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Abstract

We provide stylized facts on the evolving shape dynamics of the US personal income distribution

from 1962 to 2000. Based on adaptive kernel density estimation, we propose an adaptive bootstrap

test for multimodality. Our results indicate that multimodality has been a predominant feature of

the US income distribution. Both the number and location of modes change over time, revealing

rich distributional dynamics and strong heterogeneity. Decomposing the sample by age, education,

gender and race, all groups exhibit multiple modes and follow distinct distributional patterns. For all

groups and for the population as a whole, income distribution improved over the 1960s, 1970s and

1980s, but deteriorated dramatically in the 1990s.

Keywords: Adaptive kernel method, adaptive multimodality test, bootstrap, income distribution,

nonparametric density estimation, population heterogeneity.

JEL Classification: C12, C14, C15, E25



 

 

 



1 Introduction1

Using an impressive array of inequality, mobility and polarisation measures, recent studies indicate

a clear change in the trends of income distributions in developed economies. For the last five

decades, wages and earnings grew rapidly in the 1950s and 1960s and inequality was reduced slightly.

Beginning in the 1970s, inequality rose rapidly whereas wages grew at a slow pace. Since wages

and earnings constitute the lion’s share of personal income for the vast majority of the population,

these changes in labour market conditions were quickly reflected in changes in personal and family

income distributions. There is substantial diversity in the behaviour of income inequality across

developed countries. A “stylised fact” for the US economy seems to emerge, suggesting a period of

fast economic growth and decreasing inequality in the 1960s and 1970s, but slow growth in income

and enlarging income inequality in the 1980s and 1990s.2

This paper builds on the original work of Bianchi (1997), Jones (1997) and Quah (1996a, 1996b,

1997). They used nonparametric methods to test the hypotheses of growth convergence and for-

mation of convergence clubs, examining changes in the global, external shape of the cross-country

income distribution and in intradistributional interaction patterns. Their major finding was the emer-

gence of “twin peaks” (or bimodality) in the world income distribution, implying divergence and

polarisation.3 Using a regression tree clustering algorithm, Durlauf and Johnson (1995) run cross-

section regressions that were allowed to adapt to subsamples. They were able to uncover “local basins

of attraction” and identify countries which share a common model. This result was interpreted as

the existence of multiple steady states or regimes in cross-country growth behaviour.4

Most previous studies of income distributions focussed on a number of summary statistics which,

at best, only partially capture the characteristics of the probability distribution of income. Some

authors tried to fit a parametric model to the data, only to find their models overwhelmingly rejected

by data. In this paper, we take a nonparametric approach to examine the historical evolution of the

shape and intradistributional dynamics of the US personal income distribution. In this framework,

“income distribution” is perceived as the physical distribution of income across the population as

well as the probability distribution of income.

We make use of adaptive kernel density estimates and propose an adaptive mode testing procedure

for the empirical measurement of the entire income distribution. It is well-known that for kernel

1I thank Giuseppe Moscarini and Peter Phillips for helpful discussions and detailed comments. Comments from
Steve Arthur, Richard Blundell, Claudio Borio, Steve Durlauf, Andy Filardo, Gabriele Galati, John Hartigan, Helmut
Lütkepohl, Herman van Dijk, Chris Sims and Zhijie Xiao also brought improvement. In addition, I thank participants of
sessions at the 2002 European Economic Association Meeting, the 2002 European Winter Meeting and the 2003 North
American Summer Meeting of the Econometric Society, and of seminars at the Bank for International Settlements,
Princeton University, Universidade Nova de Lisboa and Yale University for helpful comments. Financial support from the
Portuguese Foundation for Science and Technology and the Cowles Foundation for Research in Economics is gratefully
acknowledged. The views expressed here are those of the author and do not necessarily reflect those of the BIS. E-mail:
feng.zhu@bis.org.

2Much of this literature has been summarised in the review articles of Levy and Murnane (1992), Gottschalk (1997)
and Gottschalk and Smeeding (1997). Not all economists agree on the “stylised fact”, see, for example, Wolfson
(1997).

3The emerging “twin peaks” property corresponds to the gradual clustering of the very rich economies and the poor
into two separate groups, with the middle-income class slowly disappearing.

4This literature is summarised in Durlauf and Quah (1999).
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density estimates, the choice of the bandwidth h determines the amount of smoothing. When

applied to long-tailed distributions, conventional fixed-bandwidth kernel method suffers from the

drawback that h is constant across the entire sample. In our adaptive version, we compute a local

bandwidth parameter γni, which allows us to adapt the smoothing parameter to the local density of

the data. Adaptive kernel density estimation makes it possible to purge spurious noises in the tails

while preserving important characteristics in the central part of distribution.

Based on adaptive density estimates, we propose an adaptive version of Silverman’s (1981) bootstrap

test for multimodality. Compared with other mode testing procedures, the Silverman test is less con-

servative and easy to implement. However, conventional fixed-bandwidth versions of the bootstrap

test focus on one single bandwidth h that is constant over the whole density range. In particular,

when h is small, there is a tendency for spurious modes to appear in the tails of the estimates. On

the other hand, if one increases h to eliminate these modes, over-smoothing becomes inevitable and

true modes in the main part of distribution may be sacrificed. Our adaptive bootstrap multimodality

test is based on an overall smoothing parameter h, while the local bandwidth parameter γni adopts

the density estimates to local details of data. Adaptive bandwidth tests are more accurate.

Mode testing is useful for assessing the degree of population heterogeneity, which enables us to un-

cover distinct income distribution dynamics for different population subgroups. Important hypotheses

such as “income equalisation and convergence”, polarisation, poverty traps and “vanishing middle

class” can be examined visually by scrutinising changes in income density estimates over time. Our

comparative statics approach focusses on the evolution of the shape of kernel density estimates over

time, and it can be easily extended to study the world income distribution, and in fact any other size

distribution.

From our work, some clear empirical regularities emerge. Over the last four decades, multimodality

has been a predominant feature of the US income distribution. Both the number and location of

modes change over time, revealing important distributional dynamics and strong population hetero-

geneity. Over the 1960s, 1970s and 1980s, we observe a general trend of diminishing low-end spike

to the benefit of the middle class, suggesting that the hypotheses of poverty trap and polarisation

cannot be validated. However, the trend was reversed in the 1990s, the low-end spike re-emerged

and a large amount of population mass moved from the middle and upper-middle relative income

ranges to the lower-middle range. The observed low-quality convergence might not be desirable,

with the middle class potentially disappearing into the lower range.

In order to examine the apparent heterogeneity in the income distribution dynamics of population

subgroups with distinct characteristics, we further decompose the sample by age, education, gender

and race and carry out the adaptive kernel estimation and mode testing procedures for each subgroup.

Interestingly, all subgroups exhibit multiple modes and follow distinct distributional patterns. This

extra layer of distributional complexity presents a challenge to theorists and empirical researchers

alike.

