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Abstract
In practice, central banks have been confronted with a trade-o¤ between stabilising

in�ation and output when dealing with rising oil prices. This contrasts with the result in
the standard New Keynesian model that ensuring complete price stability is the optimal
thing to do, even when an oil shock leads to large output drops. To reconcile this apparent
contradiction, this paper investigates how monetary policy should react to oil shocks in
a microfounded model with staggered price-setting and with oil as an input in a CES
production function. In particular, we extend Benigno and Woodford (2005) to obtain a
second order approximation to the expected utility of the representative household when
the steady state is distorted and the economy is hit by oil price shocks.
The main result is that oil price shocks generate an endogenous trade-o¤ between in�a-

tion and output stabilisation when oil has low substitutability in production. Therefore, it
becomes optimal for the monetary authority to stabilise partially the e¤ects of oil shocks on
in�ation and some in�ation is desirable. We also �nd, in contrast to Benigno and Woodford
(2005), that this trade-o¤ is reduced, but not eliminated, when we get rid of the e¤ects of
monopolistic distortions in the steady state. Moreover, the size of the endogenous �cost-
push�shock generated by �uctuations in the oil price increases when oil is more di¢ cult
to substitute by other factors.
JEL Classi�cation: D61, E61.
Keywords: Optimal Monetary Policy, Welfare, Second Order Solution, Oil Price

Shocks, Endogenous Trade-o¤.
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1 Introduction

Oil is an important production factor in economic activity because every industry uses it to
some extent. Moreover, since oil cannot be easily substituted by other production factors,
economic activity is heavily dependent on its use. Furthermore, the oil price is determined in
a weakly competitive market; there are few large oil producers dominating the world market,
setting its price above a perfect competition level. Also, its price �uctuates considerably due
to the e¤ects of supply and demand shocks in this market1.

The heavy dependence on oil and the high volatility of its price generates a concern among
the policymakers on how to react to oil shocks. Oil shocks have serious e¤ects on the economy
because they raise prices for an important production input and for important consumer goods
(gasoline and heating oil). This causes an increase in in�ation and subsequently a decrease
in output, generating also a dilemma for policymaking. On one hand, if monetary policy
makers focus exclusively on the recessive e¤ects of oil shocks and try to stabilise output, this
would generate in�ation. On the other hand, if monetary policy makers focus exclusively on
neutralising the impact of the shock on in�ation through a contractive monetary policy, some
sluggishness in the response of prices to changes in output would imply large reductions in
output. In practice, when dealing with rising oil prices, policymakers have been confronted
with a trade-o¤ between stabilising in�ation and output. But, what exactly should be the
optimal stabilisation of in�ation and output? Which factors a¤ect this trade-o¤? To our
knowledge the formal study of this topic is limited2.

However, the behaviour of central banks in practice contrasts with the result in the standard
new Keynesian model that ensuring complete price stability is the optimal thing to do, even
when an oil shock leads to large drops in output. To deal with this apparent contradiction
and to answer the questions presented above, we extend the literature on optimal monetary
policy including oil in the production process in a standard New Keynesian model. In doing
so, we extend Benigno and Woodford (2005) to obtain a second-order approximation to the
expected utility of the representative household, when the steady state is distorted and the
economy is hit by oil price shocks. We include oil as a non-produced input as in Blanchard
and Galí (2007), but di¤erently from those authors we use a constant-elasticity-of-substitution
(CES) production function to capture the low substitutability of oil. Then, a low elasticity of
substitution between labour and oil indicates a high dependence on oil3.

The analysis of optimal monetary policy in microfounded models with staggered price set-

1For example during the 1970s and through the 1990s most of the oil shocks seemed to be on the international
supply side, either because of attempts to gain more oil revenue or because of supply interruptions, such as the
Iranian Revolution and the �rst Gulf war. In contrast, in the 2000s the high price of oil is more related to
demand growth in the USA, China, India, and other countries. On the other hand, Kilian (2009) found that all
major real oil price increases since the mid-1970s can be traced to increased global aggregate demand and/or
increases in oil-speci�c demand.

2There are a few exceptions. For instance, Natal (2009) showed that extending our work, including oil in
the consumption goods bundle in a CES form, ampli�es the trade-o¤ between stabilizing in�ation and the
welfare output gap. In a di¤erent approach, Nakov and Pescaroti (2009) also �nd a trade-o¤ when modeling
explicitaly the oil production in the global economy, which is generated by a dynamic distortion due to imperfect
competition in the oil market.

3 In contrast, Blanchard and Gali (2007) use a Cobb-Douglas production function.
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ting using a quadratic welfare approximation was �rst introduced by Rotemberg and Woodford
(1997) and expounded by Woodford (2003) and Benigno and Woodford (2005). This method
allows us to obtain a linear policy rule derived from maximising the quadratic approximation of
the welfare objective subject to the linear constraints that are �rst-order approximations of the
structural equations. This methodology is called linear-quadratic (LQ). The advantage of this
approach is that it allows to characterise analytically how changes in the production function
and in the oil shock process a¤ect the monetary policy problem. Moreover, in contrast to the
Ramsey policy methodology, which also allows a correct calculation of a linear approximation
of the optimal policy rule, the LQ approach is useful to evaluate not only the optimal rules,
but also to evaluate and rank sub-optimal monetary policy rules.

A property of standard New Keynesian models is that stabilising in�ation is equivalent
to stabilising output around some desired level, unless some exogenous cost-push shock dis-
turbances are taken into account. Blanchard and Galí (2007) called this feature the "divine
coincidence". These authors argue that this special feature comes from the absence of non-
trivial real imperfections, such as real wage rigidities. Similarly, Benigno and Woodford (2004,
2005) show that this trade-o¤ also arises when the steady state of the model is distorted and
there are government purchases in the model.

We found that, when oil is introduced as a low-substitutable input in a New Keynesian
model, a trade-o¤ arises between stabilising in�ation and the gap between output and some
desired level. We call this desired level the �target level�. In this case, because output at the
target level �uctuates less than it does at the natural level, it becomes optimal to the monetary
authority to react partially to oil shocks and therefore, some in�ation is desirable.

The intuition of this result is that when oil is considered a gross complement to labour
in production in a CES technology, the divine coincidence disappears. This result is similar
to the case of real wage rigidities explained in Blanchard and Galí (2007), where stabilizing
in�ation is no longer equivalent to stabilizing the welfare-relevant output gap. However, the
mechanism here is di¤erent. This trade-o¤ is generated by the convexity of real marginal costs
with respect the real oil price, which produce a time varying wedge between the marginal
rate of substitution and the marginal productivity of labour that impede to replicate the �rst
best equilibrium. Moreover, eliminating the distortions in steady state reduces the trade-o¤,
because this wedge becomes less sensitive with respect to the oil price. However, in contrast to
Benigno and Woodford (2005), making the steady state e¢ cient cannot eliminate this trade-o¤.

Also, the substitutability among production factors a¤ects both the weights on the two
stabilisation objectives and the de�nition of the welfare-relevant output gap. The lower the
elasticity of substitution, the higher the cost-push shock generated by oil shocks and the lower
the weight on output stabilisation relative to in�ation stabilisation. Moreover, when the share
of oil in the production function is higher, or the steady-state oil price is higher, the size of the
cost-push shock increases.

Section 2 presents our New Keynesian model with oil prices in the production function.
Section 3 includes a linear quadratic approximation to the policy problem. Section 4 uses
the linear quadratic approximation to the problem to solve for the di¤erent rules of monetary
policy and make some comparative statics to the parameters related to oil. The last section
concludes.
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2 A New Keynesian model with oil prices

The model economy corresponds to the standard New Keynesian Model in the line of Clarida
et al (2000). In order to capture oil shocks we follow Blanchard and Galí (2007) by introducing
a non-produced inputM , represented in this case by oil. Q will be the real price of oil which is
assumed to be exogenous. This model is similar to the one used by Castillo et al (2007), except
that we additionally include taxes on sales of intermediate goods to analyse the distortions in
steady state.

2.1 Households

We assume the following utility function on consumption and labour of the representative
consumer

Uto = Eto

1X
t=to

�t�to
�
C1��t

1� � �
L1+vt

1 + v

�
; (2.1)

where � represents the coe¢ cient of risk aversion and v captures the inverse of the elasticity of
labour supply. The optimiser consumer takes decisions subject to a standard budget constraint
which is given by

Ct =
WtLt
Pt

+
Bt�1
Pt

� 1

Rt

Bt
Pt
+
�t
Pt
+
Tt
Pt
; (2.2)

where Wt is the nominal wage, Pt is the price of the consumption good, Bt is the end of
period nominal bond holdings, Rt is the riskless nominal gross interest rate , �t is the share
of the representative household on total nominal pro�ts, and Tt are net transfers from the
government. The �rst order conditions for the optimising consumer�s problem are:

1 = �Et

"
Rt

�
Pt
Pt+1

��
Ct+1
Ct

���#
; (2.3)

Wt

Pt
= C�t L

v
t =MRSt: (2.4)

Equation (2:3) is the standard Euler equation that determines the optimal path of consump-
tion. At the optimum the representative consumer is indi¤erent between consuming today or
tomorrow, whereas equation (2:4) describes the optimal labour supply decision. MRSt denotes
for the marginal rate of substitution between labour and consumption. We assume that labour
markets are competitive and also that individuals work in each sector z 2 [0; 1]. Therefore, Lt
corresponds to the aggregate labour supply:

Lt =

Z 1

0
Lt(z)dz: (2.5)
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2.2 Firms

2.2.1 Final good producers

There is a continuum of �nal good producers of mass one, indexed by f 2 [0; 1] that operate
in an environment of perfect competition. They use intermediate goods as inputs, indexed by
z 2 [0; 1] to produce �nal consumption goods using the following technology:

Y f
t =

�Z 1

0
Yt(z)

"�1
" dz

� "
"�1

; (2.6)

where " is the elasticity of substitution between intermediate goods. The demand function of
each type of di¤erentiated good is obtained by aggregating the input demand of �nal good
producers:

Yt(z) =

�
Pt (z)

Pt

��"
Yt; (2.7)

where the price level is equal to the marginal cost of the �nal good producers and is given by:

Pt =

�Z 1

0
Pt (z)

1�" dz

� 1
1�"

: (2.8)

and Yt represents the aggregate level of output.

