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Abstract

We provide a robustness check of the US Phillips curve in the frequency domain. We design frequency-

specific coefficients of correlation (FSCC) and regression (FSCR), based on our frequency-specific

data extraction procedure. Being real-valued, signed and normalised, the FSCC is superior to tradi-

tional indicators such as coherence and cospectrum. Our FSCC and FSCR estimates suggest that

the Phillips tradeoffs vary greatly across frequencies, with frequent sign reversals. They seem to be

stable in higher frequencies, but unstable in low and medium frequencies, and they are sensitive to

the level and boundaries of frequency aggregation, to the way data are processed prior to analysis

(eg detrending) and to the type of variables used. In this sense, the Phillips curves are fragile. The

impact of potential cross-frequency model inconsistency on model estimation using conventional time

domain methods needs careful scrutiny.

Keywords: Phillips curve, inflation-output tradeoff, filtering, frequency-specific coefficient of corre-

lation, spectral regression.
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1 Introduction1

Ever since the publication of Phillips (1958),2 Lipsey (1960) and Samuelson and Solow (1960), the

Phillips curve has been one of the most studied and disputed empirical relationship in economics.

Early versions of the Phillips curve postulated that in the long run, the rate of wage inflation depended

on the unemployment rate and on lagged rates of price inflation. The relationship held up remarkably

well until the 1960s, and it quickly became an essential part of macroeconomic modelling and policy

analysis of the time,3 as well as an important component of the Neoclassical Synthesis championed

by Paul Samuelson.

The ascension of monetarism in the 1960s posed a direct challenge to the Neoclassical Synthesis,

questioning the long-term validity and structural stability of the Phillips curve. Friedman (1968)

proposed the idea of a “natural rate of unemployment”, at which the rate of price inflation neither

increases nor decreases. The corresponding rate of inflation became known as the non-accelerating

inflation rate of unemployment (NAIRU). The concept of NAIRU implies the non-existence of ex-

ploitable long-run inflation-unemployment tradeoff for policymakers. In fact, increased perception of

inflation persistence and the breakdown of the Phillips tradeoff in the early 1970s cast serious doubt

on the theoretical and empirical validity of the Phillips curve.

Lucas (1972b, 1973, 1975) made an extensive analysis and critique of the nature of the empirical

inflation-output tradeoff often exploited by policymakers. Lucas (1972b) demonstrated the close

relationship between the rational expectations and the natural rate hypotheses. When correctly

formulated, the latter has no testable implications for the distributed-lag coefficients in a Phillips

curve. Furthermore, under rational expectations, permanent changes in inflation lead to changes

in both the policy parameters and the structure of econometric models, and therefore a new policy

cannot be evaluated by testing restrictions on those implied by the previous, now irrelevant, policy.

This is the celebrated Lucas-Sargent Critique, articulated in Sargent (1971) and Lucas (1975).

One implication of the Critique is that what has not appeared in the data may not be expected,

and effects of unannounced policy changes cannot be predicted using the existing model. In general,

one cannot test long-run neutrality propositions using reduced-form models. If exogenous variables

were stationary, data generated in the rational expectations models do not contain permanent or

sustained changes for direct tests of the long run. In fact, the Phillips curve broke down soon after

the publication of Gordon (1970).

Friedman’s “discovery” of the NAIRU and the Lucas-Sargent critique prompted economists to change

the basic specification of the Phillips curve: expectations were incorporated along with surrogates

for various supply shocks, such as the oil prices. The so-called NAIRU Phillips curve takes the price

1I thank Steve Arthur, Jeff Amato, Claudio Borio, Andy Filardo, Giuseppe Moscarini, Peter Phillips and Zhijie
Xiao for helpful discussions and comments, and Les Skoczylas for assistance with graphs. Financial support from the
Portuguese Foundation for Science and Technology and the Cowles Foundation for Research in Economics at an early
stage of this project is gratefully acknowledged. The views expressed here are those of the author and do not necessarily
reflect those of the BIS. E-mail: feng.zhu@bis.org.

2The first paper describing a negative correlation between price inflation and unemployment was probably written
by Irving Fisher (1926), later reprinted in the Journal of Political Economy (1973).

3The Phillips long-run inflation-output tradeoff was first incorporated as a wage-price sector in the 1955 version of
the Klein-Goldberger model.

1



acceleration rate as the dependent variable rather than the inflation rate. The new specification

worked well and remained stable throughout the 1970s and early 1980s. However, as documented by

Stock and Watson (1999) and Atkeson and Ohanian (2001), the NAIRU Phillips curve shifted and

became substantially flatter after 1984. As many of the structural characteristics of the US economy

have changed since the 1980s,4 the NAIRU specification itself became unstable.

Decades after Fisher (1926) and Phillips (1958), the empirical validity of the Phillips curve continues

to be at the heart of current macroeconomic debate. In the words of Lucas and Sargent (1979), the

Phillips curve was an “econometric failure on a grand scale”Ḣowever, a recent strand of literature

seems to have been successful in reviving the fortunes of the Phillips curve, suggesting an important

role for the curve in short-term macroeconomic forecasting, and challenging the empirical relevance

of the Lucas-Sargent critique. In fact, Blinder (1997) claimed that the reliability of the Phillips

curve was the “clean little secret” of modern macroeconomics. Mankiw (2000) claimed that the

inflation-unemployment tradeoff remained a basic “inexorable” fact in economics.

King and Watson (1994) distinguished the traditional Keynesian, rational-expectations monetarist

and real business-cycle identification schemes and found that the short-term5 US Phillips curve was

remarkably stable in the post-war years, and the curve at every horizon is less stable than it is over

time. Fuhrer (1995) argued that agents may not form expectations “rationally”, such that the Lucas-

Sargent critique loses empirical content. Moreover, “even if agents’ expectations react to changes

in monetary policy, we cannot know a priori whether the historical changes in monetary policy have

been large enough to cause empirically significant shifts in expectations in the Phillips curve.” In a

stationary environment, the Lucas-Sargent critique, just as the Phillips tradeoff, cannot be validated

empirically in reduced-form models. Fuhrer concluded that the Phillips curve exhibited remarkable

stability over the 1960-93 period, “as an empirical matter, the Lucas critique does not apply to the

Phillips curve.”

Stock and Watson (1999) investigated the short-term forecasting capability of alternative Phillips

curve specifications. Of all methods considered, the Phillips curve produced the most reliable and

accurate short-run forecasts of US price inflation.6 Brayton at al (1999) found that the Phillips

curve with capacity utilisation rather than the unemployment rate had been stable and yielded more

accurate inflation forecasts. Including an error-correction mechanism involving the markup of prices

over trend unit labour costs provides even better results.

Almost all existing time domain regression and correlation analyses of the Phillips curve use aggregate

time series data, largely disregard any possible frequency-wise variations. Results from these studies

are potentially fragile, as correlation and regression coefficients of different signs and magnitudes

are aggregated over the whole frequency range. Regressions with filtered data and band spectrum

regressions lessen the problem but suffer from the same drawback, as the aggregation proceeds in

subjective and arbitrarily pre-specified frequency bands. It is known that aggregate macroeconomic

relationships are often frequency dependent. However, frequency domain analyses of macroeconomic

4For example, Clarida et al (2000) discussed significant changes in monetary policy in the early 1980s. After 1984,
business cycle fluctuations attenuated, and inflation became less volatile and less persistent.

5They define “short term” as less than one year.

6However, Atkeson and Ohanian (2001) came to the contrary conclusion that the NAIRU Phillips curve had no
value for short-term inflation forecasting.
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relationships are uncommon, and the empirical validity of the Phillips curve in the frequency domain

has not yet been investigated.

In this paper, we design frequency domain time series techniques to examine the validity of the

Phillips relations across different frequencies and frequency bands, using available US data. We first

apply the Hodrick-Prescott (1980) filter and the Baxter-King (1999) band-pass filter to time series

to study the Phillips tradeoffs in conventionally defined frequency bands. Using filtered data, we

find that the tradeoff holds only in the medium and higher frequency bands, where the cumulated

responses (i.e., “long-run” slopes) in the NAIRU Phillips models are jointly significant and have the

correct sign. For some price indices, such as the CPI series, and certain measures of real activity, the

Phillips tradeoff turns out to be more solid. The results contradict the conventional view that there

is no long-run but a strong short-run Phillips tradeoff.

