufficient conditions for its applicability and listing its properties, which carry much intuitive 
appeal. Then, the section turns to the fact that the generality of the methodology makes it 
possible to decompose a given system-wide VaR or ES in different ways. The section 
concludes by arguing that the applicability of different decompositions – and, thus, different 
measures of systemic importance – depends on the problem at hand. 

                                                 
8  For an in-depth analysis of the network structure of a national interbank market, see Boss et al (2004).  
9  The discussion of Shapley value in this paper draws heavily on Mas-Colell et al (1995), pages 679-684. The 

Shapley value was first introduced in Shapley (1953). 
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In order to apply the Shapley value methodology, it is sufficient to define a so-called 
“characteristic function.” This function is the same for all possible subgroups of banks (or 
subsystems) and maps each subsystem into a risk measure. Given the setup developed 
since the beginning of Section 2, the characteristic function,  , should accept as an input 
any one of the 2n subsystems of banks10 and should deliver the system-wide VaR or ES 
when applied to the entire system. That said, it should be noted that   could alternatively be 
based on any one of the existing measures of systemic risk presented in Section 1, simply 
because each one of them is defined for any subgroup of institutions in a financial system. 

The derivation of the Shapley values involves the following thought process. Suppose that 
banks are ordered at random and consider the subsystem S  that comprises all the banks in 
front of bank i as well as bank i. The contribution of bank i to the risk of subsystem S  equals 
the difference between the risk of subsystem S  and the risk of this subsystem when bank i is 
excluded from it:     iSS   . The Shapley value of bank i, henceforth , equals the 
expected value of such a contribution when the n! possible orderings occur with an equal 
probability. 

iShV

In the special case of a system comprising three banks, the Shapley value of bank 1 equals: 

             
             



















3,21,3,2231,3

21,2012

6

1
3,2,11




ShV  

where 1/n! = 1/6 is the probability of each of the six possible orderings. The first difference in 
the last expression is associated with two orderings, [1,2,3] and [1,3,2]. The second and third 
differences are associated with one ordering each: [2,1,3] and [3,1,2], respectively. Finally, 
the fourth difference is associated with two orderings, [2,3,1] and [3,2,1].  It incorporates the 
fact that      1,2,31,3,2    or, more generally, that the value of the characteristic function 
does not depend on how banks are ordered in the subsystem (see the symmetry property 
below). 

Most generally, the Shapley value – or the systemic importance – of any bank i equals: 

        



snS

iS

n

Sn
s

i iSS
ncn

ShV
||

1

11    (4) 

where  denotes the entire financial system,  iS   are all the subsystems in   containing 
bank i,  stands for the number of banks in subsystem S , and || S

       !1!!1  sss nnnnc  n  is the number of subsystems comprising  banks. In 

addition, the empty set carries no risk: 
sn

  0Ø  . 

For a given characteristic function  , the Shapley values of individual banks are a unique set 
of measures of systemic importance. This set possesses the following properties: 

1) Additivity (or efficiency): The sum of Shapley values equals the aggregate measure of 

systemic risk: .    



n

i
iShV

1

2) Symmetry: The labelling of banks does not matter. More precisely, if the characteristic 

functions   and  differ only in that the roles of banks i and h are permuted, then ~

   ~;;  hi ShVShV  . 

3) “Dummy axiom”: If a bank carries no risk, then its Shapley value is zero. 

                                                 
10  These subsystems are: Ø, {1}, {2}, {3}, …, {n}, {1,2}, {1,3}, …, {n-1,n}, …, {1,2,3,…,n}. 
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4) Linearity of characteristic functions: Suppose that initially there are several characteristic 
functions, each one of which gives rise to Shapley values. Then, let a particular linear 
combination of these functions result in a new characteristic function. The new Shapley value 
of any bank is a linear combination of the Shapley values implied for this bank by the initial 
characteristic functions. Importantly, the linear combination that relates characteristic 
functions is the same as the linear combination relating Shapley values. For example, if 

21    and   and   are constants, then 
     21 ,,,  i ShVi ShVShV i  for any bank i. 

The linearity property of the Shapley value methodology implies that measures of systemic 
importance can account in an internally consistent manner for the ubiquitous issue of model 
and parameter uncertainty. For instance, there is no clear evidence whether the vulnerability 
of financial systems is associated mainly with institutions’ assets (credit exposures) or 
liabilities (funding exposures). Likewise, there is no consensus whether shocks exogenous to 
the financial system or the propagation of shocks within the system are the primary drivers of 
systemic events. Given this, it becomes inherently difficult to pinpoint the statistical properties 
of these shocks and to restrict the estimation noise in the parameters of data generating 
processes. Ultimately, all these different sources of uncertainty would imply that a prudential 
authority may want to consider a range of alternative measures of systemic risk, i.e. a range 
of alternative characteristic functions. The linearity property of Shapley values would then 
allow the authority to incorporate all these characteristic functions in a single attribution 
procedure, with the associated weights, i.e.  ,   in the above example, reflecting the 
authority’s perception of the validity of any given function. 

A different perspective on the Shapley value methodology reveals that it satisfies an intuitive 
fairness criterion. Namely, the decomposition is such that the incremental amount of 
systemic risk generated by the simultaneous presence of any two institutions in the system is 
split equally between them. As illustrated in MasCollel et al (1995), a specific implication of 
this is that the increment of the Shapley value of institution i caused by the presence of 
institution k equals the increment of the Shapley value of institution k caused by the presence 
of institution i. Moreover, this is true if Shapley values are derived for any subgroup of 
institutions in the system: 

         iSShVSShVkSShVSShV kkii    (5) 

SkiSki  , that such , all and ; and  all for . 

Besides its intuitive appeal, the property of Shapley values in expression (5) helps bring to 
the fore differences between alternative applications of the general Shapley value 
methodology. We develop this point in the next subsection. 

2.4 Three ways to measure systemic importance 

When the measure of systemic risk is VaR or ES, the Shapley values of individual institutions 
can be based on either of two different characteristic functions. The values of the two 
characteristic functions coincide when applied to the entire system but differ, in terms of the 
underlying tail events, when applied to subgroups of institutions. The upshot is two different 
attribution procedures that decompose the same magnitude of systemic risk in different 
ways. We outline these two attribution procedures in turn. In order to alleviate the exposition, 
in this subsection, we discuss only the attribution of systemic VaR, keeping in mind that the 
ES case is conceptually equivalent. Then, we outline a third attribution procedure, which is 
an analytic approximation of one of the first two. Finally, we argue that the different measures 
of systemic importance, delivered by the alternative attribution procedures, should be used in 
different settings. 
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In exploring each procedure, it is important to keep in mind that the underlying stochastic 
environment generating default losses (recall Section 2.2) simplifies considerably the 
derivation of Shapley values. Since it is assumed that each bank is subject only to shocks 
external to the system, the statistical properties of the losses associated with a given bank 
are unaffected by the other banks and, thus, stay constant across subsystems. This property 
of default losses would be foregone if the system were considered as a network of 
institutions. Since, in this case, banks would propagate shocks from/to other banks, the 
losses associated with a given bank would depend on which other banks are in the 
subsystem in focus. 