Yt =

Z 1

0
Y f
t df: (2.9)

2.2.2 Intermediate goods producers

There is a continuum of intermediate good producers indexed by z 2 [0; 1]. All of them have
the following CES production function

Yt(z) =
h
(1� �) (Lt(z))

 �1
 + � (Mt (z))

 �1
 

i  
 �1

; (2.10)

where M is oil which enters as a non-produced input;  represents the intratemporal elasticity
of substitution between labour-input and oil and � denotes the quasi-share of oil in the pro-
duction function. We use this generic production function in order to capture the fact that oil
has few substitutes. In general we assume that  is lower than one. The real oil price, Qt, is
assumed to follow an AR(1) process in logs,

logQt = (1� �) logQ+ � logQt�1 + �t; (2.11)

where Q is the steady state level of oil price and �t is an i:i:d: shock. From the cost minimisation
problem of the �rm we obtain an expression for the real marginal cost given by:

MCt(z) =

"
(1� �) 

�
Wt

Pt

�1� 
+ � (Qt)

1� 
# 1
1� 

; (2.12)
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where MCt (z) represents the real marginal cost and Wt nominal wages. Notice that marginal
costs are the same for all intermediate �rms, since technology has constant returns to scale
and factor markets are competitive, i e MCt (z) = MCt. On the other hand, the �rst order
condition for intermediate goods producers with respect to labour imply that the marginal
product of labor, MPLt, satisfy:

MPLt (z) = (1� �)
�
Yt(z)

Lt(z)

�1= 
=
Wt=Pt
MCt

: (2.13)

Equation (2.13) imply the following labour demand for the individual �rm:

Ldt (z) =

�
1

1� �
Wt=Pt
MCt

�� 
Yt(z): (2.14)

Intermediate producers set prices following a staggered pricing mechanism a la Calvo. Each
�rm faces an exogenous probability of changing prices given by (1� �). A �rm that changes
its price in period t chooses its new price Pt(z) to maximise:

Et

1X
k=0

�k�t;t+k� (Pt(z); Pt+k;MCt+k; Yt+k) ;

where �t;t+k = �k
�
Ct+k
Ct

���
Pt
Pt+k

is the stochastic discount factor. The function: � (Pt(z); Pt;MCt; Yt) �

[(1� �)Pt(z)� PtMCt]
�
Pt(z)
Pt

��"
Yt is the after-tax nominal pro�ts of the supplier of good z

with price Pt(z); where the aggregate demand and aggregate marginal costs are equal to Yt
and MCt; respectively. � is the proportional tax on sale revenues which we assume constant.
The optimal price that solves the �rm�s problem is given by

�
P �t (z)

Pt

�
=

�Et

� 1P
k=0

�k�t;t+kMCt;t+kF
"+1
t+k Yt+k

�
Et

� 1P
k=0

�k�t;t+kF
"
t+kYt+k

� ; (2.15)

where � � "
"�1= (1� �) is the price markup net of taxes, P

�
t (z) is the optimal price level

chosen by the �rm and Ft+k =
Pt+k
Pt

the cumulative level of in�ation. The optimal price solves
equation (2:15) and is determined by the average of expected future marginal costs as follows:�

P �t (z)

Pt

�
= �Et

" 1X
k=0

't;t+kMCt;t+k

#
; (2.16)

where 't;t+k �
�k�t;t+kF

"+1
t+k Yt+k

Et

� 1P
k=0

�k�t;t+kF
"
t+kYt+k

� .
Since only a fraction (1� �) of �rms changes prices every period and the remaining one

keeps its price �xed, the aggregate price level, de�ned as the price of the �nal good that
minimise the cost of the �nal goods producers, is given by the following equation:

P 1�"t = �P 1�"t�1 + (1� �) (P �t (z))
1�" : (2.17)
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Following Benigno and Woodford (2005), equations (2:15) and (2.17) can be written re-
cursively introducing the auxiliary variables Nt and Dt (see appendix B for details on the
derivation):

� (�t)
"�1 = 1� (1� �)

�
Nt

Dt

�1��
; (2.18)

Dt = Yt (Ct)
�� + ��Et

h
(�t+1)

��1Dt+1

i
; (2.19)

Nt = �Yt (Ct)
��MCt + ��Et [(�t+1)

�Nt+1] ; (2.20)

where �t = Pt=Pt�1 is the gross in�ation rate. Equation (2:18) comes from the aggregation of
individual �rms prices. The ratio Nt=Dt represents the optimal relative price P �t (z) =Pt: These
three last equations summarise the recursive representation of the non linear Phillips curve.

2.3 Government and monetary policy

In the model we assume that the government owns the oil endowment. Oil is produced in
the economy at zero cost and sold to the �rms at the exogenous price Qt: The government
transfers all the revenues generated by oil to consumers represented by PtQtMt. There is also
a proportional tax on sale revenues (�). We abstract from any other role for the government
and assume that it runs a balanced budget every period. Then, the budget constraint implies
that total net transfers in real terms are:

Tt
Pt
= QtMt + �Yt:

Moreover, we abstract from any monetary frictions assuming that the central bank can
control directly the risk-less short-term interest rate Rt:

2.4 Market clearing

In equilibrium labour, intermediate and �nal goods markets clear. Because of the assumption
on the government transfers, the economy-wide resource constraint is given by

Yt = Ct: (2.21)

The labour market clearing condition is given by:

Lt = Ldt ; (2.22)

where the demand for labour comes from the aggregation of individual intermediate producers
in the same way as for the labour supply:

Ldt =

Z 1

0
Ldt (z)dz =

�
1

1� �
Wt=Pt
MCt

�� Z 1

0
Yt(z)dz (2.23)

=

�
1

1� �
Wt=Pt
MCt

�� 
Yt�t;
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where �t =
R 1
0

�
Pt(z)
Pt

��"
dz is a measure of price dispersion. Since relative prices di¤er across

�rms due to staggered price setting, input usage will di¤er as well, implying that is not possible
to use the usual representative �rm assumption. Therefore, the price dispersion factor, �t

appears in the aggregate labour demand equation. We can also use (2.17) to derive the law of
motion of �t

�t = (1� �)
 
1� � (�t)"�1

1� �

!"=("�1)
+ ��t�1 (�t)

" : (2.24)

Note that in�ation a¤ects welfare of the representative agent through the labour market.
We can see, from (2.24), that higher in�ation increases price dispersion and, from (2.23), that
higher price dispersion increases the labour amount necessary to produce a certain level of
output, implying more disutility on (2.1).

2.5 The steady state

Variables in the steady state are denoted overlined (i.e. X). The details of the steady state of
the variables are in appendix A. We depart from a steady state where gross in�ation � = 1.

Output in steady state is given by: Y =
�
(1� �)MC

� 1
�+v

�
1��
1��

� 1+ v
�+v

1
1� 
, where real marginal

costs in steady state are:

MC =
1� �

"= ("� 1) � 1; (2.25)

where � � � 
�

Q

MC

�1� 
is the share of oil on total costs in steady state. Note that, from the

de�nition of �, the steady state value of output depends on the steady state ratio of the real
oil price with respect to real marginal costs. This implies that a permanent increase in the
real oil price will generate a permanent increase in �, given  < 1. Also, as in standard New
Keynesian models, the real marginal costs in steady state are equal to the inverse of the mark-
up. Since monopolistic competition and taxes a¤ect the steady state of the model, output in
steady state can be below the e¢ cient level (the steady state is distorted). In the special case
that � = �1= ("� 1) < 0 , distortions are eliminated and the steady state is e¢ cient. Let�s
denote the steady state distortion by

� = 1� 1� �
"= ("� 1) :

We have that � = 0 when a subsidy on sales makes the steady state undistorted.