We then propose a simple procedure to retrieve frequency-specific data from covariance stationary

time series, using Fourier and inverse Fourier transforms. Based on this data extraction procedure, we

design a frequency-specific coefficient of correlation (FSCC), which is superior to traditional frequency

domain indicators such as coherence and cospectrum, because it provides a real-valued, normalised

and signed measure of the strength of multiple correlations. Unlike coherence, the FSCC delivers the

sign of frequency-wise correlations between two or more series. Compared to the cospectrum, the

FSCC takes into account both the real and imaginary components. It is standardised and takes values

only in the [−1, 1] range, therefore delivering a clear indication of the strength of correlation that is

independent of the scale of data. Similarly, we devise a frequency-specific coefficient of regression

(FSCR), for which conventional asymptotic theory remain valid, since our data retrieval procedure is

a linear transformation of original data.

We compute estimates of frequency-specific cospectra, coherences, real coherences, coefficients of

correlation and regression for a large number of different Phillips nominal and real variables commonly

used in the literature. Our results suggest that for most cases, the Phillips relations vary both in sign

and in strength across the whole frequency range, with frequent sign reversals. A small change in

the level and boundaries of frequency aggregation may cause the aggregated signs of correlation and

regression to reverse. Moreover, the Phillips relations seem to be fairly stable in the high frequency

range (less than 6 quarters), but is much less stable in the business cycle frequency range, and quite

unstable in the low frequency range (over 32 quarters). Many of the 95% confidence intervals for

the Phillips spectral correlation and regression coefficients include zero. Furthermore, the Phillips

relations are sensitive to the type of data used and to the way data are processed prior to analysis

(i.e., how they are detrended). Summing up, common time and frequency-domain analysis of the

Phillips curve can be misleading, and the Phillips relations are fragile in this sense.

In Section 2, we describe a new methodological approach to empirically measuring the Phillips

tradeoff in the frequency domain. We propose a simple procedure to retrieve frequency-specific

data from covariance stationary time series, using Fourier and inverse Fourier transforms. Based

on this procedure, we design a frequency-specific coefficient of correlation that provides a real-

valued, normalised and signed measure of the strength of multiple correlations. In Section 3, we

present empirical tests of the NAIRU Phillips regression models using conventionally filtered data,

and estimates of frequency-specific coefficients of correlation and regression for the Phillips relations.
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Section 4 concludes. Technical supplements, tables and figures are collected in Section 5.

2 Frequency domain analysis of the Phillips curve

Spectral analysis of time series is appealing, because covariance stationary processes can be uniquely

decomposed into mutually uncorrelated components, each associated with a particular data frequency

or frequency band. It has been a time-honoured practice in economic analysis to equate low-frequency

characteristics of multiple time series to their average long-run behaviour.7 While high-frequency

seasonal or irregular components are of particular importance in finance,8 medium-frequency compo-

nents are of greater interest to business cycle analysts. Differentiating the inflation-unemployment

tradeoff across frequency bands helps us to understand the characteristics of different frequency

components of the Phillips correlation.9

Although we do not always expect to uncover different data generation processes across different

frequency bands,10 we may still want to examine whether one single model fits all frequencies. Engle’s

(1974) remark was particularly lucid:“... there is little discussion of whether the same model applies

to all frequencies. It may be too much to ask of a model that it explain both slow and rapid shifts

in the variables, or both seasonal and non-seasonal behaviour. It is at least reasonable to test the

hypothesis that the same model applies at various frequencies.” Possible frequency-wise variations

of any particular relationship imply that pure time domain analysis, which effectively aggregates or

averages the relationship across the whole frequency range, may be misleading, by implicitly assuming

that the relationship hold over the whole frequency range.

There are two general approaches to frequency domain time series analysis. The first relies on carefully

designed filters to extract data corresponding to different frequency bands. Statistical analysis can

then be conducted on the basis of filtered data. Filtering methods have a long tradition in economic

analysis, being now part of the standard toolkit of modern quantitative analysis of business cycle

fluctuations. Examples of this include the linear detrending (LD) filter, the ARIMA filter,11 the

first difference (FD) filter, the Lucas (1980) exponential smoothing filter, the Baxter-King (1999)

band-pass (BP) filter, and the Hodrick-Prescott (HP, 1980, 1997) filter, which was popularised

by Kydland and Prescott (1982) in their seminal work on a calibrated Real Business Cycle (RBC)

model. However, due to finite data length and consequent truncation of data, these filters are only

approximations to the ideal filters, and filter leakage, compression and exacerbation are inevitable.12

7For instance, Summers (1983) used Engle’s (1974) band-spectrum regression estimator to examine the Fisher
equation as a proposition valid only at low frequencies.

8Volatility plays a key role in the analysis of financial time series. See, for example, Engle (2000).

9Using a low-pass filter (isolating periodicities over eight years) and the Baxter-King band-pass filter (isolating
periodicities between 18 months and eight years), King and Watson (1994) documented a pronounced and stable (over
time) negative correlation between inflation and unemployment at business-cycle frequencies, but very unstable lower
frequency comovements.

10For example, one can impute most of the low-frequency characteristics of macroeconomic time series to a “growth
mechanism” and the business-cycle movements to a “cycle mechanism”. However, one cannot assume that the two
mechanisms are economically or statistically independent. The prevalent use of linear filters to isolate the business
cycles frequency in order to study economic fluctuations is subject to this caveat.

11See, for example, Blanchard and Fischer (1989), p 9.

12See Appendix 5.2 and Baxter and King (1999) for details.
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Furthermore, possible variations in multivariate correlations and regressions inside the pre-specified

frequency bands will continue to be masked: averaging now takes places in the frequency band rather

than across the whole frequency range.

The second approach conducts time series analysis directly in the frequency domain. Early applica-

tions in economics focussed on simple spectral indicators, such as gain, phase, spectral and cospectral

densities, and coherence. Examples are Granger and Morgerstern (1963), Granger (1966), Granger

and Rees (1968) and Granger (1969). Recent applications include Pakko (2000), Estrella (2003),

Cogley and Sargent (2001, 2004) and Cogley and Sbordone (2004). More sophisticated spectral

regression analysis was pioneered by Hannan (1963). Band spectrum regressions were introduced to

economics by Engle (1974, 1978, 1980) and Harvey (1978). These methods allow one to focus on

one or more frequency bands of interest, and permit a nonparametric treatment of regression errors.

Phillips (1991) demonstrated how spectral regression techniques can be applied to integrated time

series to obtain asymptotically median unbiased estimates of cointegrating coefficients. Corbae et al

(1994) used the Phillips (1991) procedure to examine the permanent income hypothesis. Diebold et

al (1998) propose a measure of divergence between model and data spectra both for the full spectrum

and for particular frequency bands to evaluate the goodness-of-fit of calibrated models. Berkowitz

(2001) suggested a generalised spectral estimator which can be frequency-specific. Macroeconomic

applications of band spectrum regressions include Thoma (1994) and Tan and Ashley (1997, 1998,

1999).

We use HP and BP filters to decompose individual stationary time series into short- (seasonal and

irregular), medium- (business-cycle) and long-run components. We run least squares regressions with

filtered series and examine the validity of the Phillips tradeoff in different frequency bands. Time

domain regressions using filtered data are similar, and in ideal settings, equivalent to band spectrum

regressions, but have the drawback of allowing filter leakage, exacerbation and compression effects

to pass through into regression analysis.13 Furthermore, a priori definitions of frequency bands

are subjective and arbitrary, leaving it open the possibility of averaging different frequency-specific

relations in a band.

To demonstrate potential shortcomings of conventional time domain analysis and analysis based on

pre-defined frequency bands, and to improve upon the filtering approach, we take a direct approach

and focus on the frequency-wise behaviour of the bivariate Phillips correlations and regressions across

the entire frequency range. We propose a simple procedure to retrieve frequency-specific data from

covariance stationary time series using Fourier and inverse Fourier transforms. The data extraction

procedure can be extended to select any specific frequency band. Analysis based on transformed

data will not be affected by the filter leakage, exacerbation and compression effects caused by data

truncation necessary in common filters.

Based on this data extraction procedure, we design a frequency-specific coefficient of correlation,

which is superior to traditional indicators, such as coherence and cospectrum, by providing a real-

valued, normalised and signed measure of the strength of multiple correlations. Unlike coherence,

the FSCC makes it transparent the sign of frequency-wise correlations between any two series. Com-

pared to cospectrum, the FSCC is standardised and takes values only in the [−1, 1] range, therefore

13The mechanics of the Lucas, FD, HP and BP filters, are illustrated in the Appendix 5.2.
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delivering a clear indication of the strength of correlation which is independent of the scale of data.