Procedure 1: varying tail events 

This procedure is underpinned by the characteristic function , which is such that 
   SVaRS   for any possible subsystem S  in  . In contrast to the second characteristic 

function discussed below,  defines the tail events at the level of each subsystem and these 
events typically differ from the systemic events, ie the tail events at the level of the entire 
financial system. Procedure 1 has been employed by Koyluoglu and Stoker (2002) but in a 
different context (see Section 1 above). 



A measure of systemic importance obtained under Procedure 1 reflects the contribution of 
individual banks to the severity of the systemic events. As implied by expression (4), 
Procedure 1 gauges the systemic importance of bank i by combining the VaR that bank i 
would generate on its own to the contributions of this bank to the VaRs of all possible groups 
of other banks in the system.  

To understand further the characteristic function , it is useful to revisit the fairness property 
in expression (5). Owing to its treatment of tail events,  reflects the extent to which the joint 
presence of two banks i and k raises the risk in a subsystem. The Shapley value 
methodology then splits the incremental amount of risk equally between the two banks. 
Specifically, provided that the risk factors affecting banks i and k relate positively, 




          0;;;;    iSShVkSShVSShV kkii

ki

SShV

S

 and the inequality is 

strict for a strictly positive number of subsystems S , that such , . 

Procedure 2: fixed tail events 

Procedure 2 is another application of the Shapley-value methodology, based on a different 
characteristic function, . For any subsystem S,   S  equals the expected loss in this 
subsystem conditional on the tail events in the entire system  , ie conditional on the 
systemic events. It is the different treatment of tail events that drives the difference between 
characteristic functions  and .  

A measure of systemic importance obtained under Procedure 2 captures the degree to which 
a bank is expected to participate in the systemic events. To see why, note first that  leads 
to a substantial simplification because 


      eventsystemicLEiSS i |   , which 

depends on i but not on S. Then, by expression (4), the Shapley value of bank i is simply the 
loss it is expected to generate, conditional on the systemic events: 

     eventsystemicLEShVSShV iii |;;     SSi  all and   all for . 

The characteristic function  underpins an application of the Shapley value methodology 
that satisfies the letter but not the spirit of the fairness property in expression (5). The 
fundamental reason is that, since it takes systemic events as given,   cannot convey how 
bank k affects the contribution of bank i to these events and vice versa: 
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          0;;;;    iSShVSShVkSShVSShV kkii  for each S . 
Indeed, this is a manifestation of the fairness property but an uninformative one. 

A different issue, which arises in the context of a VaR measure, is that an application of 
Procedure 2 may give rise to non-trivial computational complications that necessitate 
approximations. The reason is that, if losses have a continuous probability distribution, the 
systemic events underpinning the VaR measure – i.e. those corresponding to the qVaR 
quantile of the probability distribution of losses – are of zero probability. Therefore, 
expectations conditional on such events are impossible to derive exactly. Hallerbach (2002) 
shows that the problem can be tackled numerically via a procedure in which there is a trade-
off between the accuracy and efficiency of the conditional expectation estimator. 

Procedure 2 has been a popular tool for the attribution of the risk of investment portfolios to 
individual exposures and has been recently used by Acharya and Richardson (2009) and 
Huang et al (2009) in the context of systemic risk (see Section 1 above). However, previous 
derivations of the procedure – such as those in Praschnik et al (2001), Hallerbach (2002), 
Kurth and Tasche (2003) and Glasserman (2005) – have been based on the linearity of the 
expectations operator, not on the Shapley value methodology. By extension, the properties 
of Procedure 2 have not been analysed alongside those of Procedure 1. In Section 2.4.1 
below, we compare the two procedures and argue that they should be used in different 
contexts. 

Procedure 3: ASRF model with a granularity adjustment 

This procedure, which does not make use of the Shapley value methodology and has been 
developed only for VaR measures, is an analytic approximation of Procedure 2. Under 
Procedure 3, the portion of system-wide VaR attributed to bank i equals 

. The first summand, , is derived in Gordy (2003) in 
the context of the asymptotic single risk factor (ASRF) model and, thus, incorporates the 
assumption that the system is perfectly granular (or asymptotic). The second summand, 

, is derived in Gordy and Lütkebohmert (2007) is an approximate correction for 
departures from this assumption, i.e. a “granularity adjustment”: 

i
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where  stands for the standard normal CDF and the analytic function  f  and the 
parameters i  are defined in Gordy and Lütkebohrmert (2007). Given that the system-wide 
VaR has been estimated, it is typically possible to find unique i  that preserve the internal 

consistency of the model and result in .VaRMVaR
n

i

GAASRF

i 
1

, 11 

                                                 
11  The parameters i  partially reconcile differences between the default generating process implied by the 

ASRF model and that implied by CreditRisk+, which is used for the granularity adjustment. In this paper, the 
parameters i  are calibrated so that there is a close match between the right tails of these distributions (see 

Gordy and Lütkebohrmert (2007), equation (18)). Importantly, any possible calibration of i  introduces a 

conceptual issue. Namely, in line with their intended purpose to account for the degree of diversification in the 
system (or portfolio), these parameter depend on the common factor loadings. However, contrary to economic 
logic, they are also affected by individual PDs, the VaR confidence level and an additional ad hoc parameter. 
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In the limit in which the granularity of the system is infinitely fine, and thus idiosyncratic risk is 
fully diversified away, the granularity adjustment declines to zero. In this limit, given that 
there is a single common risk factor, the ASRF model and attribution Procedure 2 coincide.12 
Thus, Procedure 3 can be viewed as an approximation to Procedure 2 and the approximation 
should be expected to improve as granularity becomes finer. Section 2.4.2 below studies the 
accuracy of this approximation, which, to the best of our knowledge, has not been done 
before. 

2.4.1 Comparison between Procedures 1 and 2 

This section illustrates differences between measures of systemic importance obtained under 
Procedures 1 and 2 and then analyses the reasons for these differences. The analysis is 
centred around the following two possible objectives of a prudential authority, the first one of 
which calls for the use of Procedure 1 and the second for the use of Procedure 2: 

1. Attain a particular cross-sectional distribution of institutions’ contributions to a given 
level of systemic risk. Section 5 below motivates such an objective from a 
macroprudential point of view. 

2. Require banks to pay – at actuarially fair premia – for a scheme that insures against 
the losses in pre-specified systemic events. Being equal to the expected loss 
associated with a bank, conditional on the systemic events, the premium reflects the 
bank’s participation in these events. 

We consider the above two objectives in stylised examples that illustrate sharply that a 
bank’s contribution to systemic risk (captured by Procedure 1) could differ substantially from 
its expected participation in the systemic events (captured by Procedure 2). The first such 
example is provided by Table 1, in which systemic risk is measured by VaR and, thus, the 
systemic events occur when system-wide losses equal the  quantile of their probability 
distribution. In this example, the system comprises 10 banks that differ only with respect to 
their size. These banks are divided into two groups of five and each of the banks in the first 
(second) group accounts for 7% (13%) of the total size of the system. 