2.6 The log linear economy and the natural equilibrium

To illustrate the e¤ects of oil in the dynamic equilibrium of the economy, we take a log linear
approximation of equations (2.3), (2.4),(2.11),(2.12),(2.18),(2.19),(2.20) and (2.23) around the
deterministic steady-state. We denote variables in their log deviations around the steady state
with lower case letters (i.e. xt = log(Xt=X)). After, imposing the goods and labour market
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clearing conditions to eliminate real wages from the system, the dynamics of the economy are
determined by the following equations:

lt = yt � � [(� + v) yt � qt] ; (2.26)

mct = � (v + �) yt + (1� �) qt; (2.27)

�t = �Et�t+1 + �mct; (2.28)

yt = Etyt+1 �
1

�
(rt � Et�t+1) ; (2.29)

qt = �qt�1 + �t; (2.30)

where � �  � �
1�� , � �

1��
1+v � and � �

1��
� (1� ��). � and (1� �) account for the e¤ects of

oil prices in labour and marginal costs, respectively. � is the elasticity of in�ation respect to
marginal costs.

Interestingly, the e¤ects of oil prices on marginal costs, given by (1� �) in equation (2.27),
depend crucially on the quasi-share of oil in the production function, �, and on the elasticity of
substitution between oil and labour,  . Thus, when � is larger � is smaller, making marginal
costs more responsive to oil prices. Also, when  is lower, the impact of oil on marginal costs
is larger. It is important to note that even though the quasi-share of oil in the production
function, �; can be small, its impact on marginal cost, �; can be magni�ed when oil has few
substitutes (that is when  is low). Moreover, a permanent increase in real oil price or in the
distortions in steady state (that is an increase in Q or a decrease on MC), would make the
marginal costs of �rms more sensitive to oil price shocks since it increases � . In the case that
� = 0, the model collapses to a standard closed economy New Keynesian model without oil.

The natural equilibrium corresponds to the case that nominal rigidities are absent and
prices are �exible. We denote variables in this equilibrium with the supra-index "n". Under
�exible prices real marginal costs satisfy mcnt = 0 and the equilibrium can be expressed as:

(yt � ynt ) = Et
�
yt+1 � ynt+1

�
� 1

�
(rt � Et�t+1) ; (2.31)

�t = �y (yt � ynt ) + �Et�t+1; (2.32)

where �y � �� (v + �). Equations (2.31) and (2.32) are the dynamic IS and the Phillips
curve, respectively, in terms of the output gap (yt � ynt ). The natural level of output depends
negatively on deviations of the oil price from its steady state:

ynt = �
�
1 +  v

� + v

��
�

1� �

�
qt: (2.33)

The natural output depends, among other parameters, on the share of oil on total costs in
steady state. The higher � the more important the impact of oil price shocks on the natural
level. Also, note from equation (2.33) that the response of the natural output to oil shocks
is qualitatively similar to the reaction to productivity shocks in the standard New Keynesian
model with the opposite sign. However, as we will see in the next section, the assumption of
low substitutability of oil has important e¤ects on the design of optimal monetary policy.
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2.7 Calibration

As benchmark calibration we set a quarterly discount factor, �, equal to 0:99 which implies an
annualised rate of interest of 4%. For the coe¢ cient of risk aversion parameter, �, we choose
a value of 1 and the inverse of the elasticity of labor supply, v, is calibrated to be equal to
0:5, similar to those values used in the RBC literature. The probability of the Calvo lottery is
set equal to 0:66 which implies that �rms adjust prices, on average, every three quarters. We
choose a degree of monopolistic competition, ", equal to 7:88; which implies a �rm mark-up of
15% over the marginal cost considering � = 0. We set the value of the elasticity of substitution
between oil and labour in  = 0:2, equal to the average value reported by Hamilton (2009).
We calibrate � = 0:02895 using information from the National Income Product accounts for
the US4. Finally, we assume a persistent AR(1) process for the logarithm of the real oil price
(� = 0:95).

3 A linear-quadratic approximate problem

In this section we characterize the sources of the trade-o¤ between stabilising in�ation and
economic activity that arise in this economy. Also, we present a second order approximation of
the welfare function of the representative household as function of purely quadratic terms. This
representation allows us to characterise the policy problem using only a linear approximation
of the structural equations of the model and also to rank sub-optimal monetary policy rules.

Since the model has an additional production input di¤erent from labour, a standard second
order Taylor approximation of the welfare function will include linear terms, which would lead
to an inaccurate approximation of the optimal policy in a linear-quadratic approach. To
deal with this issue, we use the methodology proposed by Benigno and Woodford (2005),
which consists on eliminating the linear terms of the policy objective using a second order
approximation of the aggregate supply.

3.1 Sources of the trade-o¤

The e¢ cient equilibrium is equivalent to the social planner problem of maximizing the utility of
the representative agent, subject to: the production function for �nal goods and intermediate
goods, the resources constraint and the aggregation conditions for both production inputs.
The e¢ ciency conditions for this problem imply that the marginal rate of substitution is equal
to the marginal productivity of labour:

MRSt =MPLt (z) ; (3.1)

and a symmetric allocation in equilibrium, Ct (z) = Ct and Lt (z) = Lt, for every z:
In the decentralised equilibrium of the model, the ratio between the marginal rate of sub-

stitution and the marginal productivity of labour equals the real marginal costs:

4 In particular, using the demand for oil in steady state we have: � � �QM
Y
. QM=Y is estimated as the

ratio of: (oil and other fuels used for production) / (value added), from the National Income Product accounts
(www.bea.gov). The average value of QM=Y is 2:5% for the period 1972-2006 and � = 1:15 in our calibration,
then � = 1:15� 2:5% = 2:895%
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MRSt
MPLt (z)

=MCt � 1� �t; (3.2)

where �t is the measure of the wedge between them. The optimality condition (3.1) implies
that this wedge must be constant and equal to zero, that is �t = 0, to be socially optimal. A
second order Taylor expansion of equation (3.2) in logarithms is:

�t = �� � (� + v) (yt � ynt )� �v b�t (3.3)

�1
2

1�  
1� ��

2 (1� �)� (� + v)
�
yt +

�

1� �y
n
t

�2
+O

�
k�tk3

�
;

where k�tk denotes a bound on the size of the oil price shock. If monetary policy can be used
to replicate the natural equilibrium, this wedge becomes:

�flext = �� 1
2

1�  
1� �

1

� + v
(qt)

2 +O
�
k�tk3

�
; (3.4)

where we have used the de�nition of the natural output and evaluated the price dispersion
term at zero. Note from equation (3.4), that when replicating the �exible price allocation in
the decentralized equilibrium, the wedge is time varying and depends on the oil price. Because
of this, a trade-o¤ arises: it means that it is not possible at the same time to stabilise in�ation
and to replicate the social planner equilibrium under the presence of oil shocks, unless  = 1
as in the Cobb-Douglas case.

As shown above, when oil is considered a gross complement to labour in production in
a CES technology, the divine coincidence disappears. This result is similar to the case of
real wage rigidities explained in Blanchard and Galí (2007), where stabilising in�ation is no
longer equivalent to stabilising the welfare-relevant output gap. However, the mechanism
here is di¤erent. In this case, the �exible price allocation cannot replicate the social planner
allocation because of the second order e¤ects of oil shocks in the wedge between the marginal
rate of substitution and the marginal product of labour. When oil is di¢ cult to substitute
in production, real marginal costs become a convex function of the real oil price, because the
participation of this input in marginal costs also increases with its price.

Interestingly, eliminating the distortions in steady state cannot eliminate the trade-o¤. In
this case, after making � = 0; the wedge becomes:

�flex;efsst = �1
2

1�  
1� e� 1

� + v
(qt)

2 +O
�
k�tk3

�
(3.5)

for e� � � 
�
Q
�1� � �. In this case, eliminating the distortion in steady state eliminates

the constant and reduces the variability of the wedge with respect to the oil price. However,
it is still not possible to replicate the social planner equilibrium under the presence of oil
shocks. The intuition of this result is that when oil is considered a gross complement to labor
in production in a CES technology, the share of oil in total costs in steady state depends also
on the steady state distortion, when eliminating the distortion (a more competitive economy)
makes the wedge less sensitive to increases in the real oil price. Though, making the steady
state e¢ cient cannot eliminate completely this sensitivity.
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To measure this trade-o¤, in the next sub-section we derive a quadratic loss function from
the second order Taylor expansion of the welfare function of the representative agent. We
obtain a expression in terms of in�ation and the deviations of output from a target level (the
welfare-relevant output gap). This target level accounts for the e¤ects of oil shocks in the
wedge and maximises welfare of the representative agent when in�ation is zero.

3.2 A second-order approximation to utility

A second order Taylor-series approximation to the utility function, expanding around the non-
stochastic steady-state allocation, is:

Uto = Y uc

1X
t=to

�t�to
�
�Lyt +

1

2
uyyy

2
t + uyqytqt + u� b�t

�
+ t:i:p:+O

�
k�tk3

�
; (3.6)

where yt � log
�
Yt=Y

�
and b�t � log�t measure deviations of aggregate output and the price

dispersion measure from their steady state levels, respectively. The term t.i.p. collects terms
that are independent of policy (constants and functions of exogenous disturbances) and hence
irrelevant for ranking alternative policies. The coe¢ cients: uyy, uyq and u� are de�ned in the
appendix B. �L is the wedge in steady state between consumption and labour in the utility
function, de�ned by:

�L = 1� V L

UC

dL

dY
(3.7)

= 1� (1� �) (1� �) (1� � (� + v)) :

Note that in an economy with labour as the only input in the production function, as
in Benigno and Woodford (2005), the wedge between consumption and labour in the utility
function is equal to the distortion in steady state �. In those models, a tax rate that eliminates
this distortion also eliminates the linear term in the second order Taylor expansion of the utility
function. However, in an economy with other inputs di¤erent than labour we have in general
that �L 6= �, and eliminating the monopolistic distortion doesn�t eliminate the linear term in
equation (3.6).