In Section II, we provide a detailed account of our methodology. Section III describes our income

data and the data transformation process. The empirical results are reported in Section IV, and

Section V concludes and discusses possible extensions.
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2 Methodology

2.1 Empirical measurement of income distribution

Measures of income inequality can be largely classified into two categories: fractile methods which

are based either on the fraction of income belonging to a particular fractile or population range or

on the fraction of population pertaining to a certain income class; and scalar inequality indicators

which summarise information in a single statistic. Summary inequality measures could provide, at

best, only incomplete and sometimes misleading information on the shape and dynamics of income

distribution.

To better understand income distributions in the whole income range, parametric models are often

fitted to income data. Unfortunately, estimation methods and test statistics are quite sensitive to

outliers and arbitrary truncation. McDonald and Ransom (1979) compared the goodness-of-fit for the

lognormal, gamma, beta and Singh-Maddala functions using different estimation techniques, namely,

least squares, method of scoring and minimum chi-square. Their results suggested that estimates

of population characteristics (eg, mean income, Gini coefficient) depend on both the functional

specification and the adopted method of estimation. McDonald and Mantrala (1995) showed that

different forms of data sets and alternative estimation techniques are responsible for apparently

contradictory results and inconsistency of the empirical findings.

More importantly, almost all specifications possess a unimodal density function, ignoring the pos-

sibility that the income distributions may exhibit multimodality and may be better modelled as a

mixture of two or more component densities. Indeed this may be the reason behind the observation

that most parametric specifications usually fit well for only part of the income distribution but not

the full range. There are neither intrinsic reasons nor sound theoretical justifications for choosing any

particular functional form. Even when a model is claimed to provide an excellent fit to data, it may

not be straightforward to find reasonable economic interpretations for the estimated parameters.

Like the parametric approach, nonparametric density estimation techniques allow us to provide full

information on the entire income distribution. The nonparametric approach has the advantage of

letting the data speak for itself, freeing us from the arbitrariness of parametric specifications. Minimal

assumptions are imposed on the data, namely that the income density exists and satisfies some

smoothness properties. Instead of taking a stand on unimodality from the start, the nonparametric

approach enables us to explicitly test for the number of modes present in the underlying income

distribution. Multimodality, if confirmed, points to population heterogeneity, implying the existence

of population groups that follow distinct distributional dynamics over time and are sorted into different

steady states. By conditioning on certain population characteristics (age, education, gender and

race), we may explain the apparent population heterogeneity and sorting.

The nonparametric approach avoids many theoretical difficulties and empirical fragility encountered in

traditional measures of income distribution. We directly estimate the empirical frequency distribution

from data and address the problem of population heterogeneity by testing the number of component

densities using an adaptive version of Silverman’s (1981, 1983) multimodality test. Estimates of

density and number of modes are provided for different age, gender, racial and educational groups,
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factors potentially underlying observed income heterogeneity.

2.2 Adaptive kernel density estimation

The original fixed-bandwidth kernel density estimator was introduced by Rosenblatt (1956) and

Parzen (1962). It is flexible and robust.5 In the spirit of “letting the data speak for itself”, minimal

assumptions are imposed upon the data and the underlying true density function. Compared to other

nonparametric techniques, such as the nearest neighbour, variable bandwidth, orthogonal series and

penalised likelihood methods, kernel estimators enjoy good theoretical properties which are well

understood. Under mild regularity conditions, kernel density estimates are asymptotically unbiased,

consistent and asymptotically normal, although they converge at a slower than root-n rate.6

Fixed-bandwidth kernel density estimates were obtained by Bianchi (1997), Jones (1997) and Quah

(1996a, 1997) to analyse world income distribution and growth dynamics. Analysis based on kernel

density estimation is rare in the vast literature of personal or household income distribution dynamics.

Champernowne (1974) intended to estimate “a large number of empirical frequency distributions of

income as the basis of this study”, but the lack of appropriate statistical apparatus and computational

power forced him to adopt the less ambitious parametric approach, “using families of theoretical

frequency distributions to represent the empirical distributions. Hildenbrand and Hildenbrand (1986)

used maximum penalised likelihood method to obtain a nonparametric density estimate for UK income

data. However, they took it as an intermediate estimate for the estimation of mean income effect.

Our use of adaptive kernel estimation and mode testing as a way to study distributional heterogeneity

is novel. We adopt the adaptive kernel method for two reasons. First, ordinary kernel estimates with

fixed bandwidth are known to be locally insensitive to data details. Empirical income distributions

typically have long and thick tails. Income data are relatively sparse in the upper range and may be

top-coded and aggregated in order to enhance confidentiality. Secondly, for mode testing, relative

sparseness of data in the tails and profusion of data in the centre makes it easy for spurious modes

to pop up in the tails well before true modes in the centre are detected. A local adaptive smoothing

procedure is necessary, with the smoothing parameter allowed to vary with local data density.7 Local

smoothing not only provides an improved estimate of the underlying probability density, particularly

when the tail structure is complicated, but it also reduces the risk of obtaining spurious modes with

a multimodality test.

Suppose at each period t, we have a set of univariate observations Y1, . . . , Yn, the adaptive kernel

density estimate can be computed in the following two-step procedure, adapted from Breiman et al

(1977).

5By robustness we mean the insensitivity of a density estimate to the removal or replacement of a small number of
data points.

6For details, see Devroye (1987), Härdle and Linton (1994), Pagan and Ullah (1999), Robinson (1998) and Silverman
(1986).

7Hildenbrand and Hildenbrand (1986) noticed the problem with fixed-bandwidth kernel methods:“The kernel esti-
mator typically fluctuates and is unstable for small and large values in the range of net income since in that range there
are not enough data points.”
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1. Obtain a pilot kernel estimate f̃(y) of the income density f(y) in such a way that f̃(Yi) > 0,

for all i:

f̃(y) = (nh0)
−1

n∑

i=1

K

(
y − Yi

h0

)
(1)

where the initial bandwidth h0 is chosen by minimising the approximate mean integrated square

error (MISE)8, with reference to the normal distribution with mean zero and variance equal to

the sample variance σ̂2. Specifically, set h0 = 0.9An−1/5, where A = min{σ̂2, R̂/1.34} is an

adaptive estimate of spread and R̂ is the empirical interquartile range of the underlying normal

distribution.

The kernel K(·) is any symmetric function satisfying standard regularity conditions. We

use the Gaussian kernel at all stages of estimation and testing,9

K(y) = (2π)−1/2 exp
(−y2/2

)
(2)

The kernel function is itself a legitimate density function. Our density estimate inherits all

smoothness (continuity and differentiability) properties of the standard normal density.

2. Compute the adaptive kernel estimate f̂(y) as follows:

f̂(y) = n−1
n∑

i=1

h−1
i K

(
y − Yi

hi

)
(3)

where hi = hγni. h is the overall bandwidth or smoothing parameter and γni is the local

bandwidth parameter defined by

γni =

(
f̃(Yi)

f̄

)−α

(4)

Here f̄ is the geometric mean of the pilot estimates f̃(Yi) at all data points, ie,

f̄ =

(
n∏

i=1

f̃(Yi)

)1/n

(5)

and α is a sensitivity parameter satisfying 0 ≤ α ≤ 1. In the fixed bandwidth case, α = 0.