VaRq

Comparison between Procedures 1 and 2: a VaR example 
All banks: PD = 0.27% and LGD = 55% 

Group A banks: nA = 5; sA = 0.07. Group B banks: nB = 5; sB = 0.13. 

 
Low default correlation 

ρA = ρB = 0.60 

High default correlation 

ρA = ρB = 0.724 

 Procedure 1 Procedure 2 Procedure 1 Procedure 2 

 Group A 34.34% 0.0% 28.15% 100% 

 Group B 65.66% 100% 71.85% 0.0% 

total VaR 14.3 

(100%) 

14.3 

(100%) 

15.4 

(100%) 

15.4 

(100%) 

Note: Each panel refers to a different banking system. Systemic risk is measured as total VaR at the 99.9% confidence level, in cents 
per dollar exposure to the system. The first two rows report the overall share of each group of banks in total VaR, as determined by the 
procedure specified in the column heading. The number of banks in group j equals nj, the size of a bank in group j is sj and the 
exposure of a bank in group j to the common factor is denoted by ρj. 

  Table 1 

                                                 
12  The proof of Proposition 1 in Tarashev (2010) proves this claim as well. 
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The left-hand panel of the table illustrates clearly that the two procedures can deliver quite 
different measures of systemic importance. In the considered system, which features 
relatively low default correlations, the systemic events correspond to the failure of two large 
banks (and a VaR of 14.3 cents on the dollar). Since these events exclude losses from small 
banks, applying Procedure 2 leads to the conclusion that these banks are of no systemic 
importance. By contrast, Procedure 1 attributes positive systemic importance to all banks. 

The two procedures deliver contrasting messages because they capture differently the 
impact of interactions among institutions on systemic risk. Specifically, Procedure 2 fails to 
convey the impact of a given bank on the risk generated by other banks (recall the 
discussion in Section 2.4). For the system at hand, Procedure 2 fails to convey that the level 
of systemic risk is partly the result of the simultaneous presence of the two groups of banks 
in the system. For example, this level would have halved if the group of small banks had 
been excluded from the system. In order to capture this impact, it is necessary to consider 
tail events at the level of each subgroup of banks, which is what Procedure 1 does. 
Procedure 1 is then the natural choice under the first of the above objectives, which calls for 
measuring banks’ contribution to systemic risk. 

That said, Procedure 2 is designed for the second of the above objectives, i.e. the derivation 
of actuarially fair insurance premia when the insurance is against losses incurred in systemic 
events. To see this, consider again the system in which correlation is low and the systemic 
events occur when system-wide losses equal 14.3 cents on the dollar. Since big banks are 
the sole drivers of such losses, these banks should be the only ones to pay actuarially fair 
insurance premia. 

The picture is symmetric when higher default correlations lead to a system-wide VaR (15.4 
cents on the dollar) that corresponds to the losses from the failure of four small banks (right-
hand panel of Table 1). In this case, Procedure 2 implies that the systemic importance of big 
banks is nil. For the reasons discussed above, this outcome is simply another example of a 
mismatch between the expected losses generated by a bank in systemic events and the 
contribution of this bank to systemic risk. Again, the mismatch suggests that Procedure 1 
should be used for the first of the above objectives, even though Procedure 2 is the one to 
use for the second objective. 

It should be noted that allowing for stochastic LGD would alter the numerical results in Table 
1. For example, it would dampen the distinction between the two groups of banks under 
Procedure 2. To see why, note that, if the probability distribution of LGD is continuous, losses 
from each bank will enter the set of systemic events underpinning the VaR at any confidence 
level. This would guarantee a strictly positive level of systemic importance for each bank 
under Procedure 2. 

That said, two points should be kept in mind. As discussed in Section 2.4, a departure from a 
step-wise loss distribution (which would result from a continuous PDF of LGD) raises 
significant computational issues when Procedure 2 is applied to a VaR measure of systemic 
risk. Second, keeping such issues aside, stochastic LGD does not alter the fact that 
Procedure 2 is not designed to convey the degree to which the interaction among different 
banks raises systemic risk. Numerical results, available upon request, reveal that the 
differences between Procedures 1 and 2 illustrated in Table 1 are maintained in qualitative 
terms even for a stochastic LGD with substantial variance. 

A second example illustrates sharply the fact that a bank’s contribution to system-wide ES is 
also not equal to the extent to which the bank is expected to participate in the corresponding 
systemic events (see Table 2). The 4 banks in the hypothetical system of this example differ 
with respect to their individual PDs and loadings on the common risk factor. In order to 
analyse differences between the two attribution procedures, it suffices to consider the bank 
with the highest and that with the lowest probability of default, dubbed C and D, respectively. 
In addition, Bank C features the lowest exposure to the common factor, whereas bank D 
features the highest exposure. 
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Comparison between Procedures 1 and 2: an ES example 
All banks: s = 0.25 and LGD = 55% 

 
Low risk system 

PDA = PDB = 0.31%,  
PDC = 0.62%, PDD = 0.28% 

ρA = ρB = 0.65, ρC = 0.10, ρD = 0.74 

High risk system 

PDA = PDB = 0.62%,  
PDC = 1.24%, PDD =0.56% 

ρA =  ρB = 0.65, ρC = 0.10, ρD = 0.74 

 Procedure 1 Procedure 2 Procedure 1 Procedure 2 

Banks A and B 53% 49% 54% 57% 

Bank C 20% 26% 17% 12% 

Bank D 27% 25% 29% 31% 

Total ES 18.4 

(100%) 

18.4 

(100%) 

26.2 

(100%) 

26.2 

(100%) 

Note: Each panel refers to a different banking system. Systemic risk is measured as total ES at the 99.8% confidence level, in cents 
per dollar exposure to the system. The first three rows report the share of each bank (or group of banks) in total ES, as determined by 
the procedure specified in the column heading. The size of a bank is denoted by s, the PD of bank j is PDj and the exposure of bank j 
to the common factor is denoted by ρj. 

  Table 2 

 

When the general level of banks’ PDs is low, Procedure 1 attributes a larger share of 
systemic risk to bank D than to bank C (left-hand panel). The underlying reason is that, with 
its greater dependence on the common risk factor, bank D is more likely to be part of joint 
failures than is bank C. This raises the contribution of bank D to systemic risk relative to that 
of bank C. For example, removing bank D from the overall system makes the ES drop from 
18.4 to 15.3 cents on the dollar, while removing bank C induces a smaller drop, to 17.6 
cents. Procedure 1 incorporates such facts directly by considering the extent to which each 
bank raises the ESs of various subsystems. This makes the procedure a natural choice in 
the context of the first of the above objectives, which calls for gauging individual contributions 
to systemic risk. 

For the same system, Procedure 2 delivers a different conclusion: that the systemic 
importance of bank D is smaller than that of bank C. To see why, note first that the systemic 
events in the considered system correspond to losses generated by the failure of one or 
more banks. Then recall that the level of systemic importance under Procedure 2 equals the 
expected losses of each bank, conditional on the systemic events, but is independent of a 
bank’s propensity to participate in these events with other banks. Given this, the high 
likelihood of solo failures by bank C in the systemic events drives its measured level of 
systemic importance above that of bank D. Nonetheless, the levels of systemic importance 
obtained under Procedure 2 do equal the actuarially fair premia that banks should pay to a 
provider of insurance against the systemic events (which relates to the second of the above 
objectives). 