We also take advantage of the data extraction procedure and devise a frequency-specific coefficient

of regression.

2.1 A frequency-specific data extraction procedure

Consider a time series vector x = [x1, x2, . . . , xT ]T . For s = 1, . . . , T , define the fundamental

frequencies as ωs = 2πs /T . The discrete Fourier transform of x at frequency ωs is

wsx = T−1/2
T∑

t=1

xte
(t−1)iωs (1)

where

ws = T−1/2

[
1 eiωs e2iωs · · · e(T−1)iωs

]

Define

W =




w0

w1

...

wT−1




(2)

Now, W is a unitary matrix such that W ∗W = WW ∗ = I, where ∗ indicates the Hermitian conjugate

(i.e., transpose of the complex conjugate). Then x̃ = Wx is the vector of discrete Fourier transform

of time series x at all fundamental frequencies ωs, s = 0, . . . , T − 1.

Define As as a T × T selection matrix which selects the s-th element or row from any data vector

or matrix, respectively. It has 1 as the s, s-th element and zeros elsewhere.14 The data vector of the

discrete Fourier transform of time series x at the s-th frequency is

Asx̃ = AsWx (3)

There are now T data vectors Asx̃, extracted from the original time series x, each is of length T ,

and corresponds to a distinct frequency ωs. All but the s-th elements of the s-th data vector Asx̃

are zero. We then use inverse Fourier transform to convert the complex data vector Asx̃ back into

the time domain. Write the frequency-ωs inverse Fourier transform of the time series x as

x̂ (ωs) = Lsx = W ∗AsWx (4)

where Ls
.= W ∗AsW is a linear operator. Using Fourier and inverse Fourier transforms and the selec-

tion matrix As, from any data vector x, we can extract T time series x̂(ωs) = [x1(ωs), x2(ωs), . . . , xT (ωs)]
T ,

each corresponding to a specific frequency ωs, where s = 1, . . . , T . Based on these frequency-specific

data, we can then design frequency-wise correlation and regression coefficients in a conventional way.

14To select a frequency band [ωs, ωt], one can simply let the s-th to t-th diagonal elements of A all be one.
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For any time series, the data extraction procedure retrieves frequency-specific data and transforms

them back into the time domain. Given that the procedure is linear in nature, all conventional time

domain techniques and the related finite sample and asymptotic apparatus remain valid and can

be applied to the extracted time series without any modification. Furthermore, by an appropriate

change in the selection matrix AS , one can also extract band-specific data for any frequency bands.

This method is flexible, and it is superior to conventional data filtering methods by avoiding the

unavoidable negative effects of filter leakage, compression and exacerbation.

2.2 Correlation analysis

For bivariate15 stochastic processes zt = [ xt yt ]T , which are assumed to be jointly weakly sta-

tionary with continuous spectra, we write the corresponding spectral density matrix as

fzz(ω) =




fxx(ω) fxy(ω)

fyx(ω) fyy(ω)


 (5)

where the spectral densities fxx(ω), fyy(ω) and the cross-spectral density fxy(ω) determine the

relationship between xt and yt at frequency ω. In Cartesian form, the cross-spectral density fxy(ω)
can be written as

fxy(ω) = cxy (ω)− iqxy (ω) (6)

where cxy (ω) and qxy (ω) are real-valued functions known as cospectrum (or cospectral density)

and quadspectrum (or quadrature spectral density), respectively. The cospectrum cxy (ω) represents

the covariance between coefficients of the in-phase components of two time series, while the quad-

spectrum qxy (ω) represents the covariance between coefficients of the out-of-phase components.

Cospectrum estimation is equivalent to studying the off-diagonal elements of the variance-covariance

matrix between two time series, which are uniquely related to cospectra by Fourier and inverse Fourier

transforms.

In polar form,

fxy (ω) = |fxy (ω)| exp (iϕxy (ω)) (7)

where

ϕxy (ω) = − arctan
(

qxy (ω)
cxy (ω)

)
(8)

The phase ϕxy (ω) measures the average phase lead of xt over yt, and ϕxy (ω) /ω indicates the

extent of time lag. The gain Gxy (ω) is defined as

Gxy (ω) =
|fxy (ω)|
fx (ω)

(9)

which is a standardised version of the regression coefficient of y on x at frequency ω. A small Gxy (ω)
indicates that x has little effect on y at frequency ω.

15All concepts described in Sections 2.2 and 2.3 for bivariate time series can be easily generalised to multivariate
stochastic processes, where exogenous variables can be introduced.
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Define the complex coherence ccohxy (ω) at frequency ω as

ccohxy (ω) =
fxy (ω)

[fxx (ω) fyy (ω)]1/2
(10)

The complex coherence ccohxy is the frequency domain analogue of the time domain coefficient of

correlation, but since fxy and ccohxy are complex, it is hard to interpret this indicator in terms of

the overall strength of linear correlation between x and y. Real coherence rcohxy, which we define

as the real part of ccohxy, is just the cospectrum cxy standardised by the square root of the product

of fxx and fxy. It is the coefficient of correlation between coefficients of the in-phase components of

two time series x and y. However, a true frequency-specific correlation coefficient needs to account

for both the real and complex parts of the complex coherence ccohxy.

One obvious solution is the coefficient of coherence16 of xt over yt at frequency ω, defined as

cohexy (ω) = |ccohxy (ω)|. But although it delivers a real number, it fails to reveal the sign of linear

correlation at frequency ω. The coherency cohxy (ω) of xt over yt at frequency ω is

cohxy (ω) = cohexy (ω)2 = |ccohxy (ω)|2 (11)

Analogous to the coefficient of determination (i.e. R2) in the time domain, the coherency cohxy is the

standardised modulus of cross spectral density. It measures the strength of linear association between

two or more variables of interest across frequencies. By Schwarz Inequality, ∀ω, cohxy (ω) ∈ [0, 1].
At frequencies for which fxx (ω) fyy (ω) = 0, we define cohxy (ω) = 0. If cohxy (ω) = 0, the two

series x(t) and y(t) are completely unrelated at frequency ω. If cohxy (ω) = 1, then one series is an

exactly linearly filtered version of the other at frequency ω. In general, cohxy varies with frequency ω,

indicating the changing pattern of linear association across frequencies. Regions of high coherence

are of particular interest.

Focussing on estimated cospectra ĉxy (ω), Pakko (2000) found important differences in the low- and

higher-frequency components of the output-inflation tradeoff, and gave examples of how cospectra

can be used for model evaluation. However, without appropriate standardisation, the magnitude of

cospectra estimates depend on the scale of data and they do not provide an appropriate measure of

correlative strength. Indeed they may produce a misleading picture of cross-frequency variations in

bivariate correlations when relationships are put to comparison.

On the contrary, estimates of the coefficient of coherency ĉohxy are scale-independent, being nor-

malised to fall in the [0, 1] interval. By definition, it has the disadvantage of taking only non-negative

values, therefore failing to differentiate positive and negative correlations between two variables at

different frequencies. Aggregating a bivariate relationship across frequencies, when the sign of corre-

lation changes from frequency to frequency, may lead to wrong conclusions as positive and negative

correlations cancel each other out and leave an aggregated value of correlation close to zero. Indeed,

time domain methods, which aggregate over the entire frequency domain, and methods based on

arbitrarily pre-defined frequency bands that aggregate over each band, are not robust when cross-

16Extending the conceptual construct of bivariate coherence to multiple time series, we have multiple and partial
coherences.
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frequency variations are large, and when sign reversals are frequent.

What we need is a frequency-domain analogue of the time-domain coefficient of correlation, corre-

sponding either to a specific frequency ω, or to a frequency band [ωl, ωm], where 0 ≤ ωl ≤ ωm ≤ 2π.

One natural choice would be the complex coherence ccohxy. But although ccohxy is signed and

normalised, since in general fxy is complex-valued, so is ccohxy. There is no easy way to graphically

illustrate, and to interpret, the interplay between the real and complex parts of the complex coher-

ence, even if we are able to represent the indicator in a three-dimensional diagramme. Our solution is

to take advantage of the proposed simple frequency-domain data recovery procedure, and we define

ρ (ω), the frequency-specific coefficient of correlation (FSCC) at frequency ω, as follows

ρ (ω) =
Cov (x̂ (ω) , ŷ (ω))√

V ar (x̂ (ω))
√

V ar (ŷ (ω))
(12)

where x̂ (ω) and ŷ (ω) are frequency-specific time series extracted from data vectors x and y, and

Cov (•) and V ar (•) stand for covariance and variance, respectively. The confidence interval for

ρ (ω) can be computed in the conventional way.