Abramson (1982) argues that setting α to 1/2 leads to bias reduction compared to the fixed-

width kernel estimate.

For kernel density estimates, the choice of bandwidth h determines the amount of smoothing. When

applied to long-tailed distributions, the fixed bandwidth method suffers from the drawback that h

is constant across the entire sample. If h is too small, there is a tendency for spurious noise to

appear in the tails of the estimates. On the other hand, if one increases h to eliminate the noise,

oversmoothing is often inevitable and essential detail in the main part of distribution will be sacrificed.

8Breiman et al (1977) showed that the adaptive kernel density estimate was “surprisingly insensitive” to the choice
of bandwidth in the pilot estimate f̃ . In fact, the adaptive method is in general insensitive to the details of first-stage
pilot estimation.

9The choice of kernel in the first stage makes little difference. The Gaussian kernel has unbounded support. To
speed up computations, we use a modified Gaussian kernel truncating K(y) at three standard deviations.
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In the variable bandwidth case, the local bandwidth parameter γni allows us to adapt the smoothing

parameter to the local density of the data, relative to its geometric mean and properly rescaled.

Adaptive kernel density estimation therefore makes it possible for us to purge spurious noise in the

tails while preserving important characteristics in the fat part of the distribution. Bandwidth tests

based on the adaptive method are more accurate.

2.3 Population heterogeneity and adaptive mode testing

Broadly speaking, there are two basic approaches to testing for homogeneity of a population. The

first approach is embedded in finite mixture modelling, which has a long tradition in the statistics

literature. It approximates the sampling distribution by a parametric mixture of unimodal distributions

and then evaluates the goodness of fit. A finite mixture model for the income data can be written

as:

p(y) =
m∑

i=1

πifi(y) y ∈ <+ (6)

where πi > 0,
∑m

i=1 πi = 1, fi(y) ≥ 0, and
∫
<+

fi(y)dy = 1, for i = 1, . . . , m. In this case, we say

that the data Y is generated from a finite mixture distribution and p(·) is a finite mixture density

function. The parameters π1, . . . , πm are known as the mixing proportions or mixing weights, and

f1, . . . , fm are the component densities.

In some cases, it is possible to specify functional forms for the component densities. It is known

that the log-normal distribution fits well the lower part, while the gamma distribution fits well the

middle part and the Pareto distribution fits well the upper part of income distributions. One can

fit a finite mixture of these three distributions to income data. We do not adopt the parametric

approach, because we have little or no a priori information about the functional forms assumed by each

component density fi: on the one hand, economic theory provides little guidance about the specific

composition of income distribution; on the other hand, inference for parametric models depends, to

a large extent, on the validity of the assumed functional forms. In our case, the appropriate value

for the fundamental parameter m must be estimated first, so one needs to detect and assess the

presence of mixtures in the first place.

The nonparametric approach includes distribution-free methods of bump-hunting and mode test-

ing. The most striking feature of a mixture density is often the presence of multiple bumps and

modes, which can be assured if the component densities in a population are unimodal and are well-

separated.10 Heuristically, a mode in a density f is a local maximum, and a bump with no flat part

is the portion of the density f lying between two points of inflection a and b, such that f is concave

in the interval [a, b] but not outside (see Figure 1). A density f is multimodal if it has more than

one mode. Multimodality or the existence of multiple bumps is indicative of the existence of distinct

10We say two modes are well-separated if the distance in the means of the corresponding component distributions
is large relative to their variances. Take the example of a mixture of two normal components φ1 and φ2, the first
component being distributed as N(µ1, σ

2) and the second as N(µ2, σ
2). If the mixing weights are equal, the mixture

of φ1 and φ2 will not be bimodal if |µ1 − µ2| < 2σ. In general, a mixture of distinct distributions does not necessarily
give rise to the same number of modes as the number of mixture components. Furthermore, the location of modes in
a mixture may not correspond to that of the component densities.
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component densities, hence population heterogeneity.11

There are several known multimodality tests in the statistical literature: Good and Gaskins’ (1980)

iterative surgery procedure, Hartigan and Hartigan’s (1985) dip test, Müller and Sawitzki’s (1991)

excess mass approach, and Silverman’s (1981, 1983) bootstrap test. The dip and excess mass tests

share difficulties of implementation and may lead to considerable conservatism. In fact, as Cheng

and Hall (1998) pointed out, for each non-zero value of nominal level, the asymptotic levels of these

tests are zero. Silverman’s bootstrap test has a non-zero asymptotic level for each non-zero nominal

level.

The original fixed-bandwidth Silverman test can be sensitive to spurious noise in the tails, as it

inherits the difficulty of fixed-bandwidth kernel methods in obtaining fine distributional details in the

centre before spurious modes appear in the tails. Without properly controlling the sensitivity to local

data density, multimodality tests error-prone. In our adaptive version, the bandwidth hi has two

components, an overall bandwidth h, which controls the overall amount of data smoothing in the

density estimate, and a local bandwidth factor γni which varies according to the local data density.

It is known that fixed-bandwidth kernel methods tend to produce spurious modes in the tails while

masking essential details in the central part of size distributions. The single fixed critical bandwidth

required to eliminate the spurious modes are determined more by tail behaviour than by the presence

of true modes in the centre. Moreover, identification of a mode in any particular region of a density

depends on the distance from the nearest mode, which compels us to use an adaptive kernel. In

the adaptive version, we base our multimodality test on the overall bandwidth h, and use the local

bandwidth factor γni to prevent spurious modes from popping up too easily due to the possibly

complicated tail structure.

Define the number of modes of density f as:

M(f) = #
{
y ∈ <+ : f ′(y) = 0 and f ′′(y) < 0

}
(7)

For m = 1, . . . ,M , we test the null hypothesis that the underlying density f has m modes (H0 :
M(f) ≤ m ), against the alternative that f has more than m modes (H1 : M(f) > m). In our

adaptive version, the statistic we use is M(f̂h), where f̂ is the kernel density estimate and h is the

overall bandwidth.

The bootstrap multimodality test is based on the notions of critical smoothing and critical bandwidth.

Define the m-th critical bandwidth ĥm,crit by:

ĥm,crit = inf
{

h : M(f̂h) ≤ m
}

(8)

where, for any density estimate f̂h, ĥm,crit is the smallest overall bandwidth such that f̂h has at most

m modes. Consequently, f̂ĥm,crit
is known as the m-th critical density. The idea of critical smoothing

is crucial. Intuitively, a large value of h leads to oversmoothing and therefore to a smaller number

of modes. If the underlying density f has m modes, in order to eliminate one or two modes in f̂ , h

11Multimodality and mixtures are two different concepts: unimodality can mask the existence of distinct subpopula-
tions, and bimodality may sometimes be generated by a single homogeneous population. Multimodality is a stronger
concept in that it implies mixture.
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needs to be larger than ĥm,crit. When h = ĥm,crit, f̂h will display m modes with a shoulder.12 When

h is further decreased, an additional (m + 1)-th mode will show up in place of the shoulder. The

null H0 will be rejected for large values of ĥm,crit. The multimodality test is based on the following

result.