The distinction between Procedures 1 and 2 is less sharp if the banks in the system feature 
higher PDs and, as a result, the systemic events underpinning the system-wide ES is 
associated (only) with losses from the failure of two or more banks (right-hand panel of Table 
2). In this case, Procedure 2 joins Procedure 1 in attributing a higher portion of systemic risk 
to the bank with a higher exposure to the common factor, ie bank D. The qualitative similarity 
between the two procedures notwithstanding, Procedure 1 points to a smaller difference 
between banks C and D. This is because, while Procedure 2 focuses on a bank’s role in the 
ES of the overall system where only joint failures matter, Procedure 1 considers also 
subsystems where the level of ES is affected by losses from single failures. In comparison to 
the overall system, the contributions of banks C and D to the risk of such subsystems differ 
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less because the two banks are assumed to be of equal sizes and to feature high PDs 
(concretely, PDC > 1-qES and PDD > 1-qES). 

2.4.2 Comparison between Procedures 2 and 3 

As stated above, Procedure 3 approximates well Procedure 2 when the granularity of the 
financial system is sufficiently fine, ie when there is a large number of banks and all bank 
sizes are similar. The left-hand and centre panels of Table 3 illustrate that this condition is 
met by a system of 24 banks that differ only with respect to their exposures to the common 
risk factor, but not quite by an analogous system of 10 banks. A similar conclusion (not 
illustrated in the table) is reached in the context of banking systems in which banks differ 
from each other only with respect to their PDs. Importantly, when banks’ relative sizes differ, 
the system may remain lumpy irrespective of the number of banks. In turn, this implies that 
Procedure 3 may approximate poorly Procedure 2 even for systems comprised of a large 
number of banks (Table 3, right-hand panel). 

Comparison between procedures 2 and 3 
All banks: PD = 0.3%, LGD = 55% 

 nA = nB = 5 
sA = sB = 0.1 
ρA = 0.5, ρB = 0.5 

nA = nB = 12 
sA = sB = 0.0417 
ρA = 0.5, ρB = 0.7 

nA = nB = 12 
sA = 0.0167, sB = 0.0667 
ρA = ρB = 0.6 

 Procedure 2 Procedure 3 Procedure 2 Procedure 3 Procedure 2 Procedure 3

Banks in 
group A 39% 35% 33% 34% 5% 15% 

Banks in 
group B 61% 65% 67% 66% 95% 85% 

Total VaR 11 

(100%) 

11 

(100%) 

9.17 

(100%) 

9.17 

(100%) 

11 

(100%) 

11 

(100%) 

Note: Each panel refers to a different banking system. Systemic risk is measured as total VaR at the 99.9% confidence level, in cents 
per dollar exposure to the system. The first two rows report the overall share of each group of banks in total VaR, as determined by the 
procedure specified in the column heading. The number of banks in group j equals nj, the size of a bank in group j is sj and the 
exposure of a bank in group j to the common factor is denoted by ρj. 

  Table 3 

3. Drivers of systemic tail risk 

This section moves away from methodological considerations in order to analyse the ES of 
concrete, albeit highly stylised and hypothetical, banking systems. The section documents 
the impact of four different drivers of systemic tail risk, as measured by ES: banks’ number, 
relative sizes, individual PDs and exposures to the common risk factor.13 

The properties of ES have been analysed at considerable length in the context of portfolio tail 
risk. Cast in the present context, one of these properties is that the level of systemic risk 
increases as the PDs of some or all of the banks rise. Another well-known feature is that 
higher exposure to common risk factors increases the likelihood of joint failures, which 
typically raises tail risk in the system and, thus, its ES. Further, greater lumpiness of the 

                                                 
13  An analysis of these drivers under the VaR measure yields similar insights. Importantly, the paper abstracts 

from a number of additional drivers of systemic risk, such as the relationship between the number of defaults 
and LGD and drivers stemming from the network structure of the financial system.  
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financial system – caused by a reduction in the number of banks or greater disparity of their 
relative sizes – raises tail risk by restricting diversification benefits. 

In order to illustrate additional properties of systemic risk (and, in the next sections, the 
attribution of systemic risk to individual banks), we resort to numerical examples that are 
based on specific values of banks’ PDs and common-factor loadings. With the goal of staying 
in line with real-world bank characteristics, we calibrate hypothetical financial systems that 
are largely consistent with Moody’s KMV estimates of the one-year PDs and asset-return 
correlations of 65 large internationally active banks at end-2007.14 These estimates suggest 
a typical (ie average) PD of 0.11% and a realistic high PD (ie average plus one standard 
deviation) of 0.3%. In addition, estimated asset-return correlations average 42% (consistent 

with a homogenous common factor loading,  , of 65.042.0  ) and range between 14% 
( 37.0 ) and 55% ( 74.0 ). 

Benchmarking our calibration choices to these parameter estimates, we investigate the joint 
impact of system lumpiness and banks’ exposure to the common factor on systemic tail risk. 
The results are portrayed in Graph 1, left-hand panel. In this panel, lumpiness is captured 
solely by the number of homogeneous banks in a hypothetical system and is held fixed (at 
one of three levels) in order to plot systemic risk as a function of the common-factor 
exposure.  

A key message of the graph is that a decrease in the lumpiness of the system depresses 
systemic risk by more (the distance between the lines is greater) when banks’ exposure to 
the common risk factor is smaller. To see why, note that lower exposure to the common 
factor means greater importance of idiosyncratic risks. In turn, idiosyncratic risks are those 
that are diversified away at the level of the system when its lumpiness decreases (in this 
case, as the number of banks increases). In the limit case, in which all banks are exposed 
only to the common risk factor (i.e. when the asset-return correlations equal unity), changes 
in the lumpiness of the system are inconsequential. 

Systemic risk and systemic importance1 

The role of lumpiness2 Risk and size3,4 Risk and common exposures3,5 

                                                 
14  These estimates are delivered by the proprietary Credit Model and GCorr, respectively, and are based on 

market prices of banks’ equity and debt. 
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10 small banks
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1  Total systemic risk is measured as ES at the 99.8% confidence level, in cents per dollar exposure to the system. LGD is assumed to 
be 55%.     2  Total systemic risk of systems comprising homogenous banks, whose PDs equal 0.3%.     3  The contributions of the two 
groups of banks to the total are plotted as shaded areas. Each group accounts for half of the overall system size. Probability of default 
(on the horizontal axes) is in percentage points.      4  The systematic (or common) risk factor accounts for 60% of each bank’s asset-
return volatility.     5  The systematic (or common) risk factor accounts for 70% of the asset-return volatility of high-exposure banks and 
30% of that volatility for low-exposure banks. 