We use the second order Taylor expansion of the price dispersion equation to substituteb�t as a function of quadratic terms of in�ation in our welfare approximation. Also, we use
the second order approximation of the Phillips curve to solve for the in�nite discounted sum
of the expected level of output as function of purely quadratic terms. Then, as in Benigno and
Woodford (2005) we replace this last expression in (3.6) and rewrite it as:

Uto = �

"
Eto

1X
t=to

�t�to
�
1

2
� (yt � y�t )

2 +
1

2
�2t

�
� Tto

#
+ t:i:p:+O

�
k�tk3

�
; (3.8)

where 
 = Y uc�� and Tto =
�L
�y
vto , �� and vto are de�ned in the appendix. � measures the

relative weight between a welfare-relevant output gap and in�ation. y�t is the target output,
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the level of output that maximises our measure of welfare when in�ation is zero. The values
of � and y�t are given by:

� =
�y
"
(1� � �) ; (3.9)

y�t = �
�
1 +  v

� + v

��
��

1� ��

�
qt; (3.10)

where �� accounts for the share of oil on total costs in steady state that replicates the target
level of output, given by:

�� =
�

1 + �
: (3.11)

Both  and � are a function of the deep parameters of the model, they are de�ned in the
appendix and characterised in the next section. Note that the target level of output is written
in a similar way as the natural level of output in equation (2.33), for a di¤erent share of oil on
total costs in steady state.

3.3 The linear-quadratic policy problem

The policy objective Uto can be written in terms of in�ation and the welfare-relevant output
gap de�ned by xt:

xt � yt � y�t :

Benigno and Woodford (2005) showed that maximisation of Uto is equivalent to minimise
the following loss function Lto

Lto � Eto

1X
t=to

�t�to
�
1

2
�x2t +

1

2
�2t

�
; (3.12)

subject to a predetermined value of �to
5 and the Phillips curve for any date from to onwards:

�t = �yxt + �Et�t+1 + ut: (3.13)

Note that we have expressed (3.13) in terms of the welfare relevant output gap, xt: ut is a
"cost-push" shock, which is proportional to the deviations in the real oil price:

ut � �y (y
�
t � ynt ) (3.14)

= $qt;

where

$ � �y

�
1 +  v

� + v

��
�

1� � �
��

1� ��

�
:

5Maximising equation (3.8) implies minimising (3.12) subject to a predeterminated value of vto . Moreover,
because the objective function is purely quadratic, a linear approximation of vto su¢ ces to describe the initial
commitments, given by vto = �to .

13



In this model a "cost-push" shock arises endogenously since oil generates a trade-o¤ between
stabilising in�ation and deviations of output from a target level, di¤erent from the natural level.
In the next section we characterise the conditions under which oil shocks preclude simultaneous
stabilisation of in�ation and the welfare-relevant output gap.

If we are interested in evaluating monetary policy from a timeless perspective, that is
optimising without regard of possible short run e¤ects and avoiding possible time inconsistency
problems. In this case, the predetermined value of �to must equal �

�
to , the optimal value of

in�ation at to consistent with the policy problem. Thus, the policy objective consists on
minimising (3.12) subject to the initial in�ation rate:

�to = ��to : (3.15)

4 Optimal monetary response to oil shocks

In this section we use the linear-quadratic policy problem de�ned in the previous section to
evaluate optimal and sub-optimal monetary policy rules under oil shocks. This policy problem
can be summarised to maximise the following Lagrangian:

Lto � �Eto
� P1

t=to
�t�to

�
1
2�x

2
t +

1
2�

2
t � 't (�t � �yxt � �Et�t+1 � ut)

�
+'to�1

�
�to � ��to

� �
(4.1)

where �t�to't is the Lagrange multiplier at period t.
The second order conditions for this problem are well de�ned for � � 0, which is the case

for plausible parameters of the model6. Then, as Benigno and Woodford (2005) show, since
the loss function is convex, randomisation of monetary policy is welfare reducing and there are
welfare gains when using monetary policy rules.

Under certain circumstances the optimal policy involves complete stabilisation of the in�a-
tion rate at zero for every period, that is complete price stability. These conditions are related
to how oil enters in the production function and are summarised in the following proposition:

Proposition 1 When the production function is Cobb-Douglas the e¢ cient level of output is
equivalent to the natural level of output.

In the case of a Cobb-Douglas production function, the elasticity of substitution between
labour and oil is unity (i.e.  = 1). In this case � = 0 and the share of oil on the marginal
costs in the e¢ cient level is equal to the share in the distorted steady state, equal to � (that
is �� = � = �) Then, the e¢ cient level of output is equal to the natural level of output.

In this special case of the CES production function, �uctuations in output caused by oil
shocks at the target level equals the �uctuations in the natural level. Then, stabilisation of
output around the natural level also implies stabilisation around the target level. This is a

6More precisely, we are interested on studying the model when 0 <  � 1 and � not too high. Since � is
positive for  � 1 and � < (� )�1, which is a very high value for the threshold since � is lower than one and
small.
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special case in which the "divine coincidence" appears. Therefore, setting output equal to the
target level also implies complete stabilisation of in�ation at zero.

In this particular case there is no trade-o¤ between stabilising output and in�ation. How-
ever, in a more general speci�cation of the CES production function this trade-o¤ appears, as
it is established in the next proposition:

Proposition 2 When oil is di¢ cult to substitute in production the e¢ cient output responds
less to oil shocks than the natural level, which generates a trade-o¤.

When oil is di¢ cult to substitute the elasticity of substitution between inputs is lower than
one (that is  < 1). In this case � > 0 and the share of oil on total costs in steady state
that replicates the target level of output is lower than in the steady state (that is �� < �),
which causes that the target output �uctuates less than the natural level (that is jy�t j < jynt j).
Then, in this case it is not possible to have both in�ation zero and output at the target
level at all periods. In this case a "cost-push" shock arises endogenously which generates a
trade-o¤ between stabilising in�ation and the welfare-relevant output gap. This "cost-push"
is proportional to the di¤erence between y�t and y

n
t , as shown in equation (3.14).

As mentioned in the previous section, this trade-o¤ is generated by the convexity of real
marginal costs with respect the real oil price, which produces a time varying wedge between the
marginal rate of substitution and the marginal productivity of labour. Moreover, eliminating
the distortions in steady state reduces the trade-o¤, because this wedge becomes less sensitive
with respect to the oil price. However, making the steady state e¢ cient cannot eliminate this
trade-o¤.

Figure 4.1 shows the e¤ect of the elasticity of substitution on �� and � and on y� and yn

. As mentioned in proposition 1, when  = 1 then �� = � = �. Similarly, as in proposition 2,
lower  increases both �� and �, but �� is always lower than �. Also in this case, the e¢ cient
output �uctuates less than the natural level of output for a 1 percent increase in the real oil
price. Because of this di¤erence between y� and yn, the endogenous "cost-push" shock also
increases when the elasticity of substitution  is lower. Moreover, this �gure also shows the
e¤ects when distortions in steady state are eliminated. In this case, both �� and � decrease
and y� and yn become less sensitive to an oil price shock.

It is also important to analyse how the production function a¤ects �, the weight between
stabilising the welfare relevant output-gap and in�ation. In the special case of a Cobb-Douglas
production function, the coe¢ cient  de�ned in the previous section equals 1 and the relative
weight in the loss function between welfare-relevant output gap and in�ation stabilisation (�)
becomes �y" (1� ��) : This is similar to the coe¢ cient found for many authors for the case of a
closed economy7, which is the ratio of the e¤ect of output on in�ation in the Phillips curve and
the elasticity of substitution among goods, but multiplied by the additional term (1� ��).

The relative weight in the loss function between welfare-relevant output gap and in�ation
stabilisation is decreasing with the degree of price stickiness (�) and the elasticity of substitution
among goods ("). When prices are more sticky (larger �), �y is lower and price dispersion is

7See for example Woodford (2003) and Benigno and Woodford (2005).
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Figure 4.1: (a) Steady state and e¢ cient share of oil on marginal costs. (b) Natural and
e¢ cient level of output.

higher. Similarly, a larger elasticity of substitution among goods (") ampli�es the welfare losses
caused by any given price dispersion. In both cases, the costs of in�ation are more important
and output stabilization has a lower weight relative to in�ation stabilisation.

The term (1� ��) captures the e¤ects of oil shocks on in�ation through costs. When the
weight of oil in the production function (�) is higher, the e¤ects of oil shocks in marginal costs
and in�ation are more important. Then, the more important it becomes to stabilise in�ation
in respect to output.

The next proposition describes the behaviour of � with respect to the elasticity of substi-
tution  .

Proposition 3 The lower the elasticity of substitution between oil and labour, the lower the
weight in the loss function between welfare-relevant output gap and in�ation stabilisation (�).

When the elasticity of substitution  is lower, the e¤ect of output �uctuations on in�ation
becomes smaller (�y). This implies a higher relative e¤ect on in�ation respect to output, and
therefore lower �. This also implies a higher sacri�ce ratio, since you need relatively larger
interest rate changes in order to stabilise in�ation.