Theorem: Given any fixed {X1, . . . Xn}, let f̂h be a kernel density estimate of f with bandwidth h

and the Gaussian kernel function K (·) as defined in (2). Then, M
(
f̂h

)
is a right continuous

non-increasing function of h. Moreover, M
(
f̂h

)
> m if and only if h < ĥm,crit.

Proof: See Silverman (1981).

Remark 1: Silverman (1981) noted that this result does not apply for general kernels. Moreover,

the convolution of unimodal densities needs not be unimodal.

Remark 2: This result allows us to use either ĥm,crit or M
(
f̂h

)
as the test statistic. The null

hypothesis can be written as H0 : h > ĥm,crit and the alternative as H0 : h ≤ ĥm,crit. If too

large a value of h is required to eliminate the m-th mode, then we can accept the null that

there are at least m modes in the true density f .

Following Silverman (1986) and Efron and Tibshirani (1993), we assess the significance of ĥm,crit

estimated from data against its bootstrap distribution. To simplify notation, we write hcrit and

ĥm,crit interchangeably. The bootstrap resampling procedure can be described as follows:

1. Given the original data {Y1, . . . , Yn}, randomly draw (with replacement) B independent boot-

strap samples
{
Y b

1 , . . . , Y b
n

}B

b=1
from the empirical distribution F̂n, each of size n;

2. Obtain B smoothed bootstrap samples
{
Xb

1, . . . , X
b
n

}B

b=1
by computing

Xb
i = Ȳ b +

(
Y b

i − Ȳ b + ĥm,critei

)(
1 + ĥm,crit/σ̂2

)−1/2
(9)

where ei is an i.i.d. N(0, 1) variable. The scaling factor
(
1 + ĥm,crit/σ̂2

)−1/2
in equation (9)

ensures that the variance of the bootstrap samples Xb
i is the same as the sample variance σ̂2

of the original data;

3. For b = 1, . . . , B, use the adaptive kernel method to obtain bootstrap estimates f̂ b
hcrit

based

on the critical bandwidth ĥm,crit computed from the original data. For each bootstrap sample,

calculate the corresponding number of modes M
(
f̂ b

hcrit

)
and the m-th critical bandwidth

hb
crit;

4. Compute the estimate of the achieved significance level (ASL) or p-value:13

ÂSLm = pm =
1
B

B∑

b=1

{M
(
f̂ b

hcrit

)
> m} (10)

12A shoulder point y can be defined by f ′(y) = 0, f ′′(y) = 0, f ′′′(y) 6= 0.

13The achieved significance level or p-value is ASLm = Pr
n

M
�
f̂h

�
> m|Y1, . . . , Yn is a random draw from f

o
.
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5. Do not reject the null of m modes in the underlying density if ÂSLm or pm is large enough.

The test is carried out by simultaneously computing ÂSLm for all m = 1, . . . ,M , where M is a

preset number. For the underlying density f , we select an estimate m̂ as the critical number of modes

for which a robust and sufficiently large ASL is obtained. Simultaneous testing is necessary because

we suspect that a possibly long and complicated tail structure is present in our data, which may

prevent the sequence of p-values from being monotonely increasing in m. In fact, large fluctuations

in p-values are possible, depending on the location of modes. This may give rise to inconsistency but

it also leaves us space for judgement. Bianchi’s (1997) fixed-bandwidth test results also exhibit such

inconsistency, but he stopped testing the number of modes at m = 2, which may not be appropriate

for cross-country income data.

Silverman’s original multimodality test is intuitive and easy to implement. Our adaptive and simul-

taneous version of the test is designed to cope with the relative sparseness of data in the tails and

possible fluctuations in the estimated values of the ASL. Silverman (1983) acknowledged that his

test might be conservative, in the sense that the bootstrap procedure may produce p-values larger

than the true significance level, therefore underestimate the number of modes M(f). This con-

servatism leads to reduced power for the bandwidth test. Indeed this is a general feature of many

nonparametric mode testing and bump-hunting procedures, and Silverman’s test seems to be the

least conservative of all.

2.4 Heterogeneous Income Distribution Dynamics

Based on income inequality measures obtained from data, regressions are often run from these mea-

sures on potential explanatory variables such as growth rates, trade and openness, human capital,

savings and socio-political factors. However, such regressions contain as much information as the

conditional average of a distribution allows them to carry. Given that these variables are interde-

pendent and homogeneous, OLS regressions are as problematic and uninformative as are summary

statistics.

As an alternative to regression analysis, and to give a clear picture of the distinct income distribution

dynamics present in different population subgroups, we directly condition our kernel income density

estimates on both endogenous (education) and exogenous (age, gender and race) population charac-

teristics, and examine possible changes in the shape of income distributions of population subgroups

using adaptive density estimation and mode testing. Conditioning on such population characteristics

provides a detailed analysis of distributional heterogeneity.
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3 Empirical analysis

3.1 Data

3.1.1 Source

The personal income data are extracted from the March Income Supplement of the Current Popu-

lation Surveys (CPS) 1962 - 2000, compiled by the US Census Bureau. The CPS are administered

monthly by the Census Bureau to over 50,000 households. The surveys gather a wealth of informa-

tion on the education, labour force status, demographics and other aspects of the US population.

The March surveys contain the Annual Demographic File and the Income Supplement, which report

the income-related aspects of US households in detail.

The main advantage of using CPS data is the fact that the samples are large, nationally representative

and designed to reflect demographic changes, a blessing for our nonparametric approach, in which

the samples are treated themselves as the population for density estimation. The CPS use complex

multi-stage cluster design, and the income data are constructed in a hierarchical structure, going

from households to families and then to persons. Data collection is not a random sampling process,

and sampling variability may be large. This may result in inaccuracy and larger variances of inequality

and mobility measures. However, Bound and Krueger’s (1991) validation study of the “matched”

CPS data indicates that the errors are limited to a tolerable range for statistical analysis. Compared

to income data compiled in longitudinal surveys such as the Panel Study of Income Dynamics (PSID),

less age-on-income effects are present because the CPS are a wide cross-section with only half of its

sample rotated in a two-year interval.

As a potential drawback, income data are classified and grouped into small intervals, either because

the questions allow the surveyed to classify income into different ranges, or because the surveyed

rounds income into convenient integer numbers.14 Rounding by the surveyed is apparent in the

data: in histograms drawn using the raw data, large and distinctive spikes appear around almost

all values which are multiples of 100 or 1000 US dollars. We deal with this problem by uniformly

“redistributing” these possibly rounded values into a reasonably small neighbourhood of each centre

of mass, which much alleviates the severity of the problem. The CPS sample sizes are quite large

and the grids quite refined, which makes it possible to obtain an accurate estimate of the underlying

true density without resorting to bounding or interpolation methods.

We focus on the total personal income for individuals aged between 25 and 54. This range includes

the prime age for employment, at which both employment and the income level are becoming more

stable. We use total personal income, because it not only reflects an individual’s earning capacity

but also measures his potential overall welfare. For the vast majority of the population, personal

income is the main, if not the only source of current spending and living. It is sometimes argued

that studies on mobility should be based on wages and earnings, and analyses of income inequality

should be based on household or family data, since both the size and composition of a household or

14With grouped data, detailed information on the distribution within each interval [xi, xi+1), for i = 1, . . . , I, is
usually not available. Cowell (2000) pointed out that “this information structure will result in the loss of some important
information and will complicate some standard statistical problems such as inference”.
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family may have a large impact on their members’ general welfare. The emphasis of our paper on

both the individual earning capacity and potential welfare makes the total personal income a more

pertinent choice.