  Graph 1 
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The flipside of this intuitive result reveals an important insight regarding the consequences of 
measurement error. The different slopes of the three lines in the left-hand panel of Graph 1 
indicate that systemic risk tends to increase faster in the exposure to the common factor 
when there are more banks in the system. Thus, a given error in the estimate of banks’ 
exposures to the common factor is likely to result in a larger error in the measurement of 
systemic tail risk when the system is less lumpy. 

4. Drivers of systemic importance 

This section analyses drivers of systemic importance, measured here as the share of 
systemic ES attributed to individual banks by attribution Procedure 1.15 The four drivers 
considered below are those that were analysed in the context of system-wide risk: i.e. banks’ 
number, relative sizes, PDs and exposures to the common risk factor. The stylised banking 
systems used in the analysis are designed to meet two criteria. First, these banking 
systems are largely in line with Moody’s KMV estimates of bank PDs and asset return 
correlations (see above). Second, the systems are populated by banks whose risk 
characteristics are such as to allow for isolating the impact of specific drivers of systemic 
importance in a straightforward fashion. 

4.1 The number of banks and their relative sizes 

Quite intuitively, larger size implies greater systemic importance. We illustrate this in Table 4, 
for which we consider systems that possess the following three features. First, all banks in a 
given system share the same PD and exposure to the common factor. Second, there are 3 
big banks of equal size, which account for 40% of the overall system. Third, a group of 
equally-sized small banks make up the rest of the system. In all of these systems, the 
systemic importance of a big bank is greater than that of a small one. More interestingly, as 
the number of small banks (but not their share in the overall size of the system) increases, 
their systemic importance declines both individually and as a group. The flipside of this is that 
the systemic importance of big banks may rise not because any of their characteristics 
worsens but because small banks become smaller and more numerous. 

Further inspection of Table 4 reveals that, within any given financial system, the contribution 
to system-wide risk increases faster than size. To see this, consider the first column of the 
table, which relates to a system in which a big bank is 11% larger than a small one but is 
assigned a 25% greater share in systemic risk.16 This effect increases as banks’ sizes 
become more disparate. In the fifth column of the table, which relates to a system where the 
sizes of big and small banks are roughly 5-to-1, the respective shares in systemic risk are 
18-to-1. 

The basic intuition for the relationship between size and systemic importance is that systemic 
(ie tail) events are associated with extreme losses, in which large banks are more likely to 
participate than smaller ones. This is an important property and a concrete example of how 
the macro-prudential perspective may provide unique insights that would be missed by a 
micro-oriented approach. When systemic importance increases faster than size, then 
prudential tools that aim at mitigating systemic risk should be designed so that their impact 
across institutions also increases faster than size. 

                                                 
15  Thus, in the light of the discussion in Section 2.2.1, systemic importance should be understood as being 

directly related to the institution’s contribution to systemic risk. 

16  Concretely:     11.15/6.0/3/4.0 smallbig ss  and     25.15/%57/3/%43 smallbig ShVShV . 
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System lumpiness 
Systemic risk and systemic importance 

 Low risk system 

(all banks: PD = 0.1%) 

High risk system 

(all banks: PD = 0.3%) 

 
ns = 5 ns = 10 ns = 15 ns = 20 ns = 25 ns = 5 ns = 10 ns = 15 ns = 20 ns = 25

3 big banks 43% 57% 63% 66% 68% 42% 52% 57% 59% 61% 

ns small banks 57% 43% 37% 34% 32% 58% 48% 43% 41% 39% 

Total ES 9.8 

(100%) 

9.4 

(100%) 

9.3 

(100%) 

9.25 

(100%) 

9.23 

(100%) 

16.7 

(100%) 

15 

(100%) 

14.7 

(100%) 

14.4 

(100%) 

14.3 

(100%) 

Note: Each column refers to a different banking system. Systemic risk is measured as total ES at the 99.8% confidence level, in cents 
per dollar exposure to the system. The first two rows report the overall share of each group of banks in total ES, as allocated by 
Procedure 1. The group of big banks accounts for 40% of the overall size of the system and the group of small banks accounts for 
60%. Each bank is assumed to have the same sensitivity to the common risk factor, implying a common asset return correlation 
of 42% (or ρ = 0.65), and features an LGD of 55%. 

  Table 4 

 

Given the importance of this result, we investigate its robustness analytically in a general 
context.. In order to isolate the impact of size, we compare the relative contributions to 
system-wide risk of two banks that have identical risk profiles and differ from each other only 
in terms of their size. We then obtain the following result, which does not depend on specific 
assumptions about a number of drivers of systemic importance, such as the probability 
distribution of risk factors and the default correlation between institutions: 

Theorem: Let two banks differ only in terms of size. Suppose further that the contribution of 
either of these two banks to the ES of any other subgroup in the system decreases (weakly) 
as the number of banks in the subgroup increases. Then, the ratio of the Shapley value of 
the larger to that of the smaller bank is (weakly) bigger than the ratio of the respective sizes. 

The sufficient condition in the statement of the theorem is fairly weak and quite intuitive. In 
the appendix we show that it is a generalisation of the well-known sub-additivity of ES, or that 
the sum of the ESs of two portfolios is not smaller than the ES of a third portfolio that equals 
the sum of the first two. 

The formal proof of the theorem, which is presented in the appendix, makes repeated use of 
the following fact. If the joint failure of the smaller bank with a group of other banks is a tail 
event, then the joint failure of the larger bank with the same group of other banks would also 
be a tail event. However, the converse need not be true. Or, as stated above, a larger bank 
appears in tail events more often than a smaller bank with an identical risk profile. 

4.2 The exposure of banks to the common factor and their PDs 

Another intuitive result is that systemic importance increases with the bank’s exposure to the 
common risk factor. This is illustrated in Table 5, in which each banking system is comprised 
of 20 banks, divided into two homogeneous groups, A and B, that differ only with respect to 
banks’ exposures to the common factor. Keeping the exposures to the common factor 
constant in group B but increasing them for group-A banks (across columns, in each panel) 
results in an increase in these banks’ share in systemic risk. In the specific example, their 
contribution rises from about 40% to about 60%. 

The reason for this result is straightforward. Higher exposures to the common factor result in 
a higher probability of joint failures in the system. In turn, a higher probability of joint failures 
means a higher likelihood of extreme losses, which leads to a higher level of systemic risk. 
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Quite intuitively, the rise in the level of systemic risk is attributed mainly to the banks that are 
affected directly by the fundamental cause of this rise, ie those that experience an increase 
in their exposure to the common factor (ie group-A banks in Table 5). 

Exposure to a common risk factor 
Systemic risk and systemic importance 

 Low risk system  
(all banks: PD = 0.1%) 

High risk system  
(all banks: PD = 0.3%) 

 
ρA = 0.3 ρA = 0.4 ρA = 0.5 ρA = 0.6 ρA = 0.7 ρA = 0.3 ρA = 0.4 ρA = 0.5 ρA = 0.6 ρA = 0.7

10 banks in group A 44% 46% 50% 54% 60% 42% 45% 50% 56% 63% 

10 banks in group B 56% 54% 50% 46% 40% 58% 55% 50% 44% 37% 

Total ES 4.0 

(100%) 

4.4 

(100%) 

5.0 

(100%) 

5.8 

(100%) 

6.8 

(100%) 

6.6 

(100%) 

7.2 

(100%) 

8.2 

(100%) 

9.8 

(100%) 

11.5 

(100%) 

Note: Each column refers to a different banking system. Systemic risk is measured as total ES at the 99.8% confidence level, in cents 
per dollar exposure to the system. The first two rows report the overall share of each group of banks in total ES, as determined by 
Procedure 1. The exposure of each of the 10 banks in group A to the single common risk factor is as given in the row headings. The 
exposure of each of the 10 banks in group B to the common risk factor is held fixed at ρB = 0.5. All banks are of equal size, s = 0.05, 
and feature LGDs of 55%. 