The frequency-specific coefficient of correlation is normalised to take values in the [−1, 1] interval.

Unlike cospectral density cxy, the FSCC ρ is free from data scale, hence a true measure of the

strength of frequency-ω correlation between x and y. Comparing to coherence cohxy, the FSCC ρ

signs the direction of correlation existing in the data. The FSCC estimate is a clear improvement

upon cospectrum and coherence estimates, and we use it as the main indicator of strength of bivariate

correlation for Phillips relations. When the distribution theories for the cospectral density cxy and

the coherence cohxy are complicated, p-values and confidence intervals for the FSCC estimates ρ̂’s

can be provided in the usual way. In fact, these are often supplied automatically in an econometric

or statistical software package.

2.3 Regression analysis

Early applications of spectral regression methods in economics include Engle (1974, 1978), Lucas

(1980) and Summers (1983), which rely on low-frequency aspects of macroeconomic time series

to test important economic hypotheses concerning the long run. Lucas (1980) designed a filter

to single out the very low frequency components of two time series and then studied their bivariate

correlations using graphical methods.17 Engle (1974, 1978) provided good examples of band spectrum

regressions and a statistical test of the null hypothesis that a particular data generation process held

across different frequency bands. We use HP and BP-filtered data to run approximate band spectrum

regressions and the corresponding approximate band spectrum causality tests. We then use our data

retrieval procedure to run frequency-specific regressions.

17Lucas’ two-step method is similar to fitting a least squares regression line through filtered time series data. Engle
(1978) and McCallum (1984) proved that this method combined with an ideal low-pass filter is equivalent to performing
a band-spectrum regression with frequencies restricted to a small band around ω = 0, or computing an approximate
zero-frequency regression estimate β̂ (0). This, in a bivariate system, is equal to the sum of coefficients estimated in a
distributed-lag regression. Therefore, “long-run relationship” at zero frequency is interpreted as the sum of distributed-
lag coefficients, and hypothesis tests about long run are based on testing the sum being equated to a particular value
specified by theory.
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2.3.1 Regressions with filtered data

Regressions with filtered data are based on the following NAIRU Phillips curve specification

∆πt = α + A(L)∆πt−1 + B(L) (yt − ȳt) + C(L)xt + εt (13)

or equivalently,

πt = α + A′ (L) πt−1 + B(L) (yt − ȳt) + C(L)xt + εt (14)

where A′ (1) = 1. yt can be the unemployment rate, or growth in real output or in any other measure

of real activity, such as the Stock-Watson Experimental Leading Index, and ȳt is the (possibly time-

varying) trend level of yt.
18 Hence (yt − ȳt) is the unemployment or output gap. In the case of the

unemployment rate or real output, ȳt represents either the NAIRU or the non-accelerating inflation

level of output (NAIRO), respectively.19 The exogenous variables xt reflect observable supply shocks

to the economy.

The current response or short-run slope and the accumulated response or long-run slope of the

Phillips curve are, respectively

SSR = B0 (15a)

SLR = B (1) /[1−A (1)] (15b)

We consider a maximum of six lags for a (L), B (L) and C (L) in Equation (13), therefore a total of

216 specifications are considered for each pair of Phillips variables. Model selection criteria (Akaike

Information, Schwarz Bayesian Information and Final Prediction Error Criterion) are used to choose

the adequate filtered models, for which bi-directional Granger (1969) and Sims (1972) tests are

conducted to examine the empirical validity of the Phillips curves in conventional frequency bands.

2.3.2 Frequency-specific spectral regression

Consider a simple model for two time series y = [y1, y2, . . . , yT ]T and x = [x1, x2, . . . , xT ]T

y = βx + ε (16)

where ε ∼ iid
(
0, σ2I

)
and x is uncorrelated with ε.20 The periodogram of x and the cross-

periodogram between x and y at frequency ωs are, respectively

Ix (ωs) = |wsx|2 (17a)

Ixy (ωs) = (wsx)∗ (wsy) (17b)

18Contrary to what has often been claimed, the HP and BP filters may not render integrated processes stationary.
We use an I (0) specification here. Lags of ∆πt are included to reflect expectations of the acceleration rate of inflation.

19We use three measures of NAIRU or NAIRO: (1) constant means of the level and growth rate of a real variable;
(2) linear trends in the level and growth rate of a real variable; (3) the BLS Real Potential GDP series.

20These assumptions are strong for the issues we intend to clarify. However, a relaxation of these assumptions is
straightforward and should not change our basic results.
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where ws is defined as in Section 2.1.

The s-th frequency spectral regression is

Asỹ = βsAsx̃ + Asε̃ (18)

where q̃ = Wq, for any q, and W is defined as in Equation (2). The s-th frequency spectral regression

coefficient is

β̃s = (x̃∗Asx̃)−1 x̃∗Asỹ

= Ix (ωs)
−1 Ixy (ωs) (19)

Since the unsmoothed periodogram Ix and the cross-periodogram Ixy are not consistent estimators

of the spectral and cross-spectral densities, and we are interested in frequency-specific regression

coefficients that do not involve averaging over a frequency band to obtain consistent estimates of

the sums of periodogram and cross-periodogram ordinates, we may instead use smoothed spectral

estimates to estimate βs:
21

β̂s = f̂x (ωs)
−1 f̂xy (ωs) (20)

In general, the estimator β̂s will be complex-valued. To obtain a real-valued estimate, one can take

the real part of β̂s, but typically, both the real and complex parts of β̂s matter. Or we may simply use

the gain, i.e., the modulus
∣∣∣β̂s

∣∣∣ of β̂s, which has the drawback of not allowing us to discern the sign

of spectral regressions. We take advantage of the proposed data extraction procedure and run OLS

regressions with frequency-specific data. Since the Fourier transform and inverse Fourier transform

are linear operations, conventional asymptotic theory continues to apply, and the confidence interval

for β̂s can be computed in the usual way (except at the zero frequency). Write the inverse Fourier

transform of Equation 18 as

Lsy = βsLsx + Lsε

where again Ls
.= W ∗AsW . Simple OLS spectral regressions lead to the frequency-specific coefficient

of regression (FSCR) β̂s corresponding to frequency ωs

β̃s =
(
xT LT

s Lsx
)−1

xT LT
s Lsy

=
(
x̂T

s x̂s

)−1
x̂sŷs (21)

The great advantage of the data extraction procedure is that it is linear in nature, so that all inferential

apparatus in the conventional OLS regression theory can be used as usual.

21In a more general distributed lag model
y = A (L) x + ε

where x and ε are uncorrelated covariance stationary processes,

fxy (ω) = A
�
z−1� fx (ω)

fy (ω) = |A (z)|2 fx (ω) + fε (ω)

The ratio fxy/fx is known as Hannan’s inefficient estimate of the distributed lag coefficients A (L).
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3 Empirical results22

Given the large number of variables involved in the analysis, and some similarities in results across

certain Phillips relations, in the next two sections, we will be selective and report only the results for

pairs of Phillips variables that are of substantial interest or are distinctive.

3.1 Phillips regressions with filtered data

Regression analyses with HP and BP-filtered data are carried out for two separate groups of regres-

sions and the estimation results are summarised in Tables 2-4. We only report results for regressions

of nominal variables against gaps (in terms of demeaned values) in output growth or unemployment.

In the first group of regressions, we use acceleration rates of core price indices PCEPILFE and

CPILFESL as dependent variables. With PCEPILFE as the regressand, most of the long slopes

for HP-filtered trend series and BP-filtered cyclical series have correct signs,23 while most of the

corresponding short slopes have the wrong sign. With CPILFESL as the regressand, almost all long

slopes for HP-filtered cyclical series have correct signs. This is not the case with HP-filtered trend

series and BP-filtered cyclical series. The validity of the NAIRU Phillips curve is sensitive to whether

PCEPILFE or CPILFESL is taken as the regressand, and depends on which filtered series are used.

In the second group of regressions,24 we use CPIENGSL, CPIUFDSL and POILBRE as control vari-

ables and regress filtered series of acceleration rates based on comprehensive price indices (GDPDEF,

GDPCTPI, PCECTPI, CPIAUCSL, PPIACO, HCNF and WASCUR) against expectations of price ac-

celeration, current and lagged real variables, and current and lagged controls. The control variables

are used to account for the impact on the Phillips tradeoff of exogenous supply shocks, as reflected

in food and energy prices. Results from regressions using energy or oil prices as the control variable

largely conform to those obtained with filtered core price series. In most cases, signs of long slopes in

regressions with HP-filtered trend series and BP-filtered cyclical series are incorrect. For regressions

with HP-filtered trend series, most longs slopes have correct signs.