3.1.2 Data transformation

Let yit denote the income level of individual i in a particular year t and let nt be the total number

of usable observations for that year. We normalise the data dividing them by the maximum income

of each year:

Yit =
yit

maxi{yit}
for i = 1, . . . , nt and t = 1, . . . , T (11)

Thus Yit is the relative income of individual i with respect to the highest income level at t. Normal-

isation by maximum has been shown to have better properties than other forms of transformation,

including those by dividing the whole set of data by the sum, mean, median or range. Being a purely

scale transformation, the relative income transformation has the advantage of making the income

data unit-free while not affecting the shape of the original empirical distribution. The transformation

dispenses the need to use a price deflator to obtain real income data. It emphasises the fact that

in income studies, an individual’s relative position in the income distribution matters, besides the

absolute income level. Zhu (2002) provides an asymptotic analysis of commonly used forms of nor-

malisation. His results indicate that under possible multimodality, as the sample size goes to infinity,

data normalised by maximum will follow the same distribution as the original data. In particular, the

transformed data will be multimodal if the original data are.

Normalisation by maximum also facilitates temporal comparisons of income distributions. It is well-

known that steadily increasing income levels along with an ever-expanding income range make such

comparisons difficult.15 To avoid the possibility that movements of a small number of high-income

individuals influence the shape of overall distribution,16 we trim out the top 1% of each year’s sample

data, even though the the CPS data are already top-coded.17 The likelihood of distortion in the

relative income distributions caused by high-end mobility is thus reduced.

Other forms of transformation are possible. It is common to take logarithms of the raw data, which

effectively “trims” outliers and cuts short the long tails present in data. Sen (1973) stressed the

advantage of taking logarithms to “stagger” income levels and eliminate the arbitrariness of units of

measurement. Bianchi (1997) pointed out that log transformation may remove skewness and outliers

present in the original data, therefore alter some of the data’s fundamental properties. Logged data

15Normalisation by median or maximum may give rise to different shape dynamics of income distributions, since the
distance between data points may vary over time according to different normalisation methods. The length of relative
income ranges obtained through a division by median or mean changes over time, while transformation by maximum
guarantees a fixed range of [0, 1]. If density estimates based on median-transformed data are scaled and centred to
[0, 1], density estimates will have the same shape as those obtained from maximum-transformed data.

16For details, see Appendix C.

17The observed maximum income levels for the 1962, 1972, 1982, 1992 and 2000 samples are, respectively, 121,900,
50,000, 197,500, 396,772 and 424,770 US dollars. Top coding seems to be carried out from 1972 onwards, with
increasing cutoffs. From 1992 to 2000, the maximum income changed very little. After dealing with the rounding
errors by randomisation and trimming out both negative values and the top 1% outliers, the new maximum values are:
17,200, 29,900, 60,250, 100,299 and 198,252 US dollars, much smaller than the values without trimming. Proportional
10-year increments are now of comparable size: 73.8%, 101.5%, 66.5% and 97.7%.
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often closely approximate a normal distribution, even though the original data may be nowhere close

to a normal representation. Indeed, logarithmic transformation is often applied in such a way that the

transformed data better conform to the assumption of normality. In our work, we are interested in the

whole range of income distribution. The tail properties of the income data matter, and logarithmic

transformation penalises the high-income range and throws away valuable information contained in

the upper tail.18

3.2 Main results

We first apply the adaptive kernel density estimation and adaptive bootstrap multimodality test for

the CPS personal income data for 1962, 1972, 1982, 1992 and 2000. Subsequently the same non-

parametric analysis is conducted for population subgroup, differentiated by exogenous (age, gender

and race) and endogenous population characteristics (education). There are three age groups: young

(25-34), middle-aged (35-44) and older (45-54); two gender groups: male and female; two major

racial groups: African-American and Caucasian; and three educational groups: elementary level,

secondary level (high school graduates) and college and graduate level. Conditioning on exogenous

population characteristics, we search for possible explanations for distributional heterogeneity in the

overall US income distribution.

In Figures 5-9 we present histograms for the original CPS income data, in current US dollars, and

the transformed data.19 For both raw and normalised data, negative values and those in the top 1%
range are trimmed out.20 For all five years under analysis, we observe, in the original data, large

spikes around zero-income level and at the hundreds and thousands. This may be due to reporting

errors as the surveyed often find it convenient, for various reasons, to report rounded values. We

uniformly “redistribute” these values in small bands around the rounding values and then proceed

with the above-mentioned transformation. Apparently, the transformation seems to preserve the

fine details of the original data well while it greatly reduces the problem of false spikes that may

contaminate our kernel density estimates.

While the spikes at rounding values are large in the original data and much smaller in the transformed

data in 1962 and 1972, the problem seems to become less serious in 1992 and 2000. This may

be attributed to a gradual improvement in the quality of CPS surveyed data. The broad similarity

between the original and transformed data can also be seen in Tukey’s boxplots, as shown in Figure 10.

The boxes have lines at the lower quartile, median and upper quartile values. Dashed lines extend

from each end of the box to the most extreme data value within 1.5 times the inter-quartile range,

beyond which lie outliers (indicated by “+”). Focussing attention on transformed data, boxplots show

18The fact that logarithmic transformation penalises the high-income range and highlights differences in the lower-
income levels underlies findings that lognormal distributions fit the lower part of income density well but not the upper
part.

19For 1962, 1972, 1982 and 1992, histograms for the original data have large spikes which are cut off so that the
original and transformed data can be compared on the same scale. Data in the trimmed spikes are used throughout
the analysis.

20Values belonging to the top 1% income class are outliers that do not affect the general shape of the income
distribution, but they may greatly distort our kernel density estimates by exerting a disproportionate impact on overall
smoothing.
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that the CPS income data are very much skewed towards the lower end of the (relative) income range.

As the boxes first increase and then decrease in length, individuals became more dispersed in the

1960s and 1970s, but more condensed in the 1980s and 1990s. Moreover, the median relative income

rose steadily over the 1960s and 1970s, became stagnated in the 1980s, then dropped dramatically

over the 1990s. We observe a great number of outliers in the upper range but essentially no outliers

in the lower range (by construction) throughout all years under study.

As a result of our bootstrap21 tests for the number of modes, we observe that for almost all years,

for the surveyed as a whole and across various groupings (in terms of age, education, gender and

race), the null of unimodality has been frequently rejected at the 1% significance level. Bimodality

and trimodality are the rule, with four as the maximum number of modes that we could accept with

our tests. In Table 1, we list the critical bandwidths for the overall income distribution, computed as

a function of the numbers of modes, increasing from 1 to 6. The corresponding p-values are included

in parentheses. Clearly, critical bandwidth is a monotonically decreasing function of the number of

modes (see also Figure 11). For the group as a whole, the US income distribution has been bimodal

throughout the period, except for 1972, when it became briefly trimodal. The “stylised fact” of

unimodal income distributions so often implicitly assumed in the literature has been strongly rejected

by our mode testing evidence. The multimodality test results for population subgroups are reported

in a similar fashion in Table 2.