  Table 5 

 

Anticipating the analysis in the next section, it is important to also record that greater size or 
exposure to the common risk factor strengthens the positive impact of a higher PD on 
systemic importance. In order to illustrate how size and PD interact, Graph 1 (centre panel) 
considers a system in which banks differ only in terms of size. As PDs increase uniformly 
across all banks in this system, the portion of the expected shortfall attributable to larger 
banks increases by a bigger amount than that attributable to smaller banks. The right-hand 
panel of Graph 1 illustrates a similar point in the context of a system comprised of banks that 
differ only with respect to their exposures to the common risk factor. Given that all of these 
banks experience the same rise in their PDs, the resulting increase in the contributions to 
systemic risk is greater for banks with a larger common-factor exposure. 

5. Stylised policy approaches 

This section discusses how the attribution of systemic risk to individual institutions via the 
Shapley value methodology can be employed for conducting prudential policy. More 
specifically, the section illustrates differences between micro- and macro-prudential 
approaches to achieving a specific level of risk by means of regulatory capital requirements. 
The basic premise is that by affecting institutions’ risk profiles, capital charges affect the 
overall level of systemic risk and institutions’ contribution to it.  

We assume that the authorities apply capital charges to individual institutions with the 
objective of achieving a target for system-wide risk. We discuss three alternative approaches 
to calibrating these charges. The first approach equalises the risk at the level of each 
institution, ie attains the target level of systemic risk with a uniform PD across all institutions. 
We label this the “micro-prudential” approach in the sense that it is in the spirit of the current 
policy framework. The other two approaches take more of a “macro” perspective in attaining 
the same target for system-wide risk. One equalises the contributions of individual institutions 
to system-wide risk (ie equalises their Shapley values). The other minimises the overall level 
of capital in the system (ie makes sure that the marginal reduction of systemic risk by an 
extra unit of capital would be the same across institutions). 
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Our setup is parsimonious. We assume that there is a one-to-one mapping between the 
individual risk of a bank (its PD) and the amount of capital it holds. In addition, we assume 
that banks do not hold capital in excess of the level required by the authorities. Hence, 
changes in capital requirements have a direct effect on the leverage of banks and, ultimately, 
on their PDs. At the same time, we assume that capital requirements do not affect the size of 
balance sheets and banks’ exposure to the common risk factor. Concretely, the mapping 
between a bank’s capital and its probability of default, is given by: 
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 (6) 

where Vi is the level of the bank’s assets, σV stands for asset volatility, Ki is the level of equity 
capital and ψ is an adjustment factor.17 A policy intervention can alter K – and thus PD – at 
the level of each bank, but none of the other parameters. The analysis below is conducted 
with reference to systems populated by two groups of banks. Each of the groups accounts 
for half of the assets in the system and includes homogeneous banks. As detailed below, the 
two groups differ from each other in terms of specific risk parameters. 

In the first example, the two sub-groups differ only in terms of the intensity of the exposure of 
the banks to the systematic risk factor. Banks in one group have a lower exposure to 
systematic risk (in terms of equation (3), 30.0 ), while banks in the other group have 
higher exposure to the systematic risk factor ( 7.0 0 ). The two groups are identical to each 
other in terms of everything else.  

The policy experiment is depicted in Graph 2 (left-hand panel), where capital charges on 
banks with a low (high) exposure to the common risk factor are on the horizontal (vertical) 
axis. The curve labelled iso-ES corresponds to the combinations of capital charges that 
achieve the target level of system-wide risk. The first policy approach attains this target for 
equal capital charges, at point A: ie the intersection between the iso-ES curve and the 45-
degree line from the origin. Since banks differ only with respect to their exposures to the 
common risk factor, equal capital charges are associated with equal PDs (by equation (6)). 

Equal capital charges, however, do not lead to equal contributions to systemic risk. 
Equalisation of Shapley values across different banks requires that banks with a greater 
exposure to the common factor face higher capital charges, which reduces their PDs below 
those of banks with a lower exposure to the common factor (recall Graph 1). This is 
illustrated by the dashed curve, labelled equal ShV, which denotes all capital allocations that 
result in equal contributions to system-wide risk by banks in the two groups (ie equal Shapley 
values).18 Given that banks differ only with respect to their exposures to the common risk 
factor, this curve is always above the  45-degree line. The second policy approach delivers 
the configuration of capital charges at point B, ie the intersection between the equal ShV and 
iso-ES curves.  

                                                 
17  This equation is consistent with the model introduced in Section 2. Apparent differences stem from the fact 

that the formulae in Section 2 were designed to highlight how common-factor loadings enter the model, 
whereas here the emphasis is on the capital-to-asset ratio. To see the relationship between the alternative 

formulae, let the default point DP equal  KV   and note that the asset volatility σV is inconsequential for 

the analysis in previous sections. As initial conditions, we calibrate Ki/Vi = 0.04, σV = 3.5%, and then set ψ so 
that PD = 0.3% for all banks. 

18  In the light of the discussion in Section 2.4.1, contributions to systemic risk are measured via Procedure 1. 
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Macroprudential policy interventions1 

Capital for two groups of banks 

Banks differ in one aspect2 Banks differ in two aspects3 
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1  Each panel corresponds to a specific system comprising two groups of banks. Risk characteristics are identical across banks in each 
group. The aggregate group-wide assets are the same across groups. Each axis measures the capital charge for a particular group of
banks, as per cent of the group’s aggregate assets. The lines labelled “iso-ES” plot the pairs of capital charges, which imply that the 
system-level expected shortfall at the 99.8% confidence level equals 10% (left-hand panel) or 8% (right-hand panel) of aggregate 
liabilities in the system (LGD = 55% for all banks). The lines labelled “equal ShV” plot the capital pairs which imply that Shapley values 
are equal across the two groups of banks (equivalently, the ratios of Shapley values to corresponding bank sizes are equal across
banks).     2  The system comprises two groups of five banks. The groups differ only with respect to the constituent banks’ exposure to 
the common factor: ρlow = 0.30 vs. ρhigh = 0.70.     3  The system comprises 20 banks. The first group comprises 4 large banks with a low
exposure to the common factor: slarge = 0.125, ρlow = 0.30. The second group comprises 16 small banks with a high exposure to the
common factor: ssmall = 0.031, ρhigh = 0.70. 