Two key results emerge from the two groups of regressions. First, for almost all filtered series, Phillips

regressions based on the NAIRU specification (13) yield insignificant current responses (termed “Short

Slope” in Tables 2-4) and highly significant accumulated responses (long slope). This indicates that

the Phillips curve might only be valid when one focusses on cumulated responses. Secondly, for both

groups, the Durbin-Watson (DW) statistics are very low for models with HP-filtered trend series and

BP-filtered cyclical series, suggesting possible model mis-specification. On the contrary, regressions

with HP-filtered cyclical series seem to be correctly specified, with a DW test statistic value close to

2. Conflicting results from regressions with BP-filtered and HP-filtered cyclical series suggest that

studies of the type are sensitive to the definition of frequency bands, and cast serious doubt on the

validity of the Phillips curve.

22Data used are described and the Phillips nominal and real variables defined in Appendix 5.3.

23UNRATE is an important exception. In this context, a sign is deemed correct if it is positive for measures of real
activity and negative for unemployment rate.

24To economise space, tables reporting these results can be obtained from the author’s website.
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The Phillips tradeoff seems to be valid only in medium and high frequency bands (with HP-filtered

cyclical series), in terms of accumulated responses. The tradeoff fails to materialise in the Baxter-King

business-cycle frequency band. This might be a reflection of the sensitivity of the Phillips tradeoff

to slightly different levels and cutoffs of frequency aggregation, a symptom of fragility of the Phillips

curve from the frequency-domain perspective. Given that the cumulated responses often die out

within a relatively short time horizon, statistically significant long slopes occur within business-cycle

time horizon.

Results from regression with filtered series suggest that the Phillips relations are fragile, in the

sense that they are frequency dependent and are sensitive to the level and cutoffs of frequency-band

aggregation. The Phillips relations are also fragile in that the validity largely depends on particular

variables in use. We find that Friedman’s (1968) contention of no long-run Phillips tradeoff may not

hold, and King and Watson’s (1994) remarkable short-run Phillips correlation may only hold when

business-cycle frequency bands are conveniently defined to include the high-frequency component.

3.2 Frequency-specific Phillips correlations and regressions

Frequency-specific estimates of correlation and regression are presented in Figures 2-10, over the

[0, π] range.25 The vertical lines indexed by letters L and H indicate the lower (π/16) and higher

(π/3) frequency cutoffs. Given quarterly data frequency, L (or π/16) corresponds to 32 quarters

and H (or π/3) to 6 quarters. Below L is the low-frequency range that is often used to describe

long-run characteristics of economic relations, while the high-frequency range (above H) is useful

for studying short-run irregular comovements. Between L and H lies the medium or business-cycle

frequency range.

Estimated values of coherence, cospectrum and the real part of coherence (henceforth referred to

as real coherence) are computed for a total of 44 groups of bivariate I (0) Phillips variables. They

are presented in Figures 2-4, collected in Appendix 5.5. The first row of each figure lists coherence

estimates between a rate of price inflation (or acceleration), and the growth rate of a real variable,

the level (or growth rate) of demeaned and detrended processes of the real variable, and the variable’s

demeaned and detrended growth rates. Corresponding estimates of cospectra and real coherences are

arranged in the second and third rows, respectively.26 Whenever possible, we also present estimates

of real coherence, coherence and cospectrum for bivariate correlations between price inflation (or

acceleration) and gaps in real GDP level (and growth), computed with the BLS real potential GDP

series.

From Figures 2-4, coherence estimates appear to be large and remarkably stable, the values of which

are tightly concentrated in the [0.95, 1] range. Essentially there is no visible cross-frequency variations.

On the contrary, estimates of real coherences and cospectra reveal large cross-frequency variations.

However, it is difficult to discern variational patterns in these estimates. Many cospectrum estimates

show large bivariate correlations in low and business-cycle frequencies, with the strength of correlation

25Due to space limit, only a selected number of graphs are presented. The entire group of graphs can be accessed
on the author’s website.

26In the second rows of Figures 2-4, because of scaling, values of all cospectrum estimates should be read after a
division by 1, 000.

13



diminishing and dying down in the high-frequency range. This implies a concentration of correlative

power in low and medium frequencies, contradicting high correlation almost constant across the whole

spectrum as coherence estimates suggest. This pattern, however, is far from universal. Moreover,

estimates at one or two specific frequencies can be very large and often determine the overall sign

for the estimate over the entire frequency range. Estimates of real coherences, being normalised

and scale-free, reveal even larger cross-frequency variations, with more frequent and quite dramatic

sign reversals. Compared to cospectra estimates, real coherence estimates reveal greater volatility at

higher (above H) than at low and business-cycle frequencies.

The sign of correlation varies across frequencies, and from one frequency band to another. Changing

the boundaries of a frequency band, whether conventionally defined or not, may lead to a change

in the sign of average correlation over the band. Essentially, frequency-wise correlations of different

signs have been averaged in a simplistic way to deliver information about business cycles or the long

run. Large cross-frequency variations in our estimates indicate that conventional results relying on

averaging across frequency bands or over the whole range of frequency are not reliable. Even for

a narrow band (eg, near-zero frequencies), correlations may vary from being highly positive to very

negative, the average of which can be positive, negative, or most likely, close to zero, depending on

the exact definition of frequency ranges in use.

Coherence and cospectrum estimates are not good indicators of cross-frequency correlations.27 Co-

herence estimates reveals the strength but not the sign of correlation at each frequency. Cospectrum

estimates, without standardisation, can be misleading. Since cospectra and real coherences fail to

take into account the complex part of bivariate correlations, it is difficult to determine the overall

sign of correlation. Our estimates (in both directions) of frequency-specific coefficients of bivariate

correlation and regression are superior. They are graphed in Figures 5-10. The first, second and third

rows contain estimates of the frequency-specific coefficients of correlation, and of regression coeffi-

cients in reverse directions, respectively. The solid lines in the graphs represent the point estimates,

while the shaded areas surrounding these depict the 95% confidence intervals.

Figures 5-10 lead us to draw a different conclusion. We present the estimation results in six different

groups, depending on the pair of real and nominal variables used in the analysis. The first group

pairs real output GDPC96 or real output gap pGDPC96 against different price indices (GDPDEF,

GDPCTPI, PCECTPI, qPCEPILFE, qCPILFESL, qCPIAUCSL, qPPIACO and qPPIFCG). The vari-

ational patterns can be divided into four subgroups: (1) GDPDEF, GDPCTPI and PCECTPI (see

Figure 5), where estimates of correlations and regressions are mostly positive, but the coefficient es-

timates of reverse regressions (Beta 2) are often insignificant; (2) qPCEPILFE and qCPILFESL (see

Figure 6), signs in the low or medium frequencies are reversed, more estimates become insignificant;

and (3) qCPIAUCSL, qPPIACO and qPPIFCG; (4) HCMA, HCNF and WASCUR.

In the second group (see Figure 7), PCECC96, the real personal consumption expenditure, is paired

27Cospectrum and real coherence estimates can still be informative. In our case, they suggest that it is simplistic
to try to determine low or business-cycle Phillips tradeoff by averaging over a pre-defined frequency band. For certain
pairs, such as UNRATE or UNEMPLOY and HCNF, positive correlation dominates in both low and business-cycle
frequencies. For pairs such as OHMA and PCECTPI, positive correlation dominates the low-frequency range while
negative correlation dominates the business-cycle frequencies. Nevertheless, for many other pairs (for instance, RHCMA
and PCECTPI), no discernible pattern emerges. There is no uniform and stable business-cycle negative correlation
claimed by King and Watson (1994).
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with PCECTPI and qPCEPILFE, while real disposable personal income (DPIC96) is paired with

qCPIAUCSL and qCPILFESL. One cannot fail to notice that many coefficient estimates are not sig-

nificantly different from zero. In Group 3, employment variables qCE16OV, qUNRATE and qUNEM-

PLOY are paired with HCNF (see Figure 8). In Group 4 (see Figure 9), productivity variables are

examined as follows: (1) OHMA versus GDPCTPI and PCECTPI; (2) OHNF versus GDPCTPI

and PCECTPI; (3) RHCMA versus GDPCTPI and PCECTPI; (4) RHCNF versus GDPCTPI and

PCECTPI.