Initial pilot and final critically smoothed kernel density estimates as described in Section 2.3 are

plotted in Figures 12 and 13. Our initial density estimates (estimated using a Gaussian kernel and

an “optimal” bandwidth, selected with reference to normal distributions and an adaptive estimate

of spread) do a reasonable job in describing the general shape of the US income distributions for

the last four decades. But compared to the final income densities estimated using adaptive local

bandwidths and critical smoothing, initial pilot estimates are much more wiggled in the long tails and

are also distorting in the centre. For instance, the estimated lower modal spike for the 1972 income

distribution has much less mass than that indicted by the critical adaptive estimate. More importantly,

many small and possibly inconsequential modes that appear in the long tails are smoothed out in

the adaptive estimates, while important features in central parts remain in place.

Changes in the shape of the US income distribution over the entire range is better illustrated in three-

dimensional diagrams (Figure 13). The pictures suggest important stylised facts in terms of relative

income: the general shape of the US income distribution changed little in the 1960s and 1970s, with

a large spike in the very low end of the income range and a sizeable concentration of mass in the

[0.1, 0.4] range. While the spike grew higher over the 1960s, it was greatly reduced in the 1970s and

1980s, much to the benefit of the middle class. Improvement in the US income distribution during

the long economic recovery over the 1980s is particularly noticeable. The messages from the 1990s

are mixed: while the lower middle class in the range [0.04, 0.25] became greatly inflated, this seemed

21We have been able to obtain test results for pooled 1962-2000 income data, each with 500 bootstrap replications.
The running time for one single program ranges from around 307 hours (13 days) to about 1,287 hours (54 days) of
CPU time on an Intel Pentium IV 2.0 GHz computer.

For some population subgroups, we first use importance sampling to obtain smaller data samples, with sample sizes
varying between 2,000 and 6,000, as inputs for bootstrap modality tests. In these cases, the number of bootstrap
replications varies between 300 and 500. For the selected years, the analysis is carried out for the population as a whole
and the 10 population subgroups, resulting in a total of 55 programs.
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to come at the expense of the middle and upper-middle classes. A large density mass originally

located in the range [0.25, 0.6] has moved downwards to the [0.04, 0.25] range, and the trend of

diminishing spike in the very low end of income range has also been reversed. Of course, in terms of

absolute income, the whole US income distribution has shifted upwards over the years, but in terms

of relative income, improvement in the 1960s, 1970s and 1980s was brought to a stop and the quality

of the US income distribution deteriorated quickly in the 1990s.22 Although the number of modes

has been maintained roughly constant at two, the shape dynamics of the US income distribution

provide information over the entire range that may not be available otherwise.

To examine the income distribution dynamics for population subgroups differentiated by important

characteristics such as age, education, gender and race, we collect adaptive kernel density estimates

for all our population subgroups in both two and three-dimensional plots (Figures 14-17). The esti-

mates are presented after we run the Silverman test for each subsample and select the corresponding

critical number of modes. Two important observations immediately stand out: first, almost all sub-

sample density estimates are multimodal during the sample periods under study (refer to Table 2);

almost all population subgroups have their own distinct distributional dynamics over the last four

decades.

As we observe in Figures 14 and 15, historically, male and female groups follow very different distri-

butional patterns. The male population group has income distributions that are bimodal throughout

the period of study, with the mode in the very low end of income range swiftly disappearing and a

second mode beginning to appear in the central part during the 1960s. For most part of the 1960s,

1970s and 1980s, density mass gradually spread out from the central part to both lower and higher

neighbouring areas. Then the great shake-up set in over the 1990s, when a sizeable density mass

shifted from the [0.22, 0.65] range to the low [0, 0.22] range. This movement certainly had a large

impact on the overall income distribution dynamics.

The female population group followed a different trend, being bimodal in 1962, 1972 and 2000, but

unimodal in 1982 and 1992. While the great mass of the female population has been concentrated

in the lower relative income range, the mass has been spreading out to both higher and lower-income

ranges in the 1960s and 1970s, but mainly to the low end. Over the 1980s and 1990s, the spike in

the lower end became greatly reduced and the lower middle class range [0.05, 0.3] became inflated.

So when a sizeable proportion of the male population moved downwards in the 1990s, the upward

movement of much of the female population was noticeable.

The African-American and Caucasian population groups also differ greatly in their distributional

dynamics. Convergence across the African-American population is evident, with the distribution

moving from trimodality in 1962 to bimodality in 1972 and 1982 and further to unimodality in

1992 and 2000. Given that the maximum income for the African-American population is rather low

compared to that of the Caucasian population, and that a sizeable portion of its converging population

mass moved from the upper income range to the low central part, the quality of convergence does

not seem to be laudable. On the contrary, the Caucasian population is much larger in absolute size

22This observation should be interpreted with some caution, as we discussed in Section 3.1.2. However, given that
we have trimmed off the top 1% of income data and the fact that the maximum level of maximum income level
after trimming has increased at comparable growth rates over the last four decades, there does not seem to be any
extraordinary upward movement by the richest income group. The conclusions should be considered robust.
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and dominates the overall US income distributional dynamics. As a matter of fact, the distributional

pattern of the Caucasian population over the sample period is quite similar to that of the US

population as a whole.

Income distributions of population subgroups differentiated by age all have general shapes and trends

that closely mimic those of the overall US income distribution. Again bimodality and trimodality

are the rule, with the large spike in the very low end of income range gradually thinning out and its

mass moving to the middle-income range. The big shake-up again came in the 1990s, with much of

the mass in the middle or upper-middle ranges reallocated to the lower-middle range. This type of

income convergence may not be desirable.

Decomposition of the overall U.S. income distribution by levels of education also reveal complex and

distinct distributional dynamics. Although the group with only elementary education has numbers of

modes that vary between two to four, while the secondary group has bimodal income distributions

throughout the whole period, the general shape dynamics are quite similar for these two subgroups.

The spikes at the low end of income range became gradually sharper and thinner, with the mass in low

and high ranges shifting towards the central part of income distribution. The group of people with

college or higher educational background has a distinct pattern, with more accentuated movements

in density masses. The general shape was clearly bimodal, but the deep dip at 0.08 became shallower

and the low-end spike diminished gradually over the years. Sizeable density masses moved out from

low to the middle and upper income ranges in the 1960s, 1970s and 1980s, fattening the tails. The

dramatic reversal occurred in the 1990s, with a large, thick spike emerging around the value 0.135.
Again there was convergence but unfortunately it occurred because of the downward movement of

a large population mass.