  Graph 2

 

The third approach to achieving the target level of system-wide risk is to seek an allocation 
that minimises the aggregate capital in the system, conditional on the overall level of 
systemic risk. Graphically, this approach delivers the capital allocation given by the tangency 
point between the iso-ES curve and the straight line with a slope of -1 (ie the line 
perpendicular to the main diagonal) that is closest to the origin. This  corresponds to point C.  

In this example, both macroprudential approaches to achieving the target risk level (ie the 
second and third approaches) lead to efficiency gains in comparison to the microprudential 
approach (the first one). For the specific example used here, the aggregate level of capital in 
the system equals 4% of aggregate assets at point A, 3.8% at point B and 3.78% at point C 
(the minimum). The reason for this reduction in aggregate capital when going from A to B is 
related to the discussion in Section 4.2 about the interactions between the common-factor 
exposure and PD in the determination of systemic importance. As illustrated in Graph 1 
(right-hand panel), for a given change in PDs, banks that are more exposed to common risk 
factors experience a greater change in their contribution to systemic risk. Conversely, in 
equalising individual contributions to a fixed level of system-wide risk, the increase in the 
capital charge for banks with a greater common-factor exposure is smaller than the reduction 
for banks with a lower common-factor exposure. Hence, equalising contributions to systemic 
risk leads to a more efficient use of capital in this particular system than achieving the same 
systemic risk with uniform capital levels. 

The comparison between points B and C highlights the differences between the two 
macroprudential approaches. By construction, point C requires the lowest aggregate level of 
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capital. By transferring more capital from the banks with a low systematic factor exposure to 
the group with a high exposure, this allocation exploits further the scope for efficiency than 
the one that equalises systemic risk contributions. That said, the two macroprudential 
approaches deliver the same ranking of the capital charges on the two types of banks: points 
B and C are on the same side of the 45-degree line. 

The ranking of the three policy approaches in terms of aggregate capital requirements may 
differ from the above example if banks in the two groups differ in more than one aspects. For 
example, a system where banks with a higher exposure to the common factor are also of a 
smaller size could lead the first approach to deliver a more efficient use of capital than the 
second one. This is shown in the right-hand panel of Graph 2. In this example, size and 
loading on the systematic factor have counteracting effects on the systemic importance of 
each bank. Hence, it is the relative importance of these effects that determines whether 
aggregate capital increases or declines when moving from the first, microprudential, 
approach to the second one, which equalises Shapley values. The specific parameterisation 
in this example leads to higher capital charges on the group of larger banks under the 
second approach (point B) and results in a higher level of aggregate capital (4.6% of 
aggregate assets) than those imposed by the first intervention (point A: 4.4% of assets). The 
third intervention that achieves the target with the minimum level of aggregate capital (4.3%) 
imposes higher capital on smaller banks because of their higher exposure to the systematic 
factor. 

The policy examples in this subsection are intentionally cast in stylised settings that help 
highlight the interaction of different drivers of systemic importance. As such, the settings do 
not seek to capture particular empirical regularities and do not cover all possible ways in 
which institutions could respond to changing capital requirements. This leaves a number of 
important issues to future research. 

Conclusion 

Measures of the systemic importance of financial institutions are key inputs to 
macroprudential policy instruments. This paper proposes a general and flexible methodology 
for obtaining such measures by attributing systemic risk to individual institutions. The paper 
also demonstrates that different applications of the attribution methodology adopt different 
notions of systemic importance and, as a result, should be used for different macroprudential 
objectives. In addition, numerical examples highlight the importance of policy rules and 
interventions that reflect not only the probability of a failure by an individual institution but 
also its exposure to common risk factors. The analysis also suggests that, once risk 
characteristics have been controlled for, charges imposed on financial institutions would 
need to increase faster than their size. 
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Appendix: Formal results on the impact of size on systemic importance 

This appendix provides formal analytical results on the relationship between the size of an 
institution and its contribution to system-wide risk, as captured by the Shapley value 
methodology. More specifically, it proves that, if two institutions are identical in all aspects 
but size, then the Shapley value of the larger institution divided by that of the smaller one is 
at least as large as the ratio of the respective sizes.  

All results are based on a common framework for the measurement of the risk of a system or 
subgroup of banks. Risk is driven exclusively by losses related to the failure (default) of 
individual banks. Given the assumption of a constant loss-given-default (LGD), the loss in the 
case of a failure of bank i is a constant proportion of the size of the bank: LGD*Si. Then, in 
addition to the size of each bank, the characteristics that drive its riskiness are: (a) the 
unconditional probability that it defaults, PDi = Prob{default i}; and (b) the set of conditional 
probabilities that i defaults given the default of any group {G} of other banks, PDi,G = 
Prob{default i | default by all GiGj  , }. The set of conditional PDs would capture any 
interdependency across banks, stemming from potential “domino effects” (chains of losses 
across banks) when banks are related via a network of interbank exposures or from the 
intensity of exposures to common risk factors. 

We pay particular attention to tail events, which are loss configurations that deliver extreme 
aggregate losses. In line with the discussion in Section 2.4, we consider two different types 
of sets of tail events. A set of the first type is constant for all subgroups of banks and is 
comprised of tail events in which losses equal or exceed a given quantile of the distribution of 
losses in the entire system. Hence, the expected losses for any subgroup are calculated over 
the events defined at the level of the entire system. By contrast, a set of the second type is 
defined at the level of each subgroup of banks. In this case, a tail event is defined with 
respect to the distribution of losses in the subgroup in focus. In terms of the notation used in 
the main body of the paper, the fixed set of systemic events gives rise to characteristic 

function , while the subgroup-specific set refers to characteristic function .  

Let T be the relevant set of tail events e: Te  . Associated with T there is a set of 
probabilities  for the constituent tail events. The expected shortfall (ES) of a generic 
group of banks {G} can then be expressed as:  

Tep 
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The following two theorems prove that, in a given system, institutions’ systemic importance 
increases faster than their size. Theorem 1 refers to a constant set of tail events 

(characteristic function ), while Theorem 2 refers to the case where this set is specific to 

each subgroup of banks (characteristic function ).  




Theorem 1 (characteristic function: ): 

Consider two banks S and B, which differ in size, Bs ss  , but have the same risk 

characteristics: PDs = PDb , PDs,b = PDb,s and PDs,j = PDb,j. Then 
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Proof of Theorem 1 

In the present case, the set of tail events, T, is the same for all subgroups of banks, which 
simplifies greatly the Shapley value calculation. Given (A1), the marginal contribution of an 
individual bank i to the risk of a generic subgroup {G} equals: 

      



Te

eiie SLGDpGESiGES 1)(),(  

which reflects the fact that T is the same for both subgroups {G,i} and {G}. Note that this 
marginal contribution is the expected loss associated with i across all tail events (defined at 
the level of the entire system) and is constant across all subgroups {G}. This implies that it 
would also be equal to the Shapley value of bank i, since the latter is a weighted average of 
such marginal contributions (see Section 2.3 above).  