In the fifth group (see Figure 10), analyses with the Stock-Watson Recession (qXRIM), Leading

(qXLIM), Coincident (qXCIM), Recession 2 (qXRI2M) and Leading 2 (qXLI2M) indices exhibit

different shape patterns: (1) qXLIM and qXRI2M versus GDPCTPI; (2) qXLIM and qXRI2M versus

qCPILFESL; (3) qXLIM and qXRI2M versus qPPIACO; (4) qXCIM versus GDPCTPI, PCECTPI and

qPCEPILFE; (5) qXCIM versus qCPIAUCSL, qPPIACO and HCNF. In Group 6, real private non-

residential fixed investment (PNFIC96) and real gross private domestic investment (GPDIC96) are

paired with different price variables, and the shapes can be classified into: (1) PNFIC96 and GPDIC96

versus GDPCTPI; and (2) PNFIC96 versus qCPIAUCSL, qPPIACO and HCNF, and GPDIC96 versus

qCPIAUCSL, qPPIACO and HCNF.

From estimates of coefficients of correlation and regression, it is clear that patterns of cross-frequency

Phillips relations are diverse and change from (sub)group to (sub)group, and from one pair of Phillips

variables to another. Some clear and common characteristics in cross-frequency variations in the

Phillips relations emerge. In general, bivariate Phillips correlations and regressions (in both directions)

seem to be stable across the high-frequency range, while in low and medium frequencies, cross-

frequency variations are relatively large in magnitude, with more frequent sign reversals. Many

times, confidence intervals for estimates of correlation and regression estimates include zero for part

or all of the frequency range, suggesting that the estimates are not significantly different from 0.

Moreover, bivariate Phillips regressions in reverse directions generally do not have similar shapes. In

addition, the cross-frequency variational pattern and even the signs of correlation and regression may

change, depending on how the variables are processed prior to analysis (eg, demeaning, detrending,

or differencing)

Obviously, the Phillips relations may suffer from sign reversals, depending on slightly different defini-

tions of frequency bands of interest. The signs and magnitudes of the Phillips relations are sensitive

to the level and cutoffs of frequency-domain aggregation, i.e., the exact frequencies to be included in

an analysis. Averaging frequency-dependent correlations across the whole spectrum or within a con-

ventionally defined frequency band may lead to incorrect inference. In this sense, usual time-domain

and frequency-domain analyses of the Phillips curve are fragile.

4 Conclusion

In this paper, we use frequency domain techniques to investigate the robustness of the Phillips curve

tradeoffs across the entire frequency range. We first use the Hodrick-Prescott and Baxter-King

band-pass filters to examine the Phillips tradeoffs in conventionally defined frequency bands. We

then propose a frequency-specific data extraction procedure, which enables us to design frequency-
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specific coefficients of correlation and regression as measures of the strength of “linear” association

between time series. We use the coefficient estimates to assess the correlative power and examine

cross-frequency variations in the Phillips relations.

Causality tests suggest that long-run Phillips correlations are valid for almost all real and nominal

variables we have examined in the paper. Running NAIRU-type Phillips regressions with HP and BP-

filtered data, we find that the Phillips tradeoff holds true only in the medium and higher frequency

bands, where the cumulated responses (“long” slopes) are jointly significant and have the correct

sign. For some price indices, such as CPI series (CPILFESL and CPIAUCSL), and certain measures

of real activity, the Phillips tradeoff turns out to be more solid. By using a large number of different

nominal and real variables and by focussing on the simple Phillips bivariate relations and the NAIRU

specification, our first results contradict the conventional view that there is no long-run but a strong

short-run Phillips tradeoff.

Estimates of frequency-specific coefficients of correlation and regression for a large number (44

groups) of Phillips variables cast further doubts on the reliability of empirical work on Phillips curve.

For the majority of cases, the Phillips relations vary both in sign and in strength across the frequency

range, with frequent sign reversals. Taking a simple average of these correlations across the whole

spectrum or in the conventionally defined frequency bands may lead one to draw incorrect inference.

A small change in the level and boundaries of frequency aggregation may cause the averaged signs

of correlation and regression to reverse.

The Phillips relations seem to be fairly stable in the high frequency range (less than 6 quarters),

but much less stable in the business cycle frequency range, and quite unstable in the low frequency

range (over 32 quarters). Moreover, many of the 95% confidence intervals for the Phillips spectral

correlation and regression coefficients include zero. Furthermore, the Phillips relations are sensitive

to the type of data used and to the way how data are processed prior to analysis (i.e., how they are

detrended). Summing up, usual time and frequency-domain analyses of the Phillips curve may be

misleading, and in this sense, the Phillips relations are fragile.

In fact, there are good economic reasons for the relationship between price inflation and real economic

activity to differ across frequencies, i.e., across different time horizons. Cyclical Long-run inflation

may react to cyclical output growth, say, differently from how long-run inflation reacts to long-run

output growth. Indeed cyclical inflation may react to long-run output growth differently from how

it reacts to cyclical output growth. Whether a particular macroeconomic model holds true across

different time horizons or frequencies, and how potential cross-frequency model inconsistency may

impact on model estimation with aggregate time series using standard time domain methods, needs

careful examination.
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5 Appendices

5.1 Empirical validity of the Phillips curve: causality tests

The Phillips curve is essentially an empirical phenomenon.28 Traditionally, the slope of the Phillips

curve has been estimated either from a price equation, as in Gordon (1970) and Lucas (1973), or

from an aggregate supply equation as in Sargent (1976):

α(L)πt = β(L)ut + επ
t (22)

θ(L)ut = φ(L)πt + εu
t (23)

where πt and ut are the inflation and unemployment rate, respectively, and L is the lag operator.

In the price equation (22), επ
t is typically a shock to the aggregate demand, while in the supply

equation (23), εu
t is a supply shock. Since the bivariate correlation is certainly influenced by many

other third variables which interact among themselves and with both πt and ut, there are serious

omitted-variable and endogeneity biases in both equations.

In light of the Lucas-Sargent critique and recent advances in time series analysis, knowledge of the

orders of integration of the Phillips variable is key to the validity of a test of the long-run Phillips

tradeoff in reduced form. Assuming stationarity for πt and ut, Sargent (1971) and Lucas (1972b)

gave examples in which it may be impossible to test long-run neutrality using reduced-form models.

As Sargent (1971) pointed out, if sustained or permanent changes in the rate of inflation do not

materialise in the data during the estimation period, essentially one cannot test long-run propositions

that involve such changes.29 From the policy perspective, if the inflation rate is raised permanently

to a higher level, can we permanently raise the real activity to a new steady-state level?30 Once πt

is known to be integrated, one can define and test long-run neutrality without the full knowledge of

the underlying behavioural model.

Rewriting (22) as follows,

πt = β0ut + β′(L)ut−1 + α′ (L) πt−1 + επ
t (24)

where α′(L) and β′ (L) are finite polynomials in L. The short-run or contemporaneous slope SSR of

28As Lucas and Sargent (1979) remarked,“the question of whether a particular model is structural is an empirical,
not a theoretical one.” Yet much efforts have been made to provide theoretical foundations for the Phillips Curve,
which include Lucas (1972a), Mankiw (2000), Razin and Yuen (2001) and Woodford (2003).

29Fisher and Seater’s (1993) neutrality tests and their concept of “long-run derivative” are based on the observation
that orders of integration of variables of interest play a key role in non-structural tests of long-run propositions in
reduced-form models.

30McCallum (1984) distinguishes the Friedman-Phelps accelerationist hypothesis, where unemployment can be kept
permanently low only by permanently accelerating the rate of inflation, from the Lucas (1972) natural rate hypothesis,
where no monetary policy can keep unemployment permanently low.
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the Phillips curve is SSR = ∂πt/∂ut = β0 and the long-run slope SLR is31

SLR = ∂π/∂u =
β (1)
α (1)

=
β0 + β′ (1)
1− α′ (1)

(25)

The dynamic Phillips curve specification (24) embodies both long-run average behaviour and short-

term dynamics. It seems to be conventional wisdom that there is no long-run inflation-unemployment

tradeoff (i.e., vertical long-run Phillips curve with SLR = 0) but a strong negative short-run tradeoff

(SSR < 0).32

On the basis of (24), and following the example of Sargent (1976), we use both Granger’s (1969)

and Sims’ (1972) causality tests to examine the Phillips correlations. Focussing on the long-run, we

assume that there is no instantaneous causality (β0 = 0). For jointly covariance stationary processes

πt and ut, we have a bivariate system

πt =
p∑

j=1

αjπt−j +
q∑

j=1

βjut−j + ζt (26)

ut =
m∑

j=1

θjut−j +
n∑

j=1

φjπt−j + ξt (27)

where ζt and ξt can be interpreted as shocks to aggregate demand and supply, respectively. We say

that u (π) does not Granger-cause π (u), if the null hypothesis of βj = 0 (φj = 0), ∀j, cannot be

rejected. Alternatively, Sims’ (1972) causality test is based on the following regression equation

ut =
p∑

j=−m

γjπt−j +
q∑

j=1

θjut−j + εt (28)

Here u is said not to Granger-cause π, if we cannot reject the null that γj = 0, ∀j < 0. We apply the

Granger and Sims causality tests in both directions of regression, and the bivariate tests are applied

to a wide variety of candidate variables, which have been transformed (into gaps) and differenced

until their order of integration is reduced to zero (I (0)).