Summing up, these results confirm our conjecture that both the overall and the disaggregated income

distributions in the US have been multimodal over the last four decades. While some subgroups have

income dynamics similar to those of the entire population, most groups have their own distinct distri-

butional patterns and shape changes. The presence of multiple modes implies that strong population

heterogeneity and complex distributional dynamics are essential features of the US personal income

data that cannot be ignored by economists. We are able to identify distinct distributional characteris-

tics for various mutually exclusive socioeconomic groups. Population subgroups with distinct income

dynamics interact to create complex and evolving overall distributional dynamics. Socioeconomic

factors and institutional details matter for income distribution dynamics.

4 Conclusion

In this paper, we propose to nonparametrically estimate the US income distribution over a span of

four decades by an adaptive kernel density estimation method. We propose an adaptive version of

Silverman’s (1981, 1983) bootstrap test to examine the number of modes in income distributions.

Changes in the shape of the income distribution over the entire income range provide rich information

and shed light on issues of income inequality, poverty traps and convergence.

Our results indicate that the US personal income distribution has been bimodal in 1962, 1982,

1992 and 2000 and trimodal in 1972. Evolution of the shape of income density reveals important

15



information. Though the shape of the US income distributions did not change much during the

1960s and 1970s, but there was a noticeable shift of the probability mass from the very low end to

the middle of the relative income range. The shift continued until the early 1990s, implying that

hypotheses of poverty traps and vanishing middle class cannot be validated in that period. The

big change in this general trend was set in motion in the “roaring” 1990s, a decade of remarkable

economic expansion: not only did the low-end spike become inflated, but a great population mass has

also shifted downwards from the upper-middle ([0.25, 0.6]) to the lower-middle ([0.04, 0.25]) income

range. What caused this reversal is an important question.

Multimodality implies strong population heterogeneity and distinct ongoing distributional dynam-

ics across population subgroups with distinct characteristics. To further investigate the depth of

multimodality existing in data, we decompose the survey population into age, gender, racial and

educational subgroups and apply the same nonparametric analysis. Almost all population subgroups

exhibit multimodality during the sample period, and they follow distinct distributional patterns, re-

vealing complex income distribution dynamics. The abrupt trend reversal in the 1990s is noticeable

in income distributions of all population subgroups, albeit to different degrees of severity.

Evidence of multimodality suggests that previous studies analyzing income data within the frame-

work of unimodal parametric distributions are not an accurate description of reality. Instead, a

nonparametric approach or parametric modelling with multimodal finite mixtures may be more fruit-

ful. Moreover, theoretical models should be capable of explaining and generating multimodal income

distributions. The adaptive method employed in this paper can be easily extended to a wide range

of topics that involve estimation and testing of size distributions of interesting economic variables,

such as industrial firms, farms, consumption expenditure, commodity prices, stock prices, dividends,

wages and earnings.
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Appendices

A Traditional empirical measurement of income distributions

A.1 Conventional fractile and scalar measures

The family of fractile measures include income shares for different quintiles, deciles or percentiles

of the population, ratios such as P90/P10, the income share of the richest 10% of population

divided by the income share of the poorest 10%, and log ratios thereby derived, eg, log(P90/P10).
These measures are easy to calculate and provide useful information about the changes at relevant

“focal points” of income distributions. However, they are also very crude in that they only provide

a segmented snapshot of the shape of income distributions, ignoring distributional dynamics within

and beyond each fractile. Fractile methods give an incomplete picture of the income distributions

and may be grossly misleading.23

The second family of inequality measures are designed to characterise income distributions and com-

press information on income inequality into one single statistic, facilitating the comparison and rank-

ing of different income distributions.24 Simple statistics like mean, median, variance, skewness and

kurtosis only reveal partial information about the income distribution. More sophisticated measures

are often based on the Lorenz criterion. But once two Lorenz curves derived from different data cross

one or more times, the associated measures are deemed non-comparable.25 Different measures based

on the same set of income data may disagree. In these cases unambiguous inequality judgement is

not possible. One remedy often used in empirical studies is to compute a large number of scalar

inequality measures in such a way that a conclusion is drawn while most statistics concur (see, for

example, Biewen (2000)). This is certainly a problematic way to overcome potential inconsistencies

between conventional inequality measures.

The summary nature of these measures alludes to the important fact that they ignore much of the

information in the shape of the entire range of income distribution and obscure key facts of intradis-

tributional dynamics (persistence, churning and crisscrossing). Density estimation, either parametric

or nonparametric, remedy the shortcomings of conventional inequality measures by providing more

complete information not available otherwise. In fact, as described in Cowell (2000), many inequality

measures can be expressed as functionals of the income density, which can be consistently estimated

by kernel methods.

23Wolfson (1997) constructed an illustrative example showing how sensitive fractile measures could be to a seemingly
harmless change in the definition of income classes.

24Champernowne (1953, 1974), Cowell (2000), Foster (1985) and Sen (1973) provide detailed descriptions of these
measures.

25Foster (1985) describes two general approaches to get around the difficulty. The partial ranking or quasi-ordering
approach is concerned with “finding and characterising unanimous and unambiguous inequality rankings”, which is
valid only for certain comparisons. In the axiomatic approach, complete inequality rankings are possible by assigning
numerical values to each measure.
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A.2 Parametric estimation of income distributions

Numerous attempts have been made to provide a precise mathematical description for the size

distribution of income. Using Dagum’s classification, these attempts can be grouped into three

broad categories: 1) functional forms proposed to describe an income distribution that has been

generated by a stochastic process, as in Champernowne (1953) and Fisk (1961); 2) functional forms

obtained by adopting a pragmatic approach, ie, solely by their ability to provide a good fit to

empirical data, as in McDonald (1984); 3) specification of a differential equation to capture the

characteristics of regularity and permanence observed in an empirical distribution of income, as in

Singh and Maddala (1976). In most cases, a good fit to the data is the primary objective, with sound

economic interpretations and computational simplicity a bonus.

Many parametric specifications have been experimented. These include, among others, the Pareto,

lognormal, exponential and Weibull distributions, the beta distribution of Thurow (1970), the gamma

density of Salem and Mount (1974), the Singh-Maddala (1976) distribution based on the hazard rate,

the generalised beta (GB) distributions of McDonald (1984), the generalised gamma distribution

(GG) of Estaben (1986) based on an “income share elasticity” approach. Majumder and Chakravarty

(1990) provided a four-parameter model of personal income distribution based on the same approach.

Broadly speaking, the Pareto distribution gives excellent fit to the upper part of income distribution

but fails elsewhere, while the lognormal fits well the lower part but badly in the upper tail. The gamma

distribution fits well the middle part, but seems to be inferior to the Singh-Maddala distribution, which

some authors claim to deliver an overall good fit for the full range of income distribution.

B Some classical multimodality tests

Good and Gaskins (1980) proposed an iterative surgery or repeated smoothing procedure for their

maximum “penalised” likelihood (MPL) estimates f̂1. The significance of any bump is assessed by

a Bayesian interpretation of the MPL method. More precisely, a new smoothed density estimate f̂2

is obtained by removing the particular bump under question (see Figure 2). Then, the difference

between the penalised log likelihoods, f̂1 and f̂2, ie, |`(f̂1)−`(f̂2)|, is taken as the posterior log-odds

in favour of the bump. Unlike kernel-based testing procedures, the theoretical properties of the Good

and Gaskins’ (1980) estimator are not yet well understood.