The next graph shows the e¤ects on � of the elasticity of substitution for three di¤erent
values of �. � takes its highest value when  = 1 and decreases exponentially for lower  . Also,
higher � reduces � , which means a higher weight of in�ation relative to output �uctuations
in the welfare function.
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Figure 4.2: Relative weight between output and in�ation stabilisation (�).

4.1 Optimal unconstrained response to oil shocks from a timeless perspec-
tive

When we solve for the Lagrangian (4.1), we obtain the following �rst order conditions that
characterise the solution of the optimal path of in�ation and the welfare-relevant output gap
in terms of the Lagrange multipliers:

Proposition 4 The optimal unconstrained response to oil shocks is given by the following
conditions:

�t = 't�1 � 't;

xt =
�y
�
't;

where 't is the Lagrange multiplier of the optimisation problem, that has the following law of
motion :

't = �''t�1 � �qt;
for � � �'

1���'�$; and satis�es the initial condition:

'to�1 = ��
1X
k=0

�k'qt�1�k;

where �' � Z �
q
Z2 � 1

� < 1 and Z �
�
(1 + �) +

�2y
�

�
=(2�):
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Figure 4.3: Impulse response to an oil shock under optimal unconstrained monetary policy.

The proof is in the appendix. From a timeless perspective the initial condition for 'to�1
depends on the past realisations of the oil prices and it is time-consistent with the policy
problem.

Also, we de�ne the impulse response of a shock in the oil price in period t (�t) in a variable
z in t+ j as the unexpected change in its transition path. Then the impulse is calculated by:

It (zt+j) = Et [zt+j ]� Et�1 [zt+j ] ;

and the impulse response for in�ation, the price level and the welfare-relevant output gap for
the optimal policy is:

Ioptt (�t+j) =

 
�j+1 � � j+1'

�� �'
� �j � � j'

�� �'

!
��t; (4.2)

Ioptt (pt+j) =

 
�j+1 � � j+1'

�� �'

!
��t; (4.3)

Ioptt (xt+j) = ��y
�

 
�j+1 � � j+1'

�� �'

!
��t; (4.4)

See appendix B.3 for details on the derivation.
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Figure 4.3 shows the optimal unconstrained impulse response functions of in�ation, the
welfare-relevant output gap, the price level and the nominal interest rate to an oil price shock
of size one for di¤erent values of the elasticity of substitution ( ). In�ation and the nominal
interest rate are in yearly terms. The benchmark case is a value of  = 0:2. In these graphs we
can see that after an oil shock the optimal response is an increase of in�ation and a reduction of
the welfare-relevant output gap. The nominal interest rate also increases to partially o¤set the
e¤ects of the oil shock on in�ation. In�ation after 8 quarters become negative as the optimal
unconstrained plan is associated with price stability. That is, after some time, the price level
returns to its initial level. To summarise, the optimal response to an oil shock implies an e¤ect
on impact on in�ation that dies out very rapidly and a more persistent e¤ect on output.

An increase in the elasticity of substitution from 0:2 to 0:4 reduces the size of the cost push
shock, diminishes � but increases �. Then, the impact on all the variables is reduced, in�ation
being initially the more a¤ected variable. Also, the higher impact on welfare-relevant output
gap is after 8 quarters. In contrast, when the elasticity of substitution is unity, since there is
no such a trade-o¤, both in�ation and welfare-relevant output gap are zero in every period.

4.2 Evaluation of suboptimal rules - the non-inertial plan

We can use our linear-quadratic policy problem for ranking alternative sub-optimal policies.
One example of such policies is the optimal non-inertial plan. By a non-inertial policy we mean
a monetary policy rule that depends only on the current state of the economy. In this case, if
the policy results in a determinate equilibrium, then the endogenous variables depend also on
the current state.

If the current state of the economy is given by the cost push shock, which has the following
law of motion:

ut = �ut�1 +$�t;

where �t is the oil price shock and $ is de�ned in the previous section. A �rst order general
description of the possible equilibrium dynamics can be written in the form 8:

�t = � + f�ut; (4.5)

xt = x+ fxut; (4.6)

't = '+ f'ut; (4.7)

where we need to determine the coe¢ cients: �; x; '; f�; fx and f'. To solve for the optimal
non-inertial plan we need to replace (4.5),(4.6) and (4.7) in the Lagrangian (4.1) and solve
for the coe¢ cients that maximise the objective function. The results are summarised in the
following proposition:

Proposition 5 The optimal non-inertial plan is given by �t = � + f�ut and xt = x + fxut,

8Note that in this sub-section we focus on the simplest case of the non-inertial plan, in which all endogenous
variables depends only the current state of the economy. In contrast, Benigno and Woodford (2005) work
with a di¤erent non-inertial plan, in which the lagrange multipliers satisfy the �rst order conditions of the
unconstrained problem
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where
� = 0; f� =

�(1��)
�2y+�(1���)(1��)

:

x = 0; fx =
�y

�2y+�(1���)(1��)
:

Note that in the optimal non-inertial plan the ratio of in�ation/output gap is constant and
equal to �(1��)

�y
. The higher the weight in the loss function for output �uctuations relative to

in�ation �uctuations, the higher the in�ation rate. Also, the more persistent the oil shocks,
the lower the weight on in�ation relative to the welfare-relevant output-gap.

Similar to the optimal case, the impulse response functions for in�ation and output are
de�ned by:

Init (�t+j) = f�$�
j�t;

Init (xt+j) = f�$�
j�t:

Figure 4.4 shows the responses in the optimal non-inertial plan to an unitary oil price shock.
As shown, the main di¤erence in respect to the previous plan is that in the optimal non-inertial
plan in�ation returns to its initial level after some time, but in the optimal unconstrained plan
the price level is the one that converges. This implies that in�ation must be negative after some
quarters in the optimal unconstrained plan. Also, the reduction in the welfare-relevant output
gap is much lower on impact in the case of the optimal unconstrained plan in comparison
with the optimal non inertial plan. In the latter, the reduction in the welfare-relevance is
proportional to the increase in in�ation.

Both exercises, the optimal unconstrained plan and the optimal non-inertial plan, show
that to the extent that economies are more dependent on oil, in the sense that oil is di¢ cult to
substitute, the impact of oil shocks on both in�ation and output is greater. Also, in this case,
monetary policy should react by raising more the nominal interest rate and allowing relatively
more �uctuations in in�ation than in output.

Furthermore, �gure 4.4 shows the responses under the optimal non-inertial plan when  
increases from 0:2 to 0:4. As shown, the impact on all the variables is reduced, because an
increase of  diminishes the size of the cost-push shock. Also, the increase of  makes �
larger, which makes the impact on in�ation relatively higher with respect to the response
of the welfare-relevant output gap. As in the unconstrained case, when  = 1 the trade-o¤
disappears. In that case, in�ation is zero in every period and output equals its target level.

After analysing the optimal plans, in �gure 4.5 we plot the welfare losses for these two
type of policies for di¤erent elasticities of substitution  . The welfare losses are normalized
with respect to the variance of oil shocks. As shown, the welfare loss under both regimes are
the same, equal to zero, when the production function is Cobb-Douglas. Moreover, when the
elasticity of substitution  decreases, the di¤erence in welfare losses under both policy plans
increases exponentially, which is consistent with the increase in the size of the "cost-push"
shock.
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Figure 4.4: Impulse response to an oil shock under the optimal non-inertial plan.
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4.3 A simple rule that implements the optimal non inertial plan

Optimal monetary plans can be di¢ cult to communicate and implement, because they rely
on real-time calculations of the welfare-relevant output gap and the size of the "cost-push"
shock, which are unobservable variables. Because of this, in this subsection we estimate a
simple interest rate rule that implements the optimal non-inertial plan that is based only on
observable variables, such as in�ation and output. This rule has the following form:

rt = ���t + �yyt: (4.8)

An advantage of using a speci�cation such as (4.8) is that we can compare it with feedback
rules that have been estimated for di¤erent economies. To estimate (4.8), we replace this
policy rule in dynamic IS equation (2.29) and use the solution from the optimal non-inertial
plan for in�ation (4.5) and output gap (4.6) and the output target-level (3.1), to solve for
the coe¢ cients �� and �y that solve the equilibrium. The solution for these coe¢ cients is
exact because there is only one shock in the economy. Also, there is not only one set, but a
continuous combination of parameters �� and �y that implement this optimal plan.

In �gure 4.6 we show the combination of parameters of the simple rule that implement
the optimal non-inertial plan for di¤erent values of the elasticity of substitution  . A �rst
thing to note is that there is that there is a positive relationship between �� and �y, which
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is consistent with the fact that an oil shock implies a trade-o¤. That is, if the response in
the feedback rule to in�ation is higher, then the response to output �uctuations must also be
higher to compensate for the e¤ects of oil shocks on economic activity. Moreover, when the
elasticity of substitution is lower, the trade-o¤ increases and the intercept in �gure 4.6 is lower.
This implies that an economy with in�ation targeting where oil is more di¢ cult to substitute
should have a less agressive response to in�ation than in an economy that is less dependant on
oil.