The ratio of the Shapley values of B and S  is then given by: 
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The reason for the inequality is the following. For each tail event, Te  , that includes S but 
not B, there must be a corresponding event in T that includes B but not S and has the same 
probability of occurrence as the former event. This follows from the definition of the set of tail 
events, T, the size difference, , and the assumption that S and B have identical 

conditional default probabilities. However, since 
Bs ss 

Bs ss  , it is possible that: (i) there are tail 
events that include B but not S and (ii) there is no corresponding event that includes S but 
not B. This implies that     

e
eb1 

 T
e

Te
e pp 1 es , which establishes the above inequality 

and completes the proof of the theorem. ■ 

Theorem 2 (characteristic function: ) 

Consider two banks S and B, which differ in size, Bs ss  , but have the same risk 
characteristics: PDs = PDb , PDs,b = PDb,s and PDs,j = PDb,j. Let S and B have a positive 
marginal contribution to each subgroup {G} of other banks: 

    B or Si,0)(),(  GESiGES . Then, the following is a sufficient condition for the relative 

systemic importance of bank B to be larger than its relative size, ie for 
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s

s

SShV

BShV
 : 

1)        ),(),,()(),( GjESGjiESGESGiES  , where  BSji ,,   and  GBS , . 

This condition states that the marginal contribution of bank i to the ES of a subgroup should 
not decrease as the number of other banks in this subgroup increases. The condition is 
intuitive because, as the number of banks in the subgroup increases, idiosyncratic risk is 
diversified away and the impact of each individual bank on the (average) severity of tail 
events should be expected to decrease. The condition could also be seen as a 
generalisation of the sub-additivity of ES. Namely, it could be rewritten as 

       )(),,(),(),( GESGjiESGjESGiES  , which collapses to the sub-additivity property 
when subgroup {G} is empty. 

Proof of Theorem 2 

The proof incorporates the fact that, under characteristic function , tail events differ across 
subgroup of banks. Concretely, equation (4) above implies that the ratio of Shapley values 
that is at the centre of Theorem 2 equals: 
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, where  is the 

set of all subgroups {G} that do not contain S or B, and the weights 



 G  and  G~  change 
with the number of banks in {G}. In addition,    GG  ~  because, given {G}, the latter 
weight is associated with the ES of subgroups comprised of one more bank. 

Note next that, given any {G} and a marginal contribution       GSESGBSES ,,,   entering 
the Shapley value of bank B, there is a corresponding marginal contribution 

     GESGBES ,  that also enters this Shapley value. Similarly for the Shapley value of 
bank S. This is a result of the Shapley value incorporating the marginal contribution of a bank 
to each subgroup it participates in. Then, the last equality can be rewritten as follows: 
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where the fact that the second sum in the numerator is equal to the second sum in the 
denominator is seen by a simple rearrangement of the summands. Lemma 1, which is stated 

and proved below, implies that 
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. In turn, by condition (1) in the statement of 

Theorem 2,  . Then, since 0   0 SSShV  and Bs ss  , it follows that 
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Lemma 1 

Let banks S and B be as specified in Theorem 2 and {G} be any subgroup of banks that does 

not include either S or B. Then 
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,
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Proof of Lemma 1 

Let T{G} denote the set of  tail events for a generic subgroup {G}. Given (A1), for any 
subgroup of m banks {G} we can write    GskGES  , where k  is a  vector of 
probabilities that a bank in {G} belongs to the set of tail events, T{G}, and  is the 

m1

Gs 1m  

vector of respective sizes. Similarly, we can express    GsES 

ˆ m1

B wts GB,  and 

 where  and  are scalars and w  and w  are  vectors.    Gs swstGSES  ˆˆ, t t̂

The inequality in the statement of the Lemma can be expressed equivalently as a condition 
on the sign of the following expression: 
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 (A2) 

The Lemma is true if and only if the last expression is (weakly) positive. Given that bank S 
has positive marginal contributions, the denominator in (A2) is positive. Thus, it remains to 
prove that the numerator is (weakly) positive. We note the following fact: 

Fact 1: . In other words, the portion of the ES that is attributed to failures of 
banks in {G}  is smaller in the case of subgroup {B,G} than in that of {S,G}.  

GG swsw  ˆ

The reasoning behind this fact follows along the lines of the proof of Theorem 1. Each tail 
event that is in the set T{S,G} and includes bank S (and possibly banks in {G}) is matched by 
a corresponding tail event, in T{B,G}, in which B replaces S. However, the opposite need not 
be true: there may be some tail events in T{B,G} that feature B (and possibly banks in {G}) 
but are not matched by tail events in T{S,G}. If this is the case, then any such tail event, say 
 gB ˆ, , enters T{B,G} in the place of tail events in T{S,G}, denoted by  g~ , which feature only 
banks from {G}. 

We can establish two properties of tail events  g~ . First, the probability mass of  g~  in T{S,G} 
is equal to the probability mass of the “replacement” tail events  gB ˆ,  in T{B,G}. This is by 
virtue of the fact that the total probability mass of all tail events is constant. Second, the total 
size of banks in subgroup  ĝ  that enter a tail event  gB ˆ,  in the set T{B,g} is at most as large 

as the size of the banks in the tail event  g~ . To see why, note that, by definition, the 
aggregate size of banks in a tail event  g~  has to be grater than the corresponding size 
associated with any loss configuration that is not in the set of tail events  GST , . This would 

be contradicted if the aggregate size of banks in  ĝ  were larger than the aggregate size of 

banks in  g~  since, then, the aggregate size of banks in  gS ˆ, , which is not a tail event in 
 GST , , would be greater than the aggregate size of banks in  g~ . 

The two properties of tail events  g~  establish Fact 1. 

In turn, Fact 1 points to a lower bound for the numerator of the ratio in (A2): 

     
    GGSBSB

GSGBGSBSB
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swsswssksssstt





ˆˆ

ˆˆ

  (A3) 

The rest of the proof establishes that the right-hand side of inequality (A3) is non-negative.  

First note that . In other words, the probability that B participates in the set of tail events tt ˆ
 GBT ,  is at least as high as the probability that S participates in  GST , . The proof of this 

inequality is identical to a reasoning behind Theorem 1: since banks S and B have identical 
risk characteristics but , B participates in at least as many tail events as S. This 
establishes the weak inequality, which implies that the first summand of the numerator in 
(A3) is positive.  

Bs ss 

Then note that , or that the ES for subgroup GG swsk  ˆ  G  is at least as large as the 
portion of the expected losses in  GST ,  associated with banks in  G . To see why, note that 
the probability that any loss configuration associated with subgroup {G} (be it in the tail or 
not) is equal to the sum of the probabilities of two loss configurations when the subgroup is 
{S,G}: one is identical to the original configuration and one adds bank S. This reflects the fact 
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that the probability of any loss configuration is independent of the banks that are not in this 
configuration, even if they belong to the subgroup in focus. Then, an argument similar to that 
underpinning Fact 1 establishes that: (i) for each tail event that is in T{S,G} and involves 
banks in {G} (and thus enters the calculation of w ) there is a corresponding tail event that is 
in T{G} and features the same banks from {G} (which enters the calculation of k); and (ii) the 
opposite need not be true. This establishes the above inequality, which implies that the 
second summand of the numerator in (A3) is also positive and, thus, completes the proof of 
the lemma. ■ 

ˆ
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