Tests of Granger causality constitute a basic test of the long-run Phillips correlation. Variables that

cannot Granger-cause each other at least in one direction are essentially unrelated, i.e., long-run

tradeoff (or more precisely, cumulated responses) cannot exist in the data. The long-term tradeoff is

an empirical phenomenon, which does not depend on short-run dynamics and hence the structural

details of the economy. Relatively structure-free tests of the tradeoff in reduced-form models are

useful, as long as it is not exploited for policy purposes.

Granger (1969) and Geweke (1982) designed simple measures of feedback and causality in the fre-

quency domain. Granger (1969) showed that for covariance stationary bivariate processes x and

y, the cospectrum fxy (ω) can be decomposed into two components, one depending on causality

31It would be more appropriate to call ∂πt/∂ut the instantaneous response of π to u, and ∂π/∂u the cumulated
response, so that these are nor confused with business-cycle and low-frequency responses. There can be both immediate
response in the low-frequency and accumulated response in the business-cycle frequency.

32One of Mankiw’s (2000) 10 principles of economics is:“Society faces a short-run tradeoff between inflation and
unemployment.”
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running from x to y, the other depending on causality running from y to x. To measure the strength

of causality from one series to the other, he focussed on one single component and proposed the

concept of causality coherence. Geweke (1982) defined measures of linear feedbacks and dependence

based on the regression errors in the system (26) and (27) and provided their counterparts in the

frequency domain. Geweke (1986) applied these concepts to study the long-run superneutrality of

money.

Given the important implications of non-stationarity for our analysis,33 we test the order of integration

for all variables, using Said and Dickey’s (1984) augmented Dickey-Fuller (ADF) test, Phillips’ (1987)

and Phillips and Perron’s (1988) Zα and Zt tests. Test results indicate that almost all price indices,

with the exception of a few producer price indices, contain unit roots in levels. The null of unit

root is rejected at 1% significance level by all three tests for rates of price acceleration. Test results

for rates of price change (inflation) are mixed and sometimes inconclusive.34 For real variables, test

results are much more uniform. Except for UNRATE, RHCMA, RHCNF, XLIM, XLI2M, XRIM and

XRI2M, which are already I(0) or close to stationarity in levels, all other real variables contain unit

roots in levels, while the presence of unit roots in their rates of change and acceleration is rejected

at 1% significance level.

We estimate the spectrum for all variables involved. While the levels and rates of change of the

nominal variables have the “typical spectral shape” of Granger (1966), their rates of acceleration

do not.35 Levels of the real variables, in general, have the typical spectral shape. For their rates of

growth, the power appears to be more evenly distributed, but with more cross-frequency fluctuations.

The spectral shapes of different variables largely conform to the unit root test results.

We carry out the Granger and Sims causality tests for variables that are I (0) or differenced enough

times to be stationary. In the Granger tests, a maximum of six lags is allowed for both the lagged

dependent variable and the regressor, so a total of 36 tests are run in each direction for every pair of

Phillips variables. In the Sims tests, a maximum number of six leads is combined with a maximum

number of six lags, so a total of 216 tests are run in each direction for every pair of Phillips variables.

Model selection criteria (AIC, BIC and FPE) are used to select the adequate model, and the null

hypothesis of causality is tested in the adequate model. P -values for both the F and the LM tests

of the null of non-causality are obtained.

33McCallum (1984) argued that “the association of low-frequency time-series statistics with ‘long-run’ economic
propositions is not generally warranted. Instead, many so-called long-run propositions involve expectational relationships
which have little or nothing to do with low frequencies per se, so that such an association is inappropriate in a
fundamental sense.” The critique is valid for stationary models in reduced form, and it is equivalent to the Lucas-
Sargent critique articulated in the time domain. The key issue is that low-frequency measures are not “designed to
reflect the distinction between anticipated and unanticipated fluctuations that is crucial for accurately characterising
intervariable relationships in many dynamic models.”

The Phillips tradeoff cannot be tested in reduced form in the absence of good knowledge about the underlying
structural model, unless the data contain permanent stochastic changes in price level or inflation. Moreover, long-
run correlation between inflation and real activity depends on their relative orders of integration. In this context,
non-stationarity plays a key role in making inferences about important economic hypotheses.

34The order of integration of price indices may change over time, and such changes reflect fundamental changes in
economic structure or in the making of economic policies. In a period of price stability since the early 1990s, price
indices are likely to be stationary.

35Curiously, the only exception seems to be POILBRE, the oil price of UK Brent, light blend 38 API, FOB U.K.
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Comparing the Granger and the Sims test results (see Table 1),36 the rejection rate of the null

of non-causality is much lower in the latter case. According to the Granger tests, most pairs of

Phillips variables seem to Granger-cause each other, and long-run Phillips correlations are valid for

a wide variety of real and nominal variables. The only exception seems to occur with the pair of

demeaned RHCMA (productivity gap) growth and GDPCTPI. From Sims tests, however, the majority

of causality relations are unidirectional, and some pairs apparently have no causal relationship.

For all causally related pairs of Phillips variables, in most cases, the sum of distributed lag coefficients

is negative when measures of real activity are used as the dependent variable, and positive when mea-

sures of unemployment are used instead. The observed signs largely conform to prior expectations.

However, sign reversals are frequent in Granger regressions, which occur when real variables become

the regressand. One explanation might be that the cumulated responses of price inflation or accel-

eration to a change in real growth are positive, while price inflation or acceleration tend to reduce

growth rates in the long run. In Sims regressions, signs for most pairs of variables are consistent. In

terms of both tests and signs of cumulated responses, the Granger and Sims regressions disagree in

many cases.

Results from the Sims tests reveal distinctive patterns. First, although the vast majority of the

Phillips variables appear to be causally related, many causal relations are unidirectional, and there

are more cases of no causality; second, signs of sums of distributed leads in the Sims tests suggest the

same interpretation as in the Granger tests, whenever the null of non-causality can be rejected; third,

for most pairs of Phillips variables, when price indices are all inclusive, causality runs from real to

nominal variables, but not the other way round. Once we use core price indices which exclude energy

and food prices (CPILFESL and PCEPILFE), or nominal wages (HCNF and WASCUR), causality

runs only from nominal to real variables. Controlling for energy and food prices inverts the direction

of causality. Test results for regressions with gaps in real output and in real output growth computed

using the BLS Real Potential GDP series are broadly in agreement with those obtained from output

and unemployment gaps calculated as demeaned or detrended processes. In conclusion, both Granger

and Sims causality tests attest to the validity of the Phillips tradeoff.

5.2 Conventional filters in macroeconomic analysis

For the first difference (FD) filter FD (L) = 1− L, the transfer function is

ψFD (ω) = 1− e−iω (29a)

=





2 |sin (ω/2)| exp (i (π − ω) /2)

2 |sin (ω/2)| exp (−i (π + ω) /2)

if ω > 0

if ω < 0
(29b)

36Tables with complete causality test results can be obtained from the author’s website.
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and the gain and squared gain of the FD filter are, respectively

GFD (ω) = 2 |sin (ω/2)| (30)

SGFD (ω) = 2 sin2 (ω/2) (31)

The FD filter and Hodrick and Prescott’s (1980, 1997) HP filter are approximate high-pass filters.