Also, consistent with a larger trade-o¤ for lower elasticity of substitution, the response
to output �uctuations must increase more for a given increase in the response to in�ation
�uctuations. That is, the slope in �gure 4.6 becomes �atter. This implies that in a �exible in-
�ation targeting regime, due to oil shocks considerations, a more agressive response to in�ation
�uctuations must be accompained with stronger response to output �uctuations.

5 Conclusions

This paper characterises the utility-based loss function for a closed economy in which oil is
used in the production process, there is staggered price setting and monopolistic competition.
As in Benigno and Woodford (2005), our utility based-loss function is a quadratic on in�ation
and the deviations of output from a target level, which is the welfare-relevant output gap.

We found that this target level di¤ers from the natural level of output when the elasticity
of substitution between labour and oil is di¤erent from one. This generates a trade-o¤ between
stabilising in�ation and output in the presence of oil shocks. Also, the cost-push shocks involved
in this trade-o¤ are proportional to oil shocks. The lower this elasticity of substitution, the
higher the size of the cost-push shock. This trade-o¤ is generated by the convexity of real
marginal costs with respect to the real oil price, which produces a time varying wedge between
the marginal rate of substitution and the marginal productivity of labour. We also �nd that
eliminating the distortions in steady state reduces the trade-o¤, because this wedge becomes
less sensitive with respect to the oil price. However, in contrast to Benigno and Woodford
(2005), making the steady state e¢ cient cannot eliminate this trade-o¤.

Furthermore, the relative weight between the welfare-relevant output gap and in�ation
on the utility-based loss function depends directly on this elasticity of substitution. On the
contrary, the higher the share of oil in the production function, the smaller the relative weight.

These results show that to the extent that economies are more dependent on oil, in the sense
that oil is di¢ cult to substitute in production, the impact of oil shocks on both in�ation and
output is higher. Also, in this case the central bank should allow less �uctuation on in�ation
relative to output due to oil shocks. Moreover, these results shed light on how technological
improvements which reduces the dependence on oil, also reduce the impact of oil shocks on
the economy.
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A Appendix: the deterministic steady state

The non-stochastic steady state of the endogenous variables for � = 1 is given by:

Interest rate R = ��1

Marginal costs MC =
�
"�1
"

�
(1� �)

Real wages W=P = 1��
MC

�
1��
1��

� 1
1� 

Output Y =
�
1��
MC

� 1
�+�

�
1��
1��

� 1+ �
�+�

1
1� 

Labor L =
�
1��
MC

� 1
�+�

�
1��
1��

� 1�� 
�+�

1
1� 

Table A.1: The deterministic steady state

where � � � 
�
Q=MC

�1� 
� is the share of oil in the total costs in steady state. Notice

that the steady state values of real wages, output and labour depend on the steady state
ratio of oil prices with respect to the marginal cost. This implies that permanent changes in
oil prices would generate changes in the steady state of these variables. Also, as the standard
New-Keynesian models, the marginal cost in steady state is equal to the inverse of the mark-up.

Since monopolistic competition a¤ects the steady state of the model, output in steady state
is below the e¢ cient level. We call to this feature a distorted steady state and � � 1 �MC
accounts for e¤ects of the monopolistic distortions in steady state.

Since the technology has constant returns to scale, we have that:

V L

UC

L

Y
=

 
W=P

MC

L

Y

!
MC

= (1� �) (1� �)

the ratio of the marginal rate of substitution multiplied by the ratio labour/output is a
proportion (1� �) of the marginal costs. This expression helps us to obtain the wedge between
the consumption and labor in the utility function in steady state:

V L

UC

dL

dY
=

�
V L

UC

L

Y

� 
dL=L

dY =Y

!
= (1� �) (1� �) (1� � (� + v))
� 1� �L
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B Appendix: The second order solution of the model

B.1 The recursive AS equation

We divide the equation for the aggregate price level (2.17) by P 1�"t and make Pt=Pt�1 = �t

1 = � (�t)
�(1�") + (1� �)

�
P �t (z)

Pt

�1�"
(B-1)

Aggregate in�ation is a function of the optimal price level of �rm z. Also, from equation (2.15)
the optimal price of a typical �rm can be written as:

P �t (z)

Pt
=
Nt

Dt

where, after using the de�nition for the stochastic discount factor: �t;t+k = �k
�
Ct+k
Ct

���
Pt
Pt+k

,

we de�ne Nt and Dt as follows:

Nt = Et

" 1X
k=0

� (��)k F "t;t+kYt+kC
��
t+kMCt+k

#
(B-2)

Dt = Et

" 1X
k=0

(��)k F "�1t;t+kYt+kC
��
t+k

#
(B-3)

Nt and Dt can be expanded as:

Nt = �YtC
��
t MCt + Et

"
�"t+1

1X
k=0

� (��)k+1 F "t+1;t+1+kYt+1+kC
��
t+1+kMCt+1+k

#
(B-4)

Dt = YtC
��
t + Et

"
�"�1t+1

1X
k=0

(��)k+1 F "�1t+1;t+1+kC
��
t+1+kYt+1+k

#
(B-5)

where we have used the de�nition for Ft;t+k = Pt+k=Pt.
The Phillips curve with oil prices is given by the following three equations:

� (�t)
"�1 = 1� (1� �)

�
P �t (z)

Pt

�1�"
(B-6)

Nt = �Y 1��t MCt + ��Et (�t+1)
"Nt+1 (B-7)

Dt = Y 1��t + ��Et (�t+1)
"�1Dt+1 (B-8)

where we have reordered equation (B-1) and we have used equations (B-2) and (B-3),
evaluated one period forward, to replace Nt+1 and Dt+1 in equations (B-4) and (B-5), and use
the law of iterated expectations.
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B.2 The second order approximation of the model

In this sub-section we present a log-quadratic (Taylor-series) approximation of the fundamental
equations of the model around the steady state, a detailed derivation is provided in Appendix
B. The second-order Taylor-series expansion serves to compute the equilibrium �uctuations

of the endogenous variables of the model up to a residual of order O
�
k�k2

�
, where k�tk is a

bound on the size of the oil price shock. Up to second order, equations (2.26) to (2.29) are
replaced by the following set of log-quadratic equations:

Labour Market
lt = yt � � [(v + �) yt � qt] +

�
1��

b�t + 1
2
1� 
1�� ��

2 [(v + �) yt � qt]
2 +O

�
k�k3

�
B � i

Aggregate Supply
Marginal Costs
mct = � (v + �) yt + (1� �) qt +

1
2
1� 
1�� (1� �)�2 [(v + �) yt � qt]

2 + �v b�t +O �k�k3� B � ii

Price dispersionb�t = � b�t + 1
2
" �
1���

2
t +O

�
k�k3

�
B � iii

Phillips Curve
vt = �mct +

1
2
�mct (2 (1� �) yt +mct) +

1
2
"�2t + �Etvt+1 +O

�
k�k3

�
B � iv

where we have de�ned the auxiliary variables:

vt � �t +
�
"�1
1�� + "

�
�2t +

1
2
(1� ��)�tzt B � v

zt � 2 (1� �) yt +mct + ��Et
�
2"�1
1����t+1 + zt+1

�
+O

�
k�tk

2� B � vi

Aggregate Demand
yt = Etyt+1 � 1

�
(rt � Et�t+1)� 1

2
�Et

�
(yt � yt+1)� 1

�
(rt � �t+1)

�2
+O

�
k�k3

�
B � vii

Table A.1: Second order Taylor expansion of the equations of the model

Equations (B-i) and (B-ii) are obtained taking a second-order Taylor-series expansion of the
aggregate labour and the real marginal cost equation, after using the labour market equilibrium
to eliminate real wages. b�t is the log-deviation of the price dispersion measure �t, which is a
second order function of in�ation and its dynamics, which is represented with equation (B-iii).

We replace the equation for the marginal costs (B-ii) in the second order expansion of the
Philips curve and iterate forward. Then, replace recursively the price dispersion terms from
equation (B-iii) to obtain the in�nite sum of the Phillips curve only as a function of output,
in�ation and the oil shock:

vto =

1X
t=to

�t�to
�

�yyt + �qqt +
1
2" (1 + �v)�

2
t

+1
2�
�
cyyy

2
t + 2cyqytqt + cqqq

2
t

� �
+(1� �)�v b�to�1 +

�
k�tk3

�
(B-9)

where cyy, cyq and cqq are de�ned in the appendix.
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B.2.1 The MC equation and the labour market equilibrium

The real marginal cost (2.12) and the labour market equations (2.4 and 2.23) have the following
second order expansion:

mct = (1� �)wt + �qt +
1

2
� (1� �) (1�  ) (wt � qt)2 +O

�
k�tk3

�
(B-10)

wt = vlt + �yt (B-11)

lt = yt �  (wt �mct) + b�t (B-12)

Where wt and b�t are, respectively, the log of the deviation of the real wage and the price disper-
sion measure from their respective steady state. Notice that equations (B � 11) and (B � 12)
are not approximations, but exact expressions. Solving equations (B � 11) and (B � 12) for
the equilibrium real wage:

wt =
1

1 + v 

h
(v + �) yt + v mct + v b�t

i
(B-13)

Plugging the real wage in equation (B � 10) and simplifying:

mct = � (� + v) yt + (1� �) (qt) + �v b�t (B-14)

+
1

2

1�  
1� ��

2 (1� �) [(� + v) yt � qt]2 +O
�
k�tk3

�
where � � (1� �) = (1 + v �) : This is the equation (B � ii) in the previous section. This
expression is the second order expansion of the real marginal cost as a function of output and
the oil prices. Similarly, we can express labour in equilibrium as a function of output and oil
prices:

lt = yt � � [(v + �) yt � qt] +
�

1� �
b�t +

1

2

1�  
1� ���

2 [(v + �) yt � qt]2 +O
�
k�tk3

�
(B-15)

for:
� �  �

�

1� �
where � measures the e¤ects of oil shocks on labour.