The dip and excess mass approaches to mode testing were introduced by Hartigan and Hartigan

(1985) and Müller and Sawitzki (1991), respectively. For the one-dimensional case, the dip test and

excess mass test are equivalent. For Y1, . . . , Yn, a random sample from the distribution function F ,

the empirical distribution function Fn is defined as:

Fn(y) = n−1
n∑

i=1

1 {Yi ≤ y}

where 1 {·} is the indicator function. The dip statistic DIP can then be defined as the maximum

difference, over all sample points, between the empirical distribution function Fn and the unimodal
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distribution that minimises this maximum difference:

DIP (Fn) = inf
F∈U1

sup
y∈Y

|Fn(y)− F (y)| (12)

where U1 is the class of all distribution functions with unimodal densities and Y is the support of y

(see Figure 3). The null hypothesis of unimodality can be rejected against the alternative of m modes

when DIP is too large. Hartigan (1985) developed a computational algorithm for implementing the

dip test. Hartigan (2000) extended the original unimodality dip test to the case of multimodalily,

where Um, the class of uniform mixtures with at most m modes, is the benchmark in a test of m

modes.

Define excess mass as E(λ) =
∫

(f (y)− λ)+ dy, the probability mass exceeding the density level

λ. It measures the strength of a mode. Müller and Sawitzki’s (1991) excess difference test statistic

∆n,m for a sample of size n can be defined in terms of the empirical excess mass for m modes:

En,m(λ) = sup
C1,...,Cm

m∑

j=1

{Fn(Cj)− λ ‖Cj‖}

where λ is a positive constant, {Cj}m
j=1 are pairwise disjoint connected sets of the form C ⊂

{y ∈ Y : f(y) ≥ λ}, Fn(C) is the empirical measure of C, and ‖C‖ is the length of C (see Figure 4).

Putting Dn,m(λ) = En,m(λ) − En,m−1(λ), the excess difference test statistic for multimodality is

∆n,m = supλ Dn,m(λ). The null hypothesis of m− 1 modes can be rejected against the alternative

of m modes when ∆n,m is too large. It is not difficult to verify that for m = 2, ∆n,2 = 2DIP (Fn).

Both the dip and excess difference test statistics are closely related to the Kolmogorov-Smirnov (KS)

statistic, often used as a measure of goodness of fit:

KS = ‖Fn − F‖∞ = sup
t
|Fn(t)− F (t)|

From the Glivenko-Cantelli theorem, if Y1, . . . , Yn are i.i.d. random variables with distribution func-

tion F , then as n −→∞, we have:

KS −→a.s. 0

This imples DIP (Fn) −→a.s. DIP (F ) as n −→ ∞. The dip test is consistent and asymptotivally

distinguishes any unimodal distribution from any multimodal distribution.

Recently, Cheng and Hall (1998) exploit the fact that the limiting distributions of the excess difference

statistic under the null depends on unknowns only through a constant and suggest a way to calibrate

the dip and excess mass tests that may substantially improve their level accuracy and power. To

overcome conservatism inherent in these tests, Cheng and Hall (1999) propose the use of a boundary

null hypothesis of one mode and one shoulder and calibrating the bandwidth, dip and excess mass tests

by resampling from a “template” density with exactly one mode and one shoulder. The mode-and-

shoulder test, when properly calibrated, has asymptotically correct level. Hartigan (2000) generalises

the dip test to handle the possibility of many modes. His test statistic is based on a “shoulder

interval”, a maximal interval of constant density that is neither a mode nor an antimode, in a

19



best fitting m-modal uniform mixture. The test is calibrated by reference to an appropriate null

distribution.

Despite these exciting new developments in the theory of mode testing, we use the bandwidth test

of Silverman (1981) in our analysis, for its appealing and well-understood theoretical properties and

interesting practical implications. Furthermore, our version of the test is a natural extension of the

adaptive kernel estimation of income density.

C Simulations on data transformation

Steadily increasing income levels expands the income range over time, and normalisation by maximum

may not distinguish the following two cases. Suppose that in the normalised data, we observe a shift

of large probability mass from [0.30, 0.55] to [0.15, 0.25]. One may conclude that the welfare of

a sizeable portion of the population has deteriorated in relative terms. One possibility is that the

middle-class has lost ground in absolute terms. But it may also occur that a very small number

of high-income earners, of approximately zero probability mass, are earning much more. These few

individuals would greatly expand the absolute income range, without much change in the rest of

income distribution.

We run simulations to examine how sensitive our normalisation is to these two competing cases under

bimodal and trimodal densities, where the data are generated by a mixture of two normal densities

located in the low and middle ranges, and a uniform density of little mass located at the high end of

the income range:

Y1 ∼ 0.29ℵ(2, 500, 2, 000) + 0.69ℵ(25, 000, 20, 000)

+0.02=[90, 000, 120, 000] (13)

Y2 ∼ 0.29ℵ(2, 500, 2, 000) + 0.69ℵ(14, 000, 14, 000)

+0.02=[90, 000, 120, 000] (14)

Y3 ∼ 0.29ℵ(2, 500, 2, 000) + 0.69ℵ(25, 000, 20, 000)

+0.02=[150, 000, 200, 000] (15)

where ℵ(µ, σ) stands for a Gaussian distribution with mean µ and variance σ2, =[a, b] stands for the

continuous uniform distribution of length [a, b], and “∼” means equivalence in distribution. Case 1

in (14) corresponds to relocating the middle-range normal density of Y1 to a lower range, while Case

2 in (15) corresponds to moving the upper-range uniform density upwards in absolute terms.

Normalising the data, we apply the adaptive kernel estimation technique and the adaptive Silverman

test. We find that data originated from two different scenarios but normalised by maximum typically

lead to the same picture, normalisation by maximum cannot distinguish these two cases. However,

other forms of normalisation, including divisions by sum, mean, median and range, cannot distinguish

the two scenarios.

20



D Tables

Table 1: Critical bandwidths versus numbers of modes: all population.

Modes 1962 1972 1982 1992 2000

1 0.090 (0.00) 0.093 (0.00) 0.080 (0.00) 0.052 (0.00) 0.031 (0.00)

2 0.017 (0.64) 0.034 (0.02) 0.018 (0.32) 0.024 (0.02) 0.015 (0.03)

3 0.013 (0.61) 0.015 (0.15) 0.016 (0.02) 0.018 (0.01) 0.011 (0.00)

4 0.012 (0.25) 0.014 (0.00) 0.015 (0.00) 0.017 (0.00) 0.010 (0.00)

5 0.011 (0.11) 0.011 (0.02) 0.014 (0.00) 0.016 (0.00) 0.009 (0.00)

6 —– 0.010 (0.01) —– 0.015 (0.00) 0.008 (0.00)

Note: The numbers in parentheses are the corresponding P -values of the
Silverman test.
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Figure 1: Modes, bumps, dip and shoulder. Points A and B are modes, shaded areas C and D
are bumps, area E is a dip and F is a shoulder point.
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Figure 2: Iterative surgery procedure. The bump A is smoothed out to obtain a unimodal
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