Inverting their squared gain functions SGHP (ω) and SGFD (ω), we obtain the corresponding inverse

squared gain functions SG∗
HP (ω) and SG∗

FD (ω):37

SG∗
HP (ω) = 1− SGHP (ω) (32)

SG∗
FD (ω) = 1− SGFD (ω) (33)

The Lucas’ (1980) filter takes a two-sided exponentially weighted symmetric moving average of the

original time series:

yt =
1− ρ

1 + ρ

∞∑

j=−∞
ρ|j|xt+j (34)

with 0 < ρ < 1. Its Fourier transform and squared gain are, respectively

ψL

(
e−iω

)
=

(1− ρ)2

1 + ρ2 − 2ρ cos (ω)
(35)

SGL (ω) =
∣∣ψL

(
e−iω

)∣∣2 =
(1− ρ)4

[1 + ρ2 − 2ρ cos (ω)]2
(36)

The Lucas filter is an approximate low-pass filter that assigns little weight to the medium and

high-frequency components of a time series but retains the power at very low frequencies. As the

weighting parameter ρ increases from 0.5 to 0.95, the filter becomes more concentrated around the

zero frequency.

The Lucas filter, the inverse HP and FD filters are approximate low-pass filters. Using mean squared

error criterion, Baxter and King (1999) developed an approximate band-pass (BP) filter, in fact, a

combination of approximate high-pass and low-pass filters. Ideal filters can be designed for data

of infinite length. In reality, finite data length implies the necessity of truncation of filter weights.

This, in turn, leads to filter leakage, exacerbation and compression. Comparing to an ideal filter,

approximate filters with cutoffs at −ω̄ and ω̄ allow through a sizeable amount of power from fre-

quencies outside of the range [−ω̄, ω̄], the phenomenon being known as filter leakage. Inside the

range [−ω̄, ω̄], an approximate filter may amplify or scale down the power of the input series, leading

to “exacerbation” and “compression” effects (See Figure 1).

The squared gains of the FD, Lucas, HP and BP filters are graphed in Figure 1. The FD filter is a

highly inaccurate approximate high-pass filter, with a sizeable amount of leakage appearing at low

frequencies, and too great weights assigned to medium- and high-frequency components. As the

37The analytical formulae for squared gains of the HP and BP filters are well known. Equations (32) and (33) are
not the true squared gains of the inverse HP and FD filters. Because the spectral density of the output series is equal
to that of the input series multiplied by squared gain, the effect of the inverse HP and FD filters can be illustrated by
“inverting” their squared gain functions.
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smoothing parameter λ increases from 10 to 25, 600, the HP filter increasingly resembles an ideal

high-pass filter and the leakage becomes smaller. For the Lucas filter, the picture is typical of an

exponential smoothing filter. Besides its elaborate design, the Lucas filter is not any more successful

in isolating very low-frequency component of a time series than other symmetric moving average

filters with exponential weights. For comparability with the existing literature, we use the HP and

BP filters in our analysis.

5.3 Data description

We collect our postwar US macroeconomic data, seasonally adjusted and at quarterly frequency, from

the Bureau of Labour Statistics (BLS), US Department of Labor, except for the series of oil prices,

which are taken from the CPS. We use a large number of nominal (18) and real (22) variables that

have been used in the literature to provide a frequency-domain robustness check of the empirical

Phillips relations. While most of the series end in 2001:4 or 2002:1, their starting dates differ greatly,

ranging from 1946:1 to 1975:1.38 We always choose the longest sample period available in each set

of bivariate correlation and regression analyses, taking advantage of as much information as data

availability allows.

The nominal or price variables are divided into the following six groups:

(1) Gross Domestic Product (GDP) and Gross National Product (GNP) Implicit Price Deflators and

the corresponding Chain-type Price Indices (GDPDEF, GDPCTPI, GNPDEF and GNPCTPI);

(2) Personal Consumption Expenditures (PCE) Chain-type Price Index (PCECTPI), PCE Chain-type

Price Index Less Food and Energy (PCEPILFE);

(3) Wages and Salaries as Compensation of Employees (WASCUR), Hourly Compensation in the

Manufacturing Sector (HCMA), Hourly Compensation in Non-farm Businesses (HCNF);

(4) Consumer Price Index (CPI) for All Urban Consumers, All Items (CPIAUCSL), CPI for All Urban

Consumers, All Items excluding Food and Energy (CPILFESL), CPI for All Urban Consumers, Energy

(CPIENGSL), CPI for All Urban Consumers, Food (CPIUFDSL);

(5) Producer Price Index (PPI) for all commodities (PPIACO), PPI for finished consumer goods

(PPIFCG), PPI for finished goods excluding energy (PPIFLE), PPI for finished goods excluding food

and energy (PPILFE);

(6) Oil Prices for UK Brent, light blend 38 API, FOB U.K. (POILBRE).

On the other hand, the (real) variables that we use to measure aggregate real activity, such as real

output or unemployment, are divided into the following six groups:

38Data ranges for the time series are:
(a) Nominal variables: GDPDEF, GDPCTPI, PCECTPI, HCNF, CPIAUCSL, CPIUFDSL, 1947.1 - 2002.1; GNPDEF,

GNPCTPI, 1947.1 - 2001.4; CPIAUCNS, PPIACO, WASCUR, 1946.1 - 2002.1 ; HCMA, 1949.1 - 2002.1; CPILFESL,
CPIENGSL, 1957.1 - 2002.1; PPIFCG, 1947.2 - 2002.1; PPIFLE, 1975.1 - 2002.1; PPILFE, 1974.1 - 2002.1; PCEPILFE,
1963.1 - 2002.1; POILBRE, 1957.1 - 2001.2;

(b) Real variables: GDPC96, PCECC96, DPIC96, PNFIC96, GPDIC96, OHNF, RHCNF, 1947.1 - 2002.1; GDPPOT,
1949.1 - 2012.4; OHMA, RHCMA, 1949.1 - 2002.1; GNPC96, 1947.1 - 2001.4; UNRATE, CE16OV, UNEMPLOY,
CIVPART, EMRATIO, 1948.1 - 2002.1; PCEC96, 1967.1 - 2002.1; DSPIC96, 1959.1 - 2002.1; XLIM , XCIM, XLI2M,
1959.1 - 2002.1; XRICM, 1959.2 - 2002.1; XRIM, XRI2M, 1961.1 - 2002.1.
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(1) Real Gross Domestic and National Product, in chained 1996 dollars (GDPC96 and GNPC96),

Real Potential GDP in chained 1996 dollars (GDPPOT);

(2) Real Personal Consumption Expenditures in chained 1996 dollars (PCECC96), Real Disposable

Personal Income in chained 1996 dollars (DPIC96);

(3) Civilian Unemployment Rate (UNRATE), Unemployed, 16 years and over (UNEMPLOY), Civil-

ian Employment for 16 years and over (CE16OV), Civilian Participation Rate (CIVPART), Civilian

Employment-Population Ratio (EMRATIO);

(4) Real Private Nonresidential Fixed Investment in chained 1996 dollars (PNFIC96), Real Gross

Private Domestic Investment (GPDIC96);

(5) Productivity, Output per Hour in Manufacturing (OHMA), Output per Hour in Non-farm Busi-

nesses (OHNF), Real Hourly Compensation in Manufacturing (RHCMA), Real Hourly Compensation

in Non-farm Businesses (RHCNF);

(6) Stock-Watson NBER Experimental Recession Index (XRIM), Experimental Leading Index (XLIM),

Experimental Coincident Index (XCIM), Experimental Coincident Recession Index (XRICM), alterna-

tive Non-financial Experimental Leading Index-2 (XLI2M), and alternative Non-financial Experimental

Leading Recession Index-2 (XRI2M).

We first transform the data by taking logarithms of all series except for those which are already

expressed as percentage rates, such as UNRATE, CIVPART and EMRATIO. Rates of change are

then computed either as difference in the log-transformed variables or as percentage change in levels.

The rate of acceleration of each variable is calculated as the first difference of its rate of change.

For real variables, we define gaps in real activity (in both levels and growth rates) as deviations from

a linear trend and as demeaned processes. We take first differences in these gaps as many times as

needed to create new variables that are stationary. Using the Real Potential GDP series provided by

the BLS, we calculate alternative real output gaps (in both level and growth rate) as the difference

between the historical values of Real and Real Potential GDP’s.
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Figure 2: Spectral indicators of Phillips correlations: GDPC96 versus GDPDEF
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Figure 7: Spectral indicators of Phillips correlations: PCECC96 versus PCECTPI
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Figure 8: Spectral indicators of Phillips correlations: qUNRATE versus HCNF
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Figure 9: Spectral indicators of Phillips correlations: RHCMA versus GDPCTPI
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Figure 10: Spectral indicators of Phillips correlations: qXCIM versus GDPCTPI
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