B.2.2 The price dispersion measure

The price dispersion measure is given by

�t =

Z 1

0

�
Pt (z)

Pt

��"
dz

Since a proportion 1� � of intermediate �rms set prices optimally, whereas the other � set the
price last period, this price dispersion measure can be written as:

�t = (1� �)
�
P �t (z)

Pt

��"
+ �

Z 1

0

�
Pt�1 (z)

Pt

��"
dz
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Dividing and multiplying by (Pt�1)
�" the last term of the RHS:

�t = (1� �)
�
P �t (z)

Pt

��"
+ �

Z 1

0

�
Pt�1 (z)

Pt�1

��"�Pt�1
Pt

��"
dz

Since P �t (z) =Pt = Nt=Dt and Pt=Pt�1 = �t, using equation (2:8) in the text and the de�nition
for the dispersion measure lagged on period, this can be expressed as

�t = (1� �)
 
1� � (�t)"�1

1� �

!"=("�1)
+ ��t�1 (�t)

" (B-16)

which is a recursive representation of �t as a function of �t�1 and �t.
Benigno and Woodford (2005) showed that a second order approximation of the price

dispersion depends solely on second order terms on in�ation. Then, the second order approxi-
mation of equation (B-16) is:

b�t = � b�t�1 +
1

2
"

�

1� ��
2
t +O

�
k�tk3

�
(B-17)

which is equation (B � iii) in the previous section. Moreover, we can use equation (B � 17)
to write the in�nite sum:

1X
t=to

�t�to b�t = �
1X
t=to

�t�to b�t�1 +
1

2
"

�

1� �

1X
t=to

�t�to
�2t
2
+O

�
k�tk3

�
(1� ��)

1X
t=to

�t�to b�t = � b�to�1 +
1

2
"

�

1� �

1X
t=to

�t�to
�2t
2
+O

�
k�tk3

�
Dividing by (1� ��) and using the de�nition of � :

1X
t=to

�t�to b�t =
�

1� ��
b�to�1 +

1

2

"

�

1X
t=to

�t�to
�2t
2
+O

�
k�tk3

�
(B-18)

The discounted in�nite sum of b�t is equal to the sum of two terms, on the initial price dispersion
and the discounted in�nite sum of �2t .

B.2.3 The second order approximation of the Phillips Curve

The second order expansion for equations (B � 6), (B � 7) and (B � 8) are:

�t =
(1� �)
�

(nt � dt)�
1

2

("� 1)
1� � (�t)

2 +O
�
k�tk3

�
(B-19)

nt = (1� ��)
�
at +

1

2
a2t

�
+ ��

�
Etbt+1 +

1

2
Etb

2
t+1

�
� 1
2
n2t +O

�
k�tk3

�
(B-20)

dt = (1� ��)
�
ct +

1

2
c2t

�
+ ��

�
Etet+1 +

1

2
Ete

2
t+1

�
� 1
2
d2t +O

�
k�tk3

�
(B-21)
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Where we have de�ned the auxiliary variables at,bt+1,ct and et+1 as:

at � (1� �) yt +mct bt+1 � "�t+1 + nt+1
ct � (1� �) yt et+1 � ("� 1)�t+1 + dt+1

Subtract equations (B � 20) and (B � 21), and using the fact thatX2�Y 2 = (X � Y ) (X + Y ),
for any two variables X and Y :

nt � dt = (1� ��) (at � ct) +
1

2
(1� ��) (at � ct) (at + ct) (B-22)

+��Et (bt+1 � et+1) +
1

2
��Et (bt+1 � et+1) (bt+1 + et+1)

�1
2
(nt � dt) (nt + dt) +O

�
k�tk3

�
Plugging in the values of at, bt+1, ct and et+1 into equation (B � 22), we obtain: (B � 23)

nt � dt = (1� ��)mct +
1

2
(1� ��)mct (2 (1� �) yt +mct) (B-23)

+��Et (�t+1 + nt+1 � dt+1)

+
1

2
��Et (�t+1 + nt+1 � dt+1) ((2"� 1)�t+1 + nt+1 + dt+1)

�1
2
(nt � dt) (nt + dt) +O

�
kqt; �qk3

�
Taking forward one period equation (B � 19), we can solve for nt+1 � dt+1:

nt+1 � dt+1 =
�

1� ��t+1 +
1

2

�

1� �
("� 1)
1� � (�t+1)

2 +O
�
k�tk3

�
(B-24)

replace equation (B � 24) in (B � 23) and make use of the auxiliary variable zt = (nt + dt) = (1� ��)

nt � dt = (1� ��)mct +
1

2
(1� ��)mct (2 (1� �) yt +mct) (B-25)

+
�

1� ��
�
Et�t+1 +

�
"� 1
1� � + "

�
Et�

2
t+1 + (1� ��)Et�t+1zt+1

�
�1
2

�

1� � (1� ��)�tzt +O
�
k�tk3

�
Notice that we use only the linear part of equation (B � 24) when we replace nt+1 � dt+1
in the quadratic terms because we are interested in capturing the terms only up to second
order of accuracy. Similarly, we make use of the linear part of equation (B � 19) to replace
(nt � dt) = �

1���t in the right hand side of equation (B � 25). Replace equation (B � 25) in
(B � 19):

�t = �mct +
1

2
�mct (2 (1� �) yt +mct) (B-26)

+�

�
Et�t+1 +

�
"� 1
1� � + "

�
Et�

2
t+1 + (1� ��)Et�t+1zt+1

�
�1
2
(1� ��)�tzt �

1

2

("� 1)
1� � (�t)

2 +O
�
k�tk3

�
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for

� � (1� �)
�

(1� ��)

where zt has the following linear expansion:

zt = 2 (1� �) yt +mct + ��Et
�
2"� 1
1� ���t+1 + zt+1

�
+O

�
k�tk3

�
(B-27)

De�ne the following auxiliary variable:

vt = �t +
1

2

�
"� 1
1� � + "

�
�2t +

1

2
(1� ��)�tzt (B-28)

Using the de�nition for vt, equation (B � 26) can be expressed as:

vt = �mct +
1

2
�mct (2 (1� �) yt +mct) +

1

2
"�2t + �Etvt+1 +O

�
k�tk3

�
(B-29)

which is equation (B � iv) in the previous section.
Moreover, the linear part of equation (B-29) is:

�t = �mct + �Et (�t+1) +O
�
k�tk2

�
which is the standard New Keynesian Phillips curve, in�ation depends linearly on the real
marginal costs and expected in�ation.

Replace the equation for the marginal costs (B-14) in the second order expansion of the
Phillips curve (B-29)

vt = �yyt + �qqt + ��v b�t +
1

2
"�2t + (B-30)

+
1

2
�
�
cyyy

2
t + 2cyqytqt + cqqq

2
t

�
+ �Etvt+1 +O

�
k�tk3

�
where the coe¢ cients of the linear part are given by

�y = �� (� + v)

�q = � (1� �)

and those of the quadratic part are:

cyy = � (� + v) [2 (1� �) + � (� + v)] + (1�  ) �
2 (1� �) (� + v)2

1� �

cyq = (1� �) [2 (1� �) + � (� + v)]� (1�  ) �
2 (1� �) (� + v)

1� �

cqq = (1� �)2 + (1�  ) �
2 (1� �)
1� �

Equation B-30 is a recursive second order representation of the Phillips curve. However, we
need to express the price dispersion in terms of in�ation in order to have a Phillips curve only

32



as a function of output, in�ation and the oil shock. Equation B-30 can also be expressed as
the discounted in�nite sum:

vto =
1X
t=to

�t�to
�
�yyt + �qqt + ��v b�t +

1

2
"�2t +

1

2
�
�
cyyy

2
t + 2cyqytqt + cqqq

2
t

��
+
�
k�tk3

�
after making use of equation B-18, the discounted in�nite sum of b�t, vto becomes

vto =
1X
t=to

�t�to
�
�yyt + �qqt +

1

2
" (1 + �v)�2t +

1

2
�
�
cyyy

2
t + 2cyqytqt + cqqq

2
t

��
+

�v�

1� ��
b�to�1+

�
k�tk3

�
(B-31)

This is the Phillips curve expressed as a in�nite sum of output, in�ation and oil shock.

B.3 A second-order approximation to utility

The expected discounted value of the utility of the representative household

Uto = Eto

1X
t=to

�t�to [u (Ct)� v (Lt)] (B-32)

The �rst term can be approximated as:

u (Ct) = Cuc

�
ct +

1

2
(1� �) c2t

�
+ t:i:p:+O

�
k�tk3

�
(B-33)

Similarly, the second term:

v (Lt) = LvL

�
lt +

1

2
(1 + v) l2t

�
+ t:i:p:+O

�
k�tk3

�
(B-34)

Replace the equation for labour in equilibrium in B-34:

v (Lt) = LvL

�
vyyt +

1

2
vyyy

2
t + vyqytqt + v� b�t

�
+ t:i:p:+O

�
k�tk3

�
(B-35)

where:

vy = 1� � (v + �)

vyy = (1 + v) (1� � (v + �))2 + 1
2

1�  
1� ��

2� (� + v)2

vyq = (1 + v) � (1� � (v + �))� 1
2

1�  
1� ��

2�2 (� + v)

v� =
�

1� �
We make use of the following relation:

LvL = (1� �) (1� �)Y uc (B-36)
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where � = 1 � 1��
"=("�1) is the steady state distortion from monopolistic competition. Replace

the previous relation, equation B-33 and B-35 in B-32, and make use of the clearing market
condition: Ct = Yt

Uto = Y uc

1X
t=to

�t�to
�
uyyt +

1

2
uyyy

2
t + uyqytqt + u� b�t

�
+ t:i:p:+O

�
k�tk3

�
(B-37)

where

uy = 1� (1� �) (1� �) vy = �L
uyy = 1� � � (1� �) (1� �) vyy = 1� � � (1� �L) vyy= (1� � (v + �))
uyq = � (1� �) (1� �) vyq = � (1� �L) vyq= (1� � (v + �))
u� = � (1� �) (1� �) v� = � (1� �)�

where we make use of the following change of variable:

�L = 1� (1� �) (1� �) (1� � (v + �)) (B-38)

where �L is a wedge between consumption and labor in the utility function in steady state.
Replace the present discounted value of the price distortion (B-18) in B-37:

Uto = Y ucEto

1X
t=to

�t�to
�
uyyt +

1

2
uyyy

2
t + uyqytqt +

1

2
u��

2
t

�
+ t:i:p:+O

�
kqtk3

�
(B-39)

where
u� =

"

�
u� = � (1� �)�

"

�
Use equation B-31, the second order approximation of the Phillips curve, to solve for the
expected level of output:

1X
t=to

�t�toyt = � 1

�y

1X
t=to

�t�to
�
�qqt +

1

2
" (1 + �v)�2t +

1

2
�
�
cyyy

2
t + 2cyqytqt + cqqq

2
t

��
+
1

�y

�
vto � �v (1� �) b�to�1

�
+
�
k�tk3

�
(B-40)

Replace equation B-40 in B-39 to express it as function of only second order terms:

Uto = �
Eto
1X
t=to

�t�to
�
1

2
�y (yt � y�t )

2 +
1

2
���

2
t

�
+ Tto + t:i:p:+O

�
kqtk3

�
(B-41)

which is equation B-36 in the text, where:

�y = �L
�

�y
cyy � uyy

�� = �L
" (1 + �v)

�y
� u�

y�t = �
�L

�
�y
cyq � uyq

�L
�
�y
cyy � uyy

qt
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additionally we have that 
 = Y uc and Tto = Y uc
�L
�y
vto

Make use of the following auxiliary variables:

!1 = (1� �) �L + � (� + v)

!2 = � (� + v)

�
1� �
1� � + (1� �L)

� �

1� � �

�
!3 = �L��

then, �y, �� and y�t can be written as a function of !1, !2 and !3

�y = !1 + (1�  )!2
�� =

"

�y (1� � �)
[!1 + (1�  )!3]

y�t = � 1� �
� (� + v)

"
!1 � (1�  ) �

1��!2

!1 + (1�  )!2

#
qt

using the de�nitions for �, y�t can be expressed as:

y�t = �
�
1 +  v

� + v

��
�

1� �+ �

�
(B-42)

where

� � (1�  ) (1� �)!2
(1� �)!1 � (1�  )�!2

Denote ��, the e¢ cient share in steady state of oil in the marginal costs, where

�� =
�

1 + �

then y�t is

y�t = �
�
1 +  v

� + v

��
��

1� ��

�
qt (B-43)

Note from the de�nition for � that when  = 1, then � = 0; �� = � = � and y�t = ynt . For a
Cobb-Douglas production function the e¢ cient level of output equals the natural level. Also,
when  < 1, then � > 0; �� < � and jy�t j < jynt j. For the elasticity of substitution between
inputs lower than one, the e¢ cient level �uctuates less to oil shocks than the natural level.
Also note that even when �L is equal to zero, which summarises the e¤ect of monopolistic
distortions on the wedge between the marginal rate of substitution and the marginal product
of labour, � is still di¤erent than zero for  6= 1: This indicates that the e¢ cient level of output
still diverges from the natural level even if we eliminate the e¤ects of monopolistic distortions.

In the same way, the natural rate of output can be expressed as:

ynt = �
�
1 +  v

� + v

��
�

1� �

�
qt (B-44)
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Similarly, we can simplify � = �y=�� as:

� =
�y
��
=
�y (1� � �)

"


where we use the auxiliary variable:

 �
�
!1 + (1�  )!2
!1 + (1�  )!3

�
Note that when  = 1, then  = 1 and when  < 1, then  = 1 since !2 > !3.

C Appendix: Optimal monetary policy

C.1 Optimal response to oil shocks

The policy problem consists in choosing xt and �t to maximise the following Lagrangian:

L = �Eto

( 1X
t=to

�t�to
�
1

2
�x2t +

1

2
�2t � 't (�t � �ybyt � �Et�t+1 � ut)�+ 'to�1 ��to � ��to�

)

where �t�to't is the Lagrange multiplier associated with the constraint at time t
The �rst order conditions with respect to �t and yt are respectively

�t = 't�1 � 't (C-1)

�xt = �y't (C-2)

and for the initial condition:
�to = ��to

where ��to is the initial value of in�ation which is consistent with the policy problem in a
"timeless perspective".

Replace conditions C-1 and C-2 in the Phillips Curve:

�Et't+1 �
�
(1 + �)�+ �2y

�
't + �'t�1 = �ut (C-3)

this di¤erence equation has the following solution9 :

't = �''t�1 � �'
X1

j=0
�j� j'Etut+j (C-4)

where �' is the characteristic root, lower than one, of C-3, and it is equal to

�' = Z �
r
Z2 � 1

�

9See Woodford (2003), pp. 488-490 for details on the derivation.
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for Z =
�
(1 + �) +

�2y
�

�
=(2�): Since the oil price follows an AR(1) process of the form:

qt = �qt�1 + �t

and the mark-up shock is: ut = $qt, then ut follows the following process:

ut = �ut�1 +$�t (C-5)

Solution to the optimal problem: Taking into account C-5, equation C-4 can be expressed
as:

't = �''t�1 � �qt (C-6)

where:
� =

�'
1� ��'�

$

Initial condition: Iterate backward equation (C-6) and evaluate it at to � 1, this is the
timeless solution to the initial condition 'to�1 :

'to�1 = ���
1
k=0 (�')

k qto�1�k (C-7)

which is a weighted sum of all the past realisations of oil prices.
Equations (C-1), (C-2), (C-6) and (C-7) are the conditions for the optimal unconstrained

plan presented in proposition 3.5. Impulse responses An innovation of �t to the real oil
price a¤ects the current level and the expected future path of the Lagrange multiplier by an
amount:

Et't+j � Et�1't+j = �
�j+1 � (�')j+1

�� �'
��t

for each j � 0: Given this impulse response for the multiplier. (C-1) and (C-2) can be used to
derive the corresponding impulse responses for in�ation and output gap:

Et�t+j � Et�1�t+j =

"
�j+1 � (�')j+1

�� �'
� �j � (�')j

�� �'

#
��t

Etyt+j � Et�1yt+j = ��y
�

�j+1 � (�')j+1

�� �'
��t

which are expressions that appear in the main text.

C.2 The optimal non-inertial plan

We want to �nd a solution for the paths of in�ation and output gap such that the behaviour
of endogenous variables is function only on the current state. That is:

�t = � + f�ut (C-8)

xt = x+ fxut (C-9)

't = '+ f'ut (C-10)
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where the coe¢ cients �; y; '; f�; fx and f' are to be determined
Replace (C-8), (C-9) and (C-10) in the Lagrangian and take unconditional expected value:

�E (Lto) � E

8<:Eto
1X
t=to

�t�to

24 1
2� (x+ fxut)

2 + 1
2 (� + f�ut)

2

� ('+ f'ut)
�

(1� �)� � �yx
+(1� ��) f�ut � ut � �yfxut

� 359=;
+E (('+ f'uto�1) [� + f�uto ]) (C-11)

suppressing the terms that are independent of policy and using the law of motion for ut, this
can be simpli�ed as:

�E (Lto) � 1

2 (1� �)
�
�x2 + �2

�
� 1

2 (1� �)' ((1� �)� � �yx)

+
1

2

�2u
1� �

�
�fx

2 + f�
2
�
� 1
2

�2u
1� � f' ((1� ��) f� � 1� �yfx)

+��2uf'f�

the problem is then to �nd �; y; '; f�; fx and f' such, that they maximise the previous expres-
sion. These coe¢ cients are:

� = x = ' = 0

f� =
�(1� �)

� (1� ��) (1� �) + �2y
fx = � �y

� (1� ��) (1� �) + �2y

f' =
�

� (1� ��) (1� �) + �2y

which is the solution to the optimal non-inertial plan given in proposition 3.6.
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